Understanding the Time-Dependent Effective Diffusion Coefficient Measured by Diffusion MRI: the Intra-Cellular Case
Houssem Haddar, Jing-Rebecca Li, Simona Schiavi

To cite this version:
Houssem Haddar, Jing-Rebecca Li, Simona Schiavi. Understanding the Time-Dependent Effective Diffusion Coefficient Measured by Diffusion MRI: the Intra-Cellular Case. SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2017. hal-01421928

HAL Id: hal-01421928
https://hal.inria.fr/hal-01421928
Submitted on 23 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UNDERSTANDING THE TIME-DEPENDENT EFFECTIVE DIFFUSION COEFFICIENT MEASURED BY DIFFUSION MRI: THE INTRA-CELLULAR CASE

HOUSSEM HADDAR†, JING-REBECCA LI†, AND SIMONA SCHIAVI†

Abstract. Diffusion Magnetic Resonance Imaging (dMRI) can be used to measure a time-dependent effective diffusion coefficient that can in turn reveal information about the tissue geometry. Recently a mathematical model for the time-dependent effective diffusion coefficient was obtained using homogenization techniques after imposing a certain scaling relationship for the time, the biological cell membrane permeability, the diffusion-encoding magnetic field gradient strength, and a periodicity length of the cellular geometry. With this choice of the scaling of the physical parameters, the effective diffusion coefficient of the medium can be computed after solving a diffusion equation subject to a time-dependent Neumann boundary condition, independently in the biological cells and in the extra-cellular space. In this paper, we analyze this new model, which we call the H-ADC model, in the case of finite domains, which is relevant to diffusion inside biological cells. We use both the eigenfunction expansion and the single layer potential representation for the solution of the above mentioned diffusion equation to obtain analytical expressions for the effective diffusion coefficient in different diffusion time regimes. These expressions are validated using numerical simulations in two dimensions.

Key words. Diffusion MRI; time-dependent ADC; homogenization; effective medium;

AMS subject classifications. 35B27, 35Q99, 65M32, 65Z05

1. Introduction. Diffusion Magnetic Resonance Imaging (dMRI) encodes water displacement due to diffusion via the application of diffusion-encoding gradient pulses and is a powerful tool to obtain information on the tissue microstructure. A major application has been in detecting acute cerebral ischemia minutes after stroke [28, 42]. DMRI has been used to detect and differentiate a wide range of physiological and pathological conditions in the brain, including tumors [25, 37, 40] and myelination abnormalities (for a review, see [21]). It also has been used to study brain connectivity (for a review, see [20]) and in functional imaging [22] as well as in cardiac applications [5, 6, 35].

In particular, we are interested in an important quantity measured by dMRI called the “Apparent Diffusion Coefficient” (ADC) which is based on a measure of the mean diffusion displacement inside an imaging voxel. The mean squared displacement of spins during a diffusion time \(t_D \) is defined as:

\[
 MSD(t_D) \equiv \frac{1}{\int_{X_0} \rho(x_0) dX_0} \int_{X_0} \int_{X} \rho(x_0) \left((x - x_0) \cdot u_g \right)^2 u(x, x_0, t_D) dx \ dx_0.
\]

where \(u(x, x_0, t_D) \) is the proportion of spins starting at \(x_0 \) when \(t = 0 \) ending up at position \(x \) after a time \(t_D \), \(\rho(x_0) \) is the density of spins at \(x_0 \), and \(u_g \) is a unit vector in \(\mathbb{R}^3 \) (\(u_g \) is called the diffusion-encoding direction). In the same vein, we can define an effective diffusion coefficient in the direction \(u_g \) by the following expression:

\[
 \frac{1}{2 \ t_D} MSD(t_D).
\]
Since the mean squared displacement in a heterogeneous medium is not necessarily linear in t_D, effective diffusion coefficient typically depends on t_D.

The MSD can be measured by dMRI using a sequence of magnetic field gradient pulses (called a diffusion-encoding sequence). A commonly used sequence is the Pulse Gradient Spin Echo (PGSE) experiment [36]. In this paper, we will focus on the PGSE time profile to simplify the presentation.

The PGSE sequence contains two rectangular pulses of the diffusion-encoding gradient magnetic field $B_{\text{diff}} = g \mathbf{u}_g \cdot \mathbf{x}$, where g is the strength of the gradient and \mathbf{u}_g is the gradient direction. Each pulse has a duration δ, with the delay between the start of the two pulses denoted Δ, and there is also a radio-frequency (RF) pulse to affect a 180 degree spin reversal between the pulses (see Figure 1).

Fig. 1: The Pulsed Gradient Spin Echo (PGSE) sequence. The effective sequence time profile shown here takes into account the 180 degree pulse.

In the ideal case, where the pulse duration is very short compared to the delay between the pulses, $\delta \ll \Delta$, called the narrow pulse case, it is easy to relate the magnetization of spins to the diffusion propagator $u(\mathbf{x}, \mathbf{x}_0, t_D)$. Let us consider spins initially located at \mathbf{x}_0. After the first pulse, the complex phase of these spins is $e^{i \delta \gamma g \mathbf{u}_g \cdot \mathbf{x}_0}$, where $\gamma = 42.576$ MHz/Tesla is the gyro-magnetic ratio of the water proton. Because the gradient magnetic field is turned off after the first pulse, the spins move but the phase of the spins does not change. The phase remains $e^{i \delta \gamma g \mathbf{u}_g \cdot \mathbf{x}_0}$, until the application of the RF pulse resulting in a 180 degree spin reversal. After the 180 degree RF pulse, the complex phase becomes $e^{-i \delta \gamma g \mathbf{u}_g \cdot \mathbf{x}_0}$. Again, spins move but the phase of the spins stays the same until the application of the second pulse, after which the complex phase due to spins ending up at position \mathbf{x}_f becomes $e^{i \delta \gamma g \mathbf{u}_g \cdot (\mathbf{x}_f - \mathbf{x}_0)}$. So the magnetization at position \mathbf{x} and the echo time TE, which is the time that the MRI signal is acquired, some time after the end of the second pulse (i.e. $TE \geq \Delta + \delta$), is:

$$M(\mathbf{x}, TE) \approx \int_{\mathbf{x}_0} \rho(\mathbf{x}_0) \ u(\mathbf{x}, \mathbf{x}_0, \Delta) \ e^{i \delta \gamma g \mathbf{u}_g \cdot (\mathbf{x} - \mathbf{x}_0)} d\mathbf{x}_0,$$

where we used the assumption that $\delta \ll \Delta$. The dMRI signal S is the total water
proton magnetization in an imaging voxel V:

$$ S = \int_{x \in V} M(x, TE) \, dx. \quad (4) $$

Because the diffusion displacement is usually much shorter than the size of the imaging voxel size we can ignore spins that enter and leave the voxel during the signal acquisition and thus take domain of integration in Eq. (4) to be \mathbb{R}^3. Using properties of the Fourier transform, we obtain

$$ \frac{\partial S}{\partial (\delta \gamma g)^2} \bigg|_{\delta \gamma g = 0} \approx MSD(\Delta), \quad (5) $$

in the case of the narrow pulse PGSE sequence, where S_0 is the signal at $g = 0$ (a derivation of this statement can be found in [23]).

Without the narrow pulse assumption, Eq. (3) does not hold exactly. Rather, $M(x, t)$ is governed by the Bloch-Torrey equation, which is a complex-valued diffusive PDE:

$$ \begin{cases} \frac{\partial}{\partial t} M(x, t) = -\gamma g u_g \cdot x f(t) M(x, t) + \text{div}(D_0(x) \nabla M(x, t)) & \text{in } \bigcup \Omega_j \times [0, TE] \\ D_0 \nabla M \cdot \nu |_{\Gamma_{ij}} = \kappa \| M \|_{\Gamma_{ij}} & \text{on } \Gamma_{ij} \times [0, TE] \\ M(., 0) = \rho & \text{in } \bigcup \Omega_j \end{cases} \quad (6) $$

where Ω_0 is the extra-cellular space and each of Ω_j, $j = 1, \ldots, N$, is a biological cell. The vector ν is the exterior normal to the biological cells; $\| \|_{\Gamma_{ij}}$, $i, j = 0, \ldots, N, i \neq j$, is the jump (the limit value in compartment i minus the limit value in compartment j) on Γ_{ij}, the interface between Ω_i and Ω_j; κ is the membrane permeability coefficient; ι is the imaginary unit. The function $f(t)$ gives the normalized time profile of the diffusion-encoding magnetic field gradient pulses. For the classic Pulsed Gradient Spin Echo (PGSE) sequence [36], simplified to include only the parameters relevant to diffusion (the imaging gradients are ignored),

$$ f(t) = \begin{cases} 1 & t_s < t \leq t_s + \delta, \\ 0 & t_s + \delta < t \leq t_s + \Delta, \\ -1 & t_s + \Delta < t \leq t_s + \Delta + \delta, \\ 0 & \text{elsewhere}, \end{cases} \quad (7) $$

where t_s is the start of the first pulse and we made $f(t)$ negative in the second pulse to include the effect of the 180 degree spin reversal between the pulses. For simplicity, since t_s does not play a role in the results of this paper, we set $t_s \to 0$. For the same reason, we set $TE = \delta + \Delta$ in this paper.

We note that the Bloch-Torrey equation needs to be supplemented by additional boundary conditions on the sides of the imaging voxel. For example, periodic boundary conditions on the boundary of the voxel would be an acceptable choice.

In the case of unrestricted diffusion in a homogeneous medium with a diffusion coefficient D_0, the integral of the solution of the Bloch-Torrey equation, in other words, the total magnetization, takes the following exponential form [4, 16] :

$$ S = S_0 e^{-D_0 b}, \quad (8) $$
with the b-value defined as:

$$ b \equiv \gamma^2 g^2 \int_0^{T_E} F(t)^2 dt, $$

where

$$ F(t) \equiv \int_0^t f(s) ds. $$

In particular, for the PGSE sequence,

$$ F(t) = \begin{cases}
 t & t_s < t \leq t_s + \delta, \\
 \frac{\delta}{t} & t_s + \delta < t \leq t_s + \Delta, \\
 \Delta + t - t_s & t_s + \Delta < t \leq t_s + \Delta + \delta, \\
 0 & \text{elsewhere}.
\end{cases} $$

To adapt the definition of the effective diffusion coefficient to the non-narrow pulse case, we make the following mathematical definition:

$$ D_{\text{eff}}^{u_g} \equiv -\frac{1}{\gamma^2} \int_0^{T_E} F(t)^2 dt \frac{\partial}{\partial g^2} \ln \left(\frac{S}{S_0} \right) \bigg|_{g=0}. $$

In the dMRI community, the above quantity is fitted using the experimental MRI signal at several b values and the obtained value is called the “apparent diffusion coefficient” (ADC). The ADC is widely used medical applications, for instance, ADC maps of brain have been used to identify tumours (see [21, 41]). The $D_{\text{eff}}^{u_g}$ defined in the above formula depends on the gradient direction u_g and the temporal profile $f(t)$ but not on the gradient amplitude. In this paper, with the phrase “diffusion time-dependent” we actually mean dependent on Δ and δ.

The motivation of our work is the experimentally observed phenomenon (see [33] and the references contained there) that the ADC depends on Δ (and δ in the non-narrow pulse case), leading to the need to characterize the time-dependent ADC in terms of tissue-related quantities over a wide range of diffusion time regimes. The ultimate goal is of course the estimation of these tissue-related quantities from the measured dMRI signal.

In this paper, we focus on the case of finite domains, where the membrane permeability is small enough to have negligible effect on the effective diffusion coefficient, which is related to the first order moment of the dMRI signal in the b-value (Eq. 12). We note that this does not exclude the permeability from having an effect on the higher order moments of the signal. For the case where the permeability does affect the $D_{\text{eff}}^{u_g}$, the analysis is more difficult and we refer the reader to [7, 15, 19, 38, 39] for results on periodic media and to [3, 8, 30, 31, 32] on more general heterogeneous media, not necessarily periodic.

Now we summarize some existing results concerning the effective diffusion coefficient for finite domains where the membrane permeability is negligible. In the short time regime, the effective diffusion coefficient is reduced from the free diffusion coefficient D_0 by the presence of the cell membranes that affects only the molecules in the adjacent layer. The thickness of this layer is of the order of the diffusion length $\sqrt{D_0 t}$ [17], where D_0 is the bulk diffusion coefficient. Calculations in [26, 27] show

$$ D_{\text{short}}(t) = D_0 \left(1 - \frac{4}{3d\sqrt{\pi}} \nabla \sqrt{D_0 t} \right), $$

This manuscript is for review purposes only.
where \(d \) is the spatial dimension and \(S/V \) is the surface to volume ratio. This result was extended to include higher order terms accounting for permeable membranes, surface relaxation and mean curvature [18, 30]. It was also shown that, in the case of anisotropic media subjected to a linear gradient with direction \(\mathbf{u}_g \), one should replace \(\frac{S}{d} \) above by \(\int_{\partial \Omega} (\mathbf{u}_g \cdot \mathbf{n})^2 d\mathbf{x} \) \(|\Omega|\) [1, 9]. In the long time limit, the spins explore the whole available space of the finite domain and then their mean square displacement saturates while the effective diffusion coefficient decreases as \(\Delta \) increases. For an isolated cell of a typical size \(R \) the diffusion becomes Gaussian as was shown in [29, 34]. In the case of the PGSE sequence in the narrow pulse limit one gets

\[
D_{\text{eff, long}}^\text{long}(\Delta) \approx C \frac{R^2}{\Delta},
\]

where \(C \) is a geometrical constant (for example, \(C = 1/4 \) for the reflecting cylinder and \(C = 1/12 \) for a 1D configuration [4, 9]).

Finally, an approach that is closely related to the work of this paper is the “matrix formalism” approach used to describe restricted diffusion in bounded domains [2, 9, 10, 11]. There one considers the applied diffusion-encoding magnetic field as a perturbation of the Laplace operator and the magnetization is decomposed on the basis of Laplacian eigenfunctions.

In contrast to the “matrix formalism” approach, the homogeneous model [14] which we call the H-ADC model and which is the focus of this paper, was derived using a certain scaling of the membrane permeability with respect to other physical parameters and thus is not limited to impermeable domains. Our derivation of the H-ADC model justifies neglecting the membrane permeability for the choice of scaling that we have made. In addition, since we have formulated the time-dependent effective diffusion coefficient as the solution of a diffusion equation rather than directly in the eigenfunction basis, we have the freedom to analyze the solution of the resulting diffusion equation using both the eigenfunction representation as well as the layer potential representation according the relevant time regime under consideration. Finally, we note that we preferred the term “apparent” to the term “effective” in naming the H-ADC model due to the more common usage of the term \(ADC \) in the MRI community.

This paper is organized as follows. In Section 2 we describe the H-ADC model derived in [14]. In Section 3 we represent the solution of the relevant diffusion equation of the H-ADC model using the eigenfunction basis as well as by single layer potentials and discuss the regime where each representation is advantageous. In Section 4 we provide formulas for the effective diffusion coefficient that is averaged over diffusion-encoding gradient directions that are uniformly distributed in the unit sphere. In Section 5 we validate our analytical results with numerical simulations on two-dimensional geometries. Section 6 contains our conclusions.

2. Effective diffusion coefficient in finite domains. In a previous work [14], we obtained an homogenized model by starting from the Bloch-Torrey equation using the following scaling relationship between the time (\(\Delta \) and \(\delta \)), the biological cell membrane permeability (\(\kappa \)), the diffusion-encoding magnetic field gradient strength (\(g \)), and a periodicity length of the cellular geometry (\(L \)):

\[
L = O(\epsilon), \quad \kappa = O(\epsilon), \quad g = O(\epsilon^{-2}), \quad \{\Delta, \delta\} = O(\epsilon^2),
\]

where \(\epsilon \) is a non-dimensional parameter. It was shown that with this choice, there is no coupling between the different geometrical compartments in the \(g^2 \) term which
gives rise to the effective diffusion coefficient. The total effective diffusion coefficient is the sum of the effective diffusion coefficient in each geometrical compartment weighted by its volume fraction. Thus, in this paper we are justified in considering each compartment separately.

According to [14], with the definitions of \(F(t) \) given in (11), the effective diffusion coefficient in the compartment \(\Omega \) can be obtained in the following way:

\[
D_{\text{eff}}^{u_g} = D_0 - \frac{D_0}{\int_0^{TE} F(t)^2 dt} \int_0^{TE} F(t) h(t) dt,
\]

where

\[
h(t) = \frac{1}{|\Omega|} \int_{\Omega} u_g \cdot \nabla \omega(x, t)
\]

is a quantity related to the directional gradient of a function \(\omega \) that is the solution of the homogeneous diffusion equation with Neumann boundary condition and zero initial condition:

\[
\frac{\partial}{\partial t} \omega(x, t) - \nabla \cdot (D_0 \nabla \omega(x, t)) = 0, \quad x \in \Omega,
\]

\[
D_0 \nabla \omega(x, t) \cdot \nu(x) = D_0 F(t) u_g \cdot \nu(x), \quad x \in \partial \Omega,
\]

\[
\omega(x, t) = 0, \quad x \in \Omega,
\]

\(\nu \) is the outward normal and \(t \in [0, TE] \). We can see that if \(h(t) \) is close to \(F(t) \), then \(D_{\text{eff}}^{u_g} \) is close to 0. The above set of equations, (15)-(17), comprise the homogenized model that we call the H-ADC model.

In our previous work [14], we imposed periodic boundary conditions on the boundary of the voxel. In this paper, we are interested in analyzing (15)-(17) for spatially finite compartments, which is relevant to diffusion inside biological cells. It will not be necessary to impose periodic boundary conditions on the sides of the imaging voxel if we consider only cells that do not touch the sides.

3. Solution of the model.

Defining the right hand side of the Neumann boundary condition as

\[
\beta(y, t) := D_0 F(t) u_g \cdot \nu(y),
\]

we will use the following two equivalent expressions for \(h(t) \):

\[
h(t) = \frac{1}{|\Omega|} \int_{\Omega} u_g \cdot \nabla \omega(x, t) dx = \frac{1}{|\Omega|} \int_{\Gamma} \omega(y, t) (u_g \cdot \nu(y)) ds_y,
\]

where the second expression can be obtained by applying the divergence theorem to (16). We observe that the first expression uses values of the gradient of \(\omega \) inside the domain while the second uses the values of \(\omega \) on the boundary. Each expression will have advantages depending on whether we use the eigenfunctions of the Laplace operator or layer potentials to represent \(\omega \).

3.1. Eigenfunctions representation.

Writing \(\omega \) as the sum

\[
\omega(x, t) = \bar{\omega}(x, t) + F(t) x \cdot u_g, \quad x \in \Omega, \quad t \in [0, TE]
\]
where \(\bar{\omega}(x, t) \) satisfied the diffusion equation with a forcing term and homogeneous boundary condition:

\[
\begin{align*}
\frac{\partial}{\partial t} \bar{\omega}(x, t) - \nabla (D_0 \nabla \bar{\omega}(x, t)) &= -f(t)x \cdot u_g, \quad x \in \Omega, \quad t \in [0, TE], \\
D_0 \nabla \bar{\omega}(x, t) \cdot \nu(x) &= 0, \quad x \in \Gamma, \quad t \in [0, TE], \\
\bar{\omega}(x, t) &= 0, \quad x \in \Omega.
\end{align*}
\]

It is well-known that \(\bar{\omega}(x, t) \) can be expanded in the basis of Laplace eigenfunctions. Let \(\phi_n(x) \) and \(\lambda_n \) be the \(L^2 \) normalized eigenfunctions and eigenvalues associated to the Laplace operator with homogeneous Neumann boundary conditions:

\[
\begin{align*}
-\nabla D_0 (\nabla \phi_n(x)) &= \lambda_n \phi_n(x), \quad x \in \Omega, \\
D_0 \nabla \phi_n(x) \cdot \nu(x) &= 0, \quad x \in \Gamma.
\end{align*}
\]

We can write \(\bar{\omega}(x, t) \) in the basis of the eigenfunctions as

\[
\bar{\omega}(x, t) = -a_0 \phi_0(x) F(t) + \sum_{n=1}^{\infty} (-a_n) \phi_n(x) \int_0^t e^{-D_0 \lambda_n (t-s)} f(s) ds,
\]

where the coefficients are

\[
a_0 = \frac{1}{\sqrt{|\Omega|}} \int_{\Omega} x \cdot u_g d\mathbf{x}, \quad a_n = \int_{\Omega} x \cdot u_g \phi_n(x) d\mathbf{x},
\]

which coincide with the first moments of the eigenfunctions in the \(u_g \) direction.

Finally, the solution to the diffusion equation is

\[
\omega(x, t) = \left(x \cdot u_g - \frac{1}{\sqrt{|\Omega|}} a_0 \right) F(t) + \sum_{n=1}^{\infty} (-a_n) \phi_n(x) \int_0^t e^{-D_0 \lambda_n (t-s)} f(s) ds
\]

and using properties of the eigenfunctions:

\[
\int_{\Omega} \phi_n(x) d\mathbf{x} = \begin{cases}
\sqrt{|\Omega|}, & n = 0 \\
0, & n \geq 1,
\end{cases}
\]

and the divergence theorem:

\[
\int_{\Omega} \lambda_n \phi_n (u_g \cdot x) d\mathbf{x} = \int_{\Omega} \nabla \phi_n(x) \cdot u_g d\mathbf{x} - \int_{\Gamma} D_0 \nabla \phi_n(x) \cdot \nu u_g \nu d\mathbf{s} = \int_{\Omega} \nabla \phi_n(x) \cdot u_g d\mathbf{x}.
\]

we obtain

\[
h(t) = F(t) + \sum_{n=1}^{\infty} \frac{(a_n)^2 \lambda_n}{|\Omega|} \int_0^t e^{-D_0 \lambda_n (t-s)} f(s) ds.
\]

This leads to the final formula:

\[
D_{\text{eff}}^{u_g} = \sum_{n=1}^{\infty} \frac{(a_n)^2 D_0 \lambda_n}{|\Omega| \int_0^{TE} F(t) dt} \int_0^{TE} F(t) \left(\int_0^t e^{-D_0 \lambda_n (t-s)} f(s) ds \right) dt.
\]

This manuscript is for review purposes only.
We remark that this formula is the same as the one obtained with the matrix formalism in [9]. In particular, if we consider PGSE sequence, we can rewrite (15) using the contribution of each of the three intervals as

\[
D_{\text{eff}} = D_0 - \left(\frac{D_0}{A} \int_0^\delta t \, h(t) \, dt + \frac{D_0}{A} \int_0^\Delta \delta \, h(t) \, dt + \frac{D_0}{A} \int_0^{ \Delta + \delta} (\Delta + \delta - t) \, h(t) \, dt \right),
\]

where

\[
A = \int_0^{T_E} F^2(t) \, dt = \delta^2 \left(\Delta - \frac{\delta}{3} \right),
\]

and in the first pulse

\[
I = \frac{D_0 \delta^3}{3A} + \frac{1}{|\Omega|A} \sum_{n=1}^{\infty} (a_n)^2 \left(-\frac{\delta^2}{2} - \frac{\delta e^{-D_0 \lambda_n \delta}}{D_0 \lambda_n} - \frac{e^{-D_0 \lambda_n \delta} - 1}{(D_0 \lambda_n)^2} \right),
\]

between the pulses

\[
II = \frac{D_0 \delta^2 (\Delta - \delta)}{A} + \frac{1}{|\Omega|A} \sum_{n=1}^{\infty} -\delta (a_n)^2 \left(e^{-D_0 \lambda_n \Delta} - e^{-D_0 \lambda_n (\Delta - \delta)} - e^{-D_0 \lambda_n \delta} + 1 \right),
\]

and in the second pulse

\[
III = \frac{D_0 \delta^3}{3A} + \sum_{n=1}^{\infty} \frac{- (a_n)^2}{D_0 \lambda_n A |\Omega|} \left(\delta - \frac{\delta^2 D_0 \lambda_n}{2} - \delta e^{-D_0 \lambda_n \Delta} + \delta e^{-D_0 \lambda_n (\Delta - \delta)} + \frac{2 e^{-D_0 \lambda_n \Delta} - 1 + e^{-D_0 \lambda_n \delta} - e^{-D_0 \lambda_n (\Delta + \delta)} - e^{-D_0 \lambda_n (\Delta - \delta)}}{D_0 \lambda_n} \right).
\]

In the end, we obtain

\[
D_{\text{eff}} = \sum_{n=1}^{\infty} \frac{-(a_n)^2}{D_0^2 \lambda_n^2 \delta^2 (\Delta - \frac{\delta}{3}) |\Omega|} \left[e^{-D_0 \lambda_n (\Delta + \delta)} + e^{-D_0 \lambda_n (\Delta - \delta)} - 2 (D_0 \lambda_n \delta + e^{-D_0 \lambda_n \delta} + e^{-D_0 \lambda_n \Delta} - 1) \right].
\]

In the narrow pulse case \((\delta \ll \Delta)\), we obtain

\[
D_{\text{eff}} \approx \sum_{n=1}^{\infty} \frac{(a_n)^2}{\Delta} (1 - e^{-D_0 \lambda_n \Delta}),
\]

which confirms that \(D_{\text{eff}}\) approach its long time limit as proportional to \(1/\Delta\) inside finite domains. In particular, for a 1D configuration of length \(L\), \(a_1 = \frac{L^2}{12}\) and for a reflecting cylinder of radius \(R\), \(a_1 = \frac{R^2}{4}\), which confirm the results in [4, 9].
3.2. Layer potential representation. The solution of the diffusion equation can be also represented using layer potentials [13]. This representation is more efficient than the eigenfunction representation at short diffusion times. Since the PDE has a Neumann boundary condition, we choose to represent the solution \(\omega(x,t) = S[\mu](x,t) \) as a single layer potential with a density \(\mu \) defined on \(\Gamma \),

\[
S[\mu](x,t) = \int_0^t \int_\Gamma D_0 G(x-y, t-\tau) \mu(y, \tau) ds_y d\tau,
\]

where \(G(x,t) \) is the fundamental solution of the heat equation in free space given by

\[
G(x,t) = (4\pi D_0 t)^{-d/2} \exp\left(-\frac{\|x\|^2}{4D_0 t}\right)
\]

and \(d \) is the space dimension. At short times, there is an unavoidable square root singularity in \(t \) in the single layer potential, therefore in what follows, we separate out the integrand in (38) in the following way,

\[
S[\mu](x,t) = \int_0^t \frac{1}{\sqrt{4\pi D_0\pi(t-\tau)}} B_S[\mu](x,t,\tau) d\tau,
\]

where

\[
B_S[\mu](x,t,\tau) := \int_\Gamma D_0 \sqrt{4\pi D_0\pi(t-\tau)} G(x-y, t-\tau) \mu(y, \tau) ds_y
\]

is analytic in time if \(\mu \) is. The single layer potential satisfies

\[
\frac{\partial}{\partial t} S[\mu](x,t) - \nabla(D_0 \nabla S[\mu](x,t)) = 0, \quad x \in \Omega, t \in [0,TE],
\]

\[
S[\mu](x,0) = 0, \quad x \in \Omega.
\]

Then the density \(\mu \) is chosen to be a causal function and is determined by imposing the Neumann boundary conditions:

\[
\lim_{x \to x^0 \in \Gamma} D_0 \nabla S[\mu](x,t) \cdot \nu(x) = \beta(x^0, t), \quad x^0 \in \Gamma, t \in [0,TE],
\]

where \(\beta(x^0, t) \) is defined in (18). Using the jump properties of the traces of double layer potentials, the integral equation to be solved for \(\mu \) is then the following:

\[
\frac{D_0}{2} \mu(x^0, t) + D_0 K^*[\mu](x^0, t) = \beta(x^0, t), \quad x^0 \in \Gamma, t \in [0,TE],
\]

where

\[
K^*[\mu](x^0, t) = \int_0^t \frac{1}{\sqrt{4\pi D_0(t-\tau)}} B_K[\mu](x^0, t, \tau) d\tau,
\]

with

\[
B_K[\mu](x^0, t, \tau) \equiv \int_\Gamma \frac{-2(x^0 - y) \cdot \nu(y)}{4D_0(t-\tau)} D_0 \sqrt{4\pi D_0(t-\tau)} G(x^0 - y, t-\tau) \mu(y, \tau) ds_y
\]
being analytic in time if μ is.

To compute $h(t)$ from (19) we only need to evaluate $\omega(x^0,t) = S[\mu](x^0,t)$ on the boundary Γ. We write the density μ as the solution of (44):

$$\mu(x^0,t) = \frac{2}{D_0} (1 + 2K^*)^{-1} \beta(x^0,t), \quad x^0 \in \Gamma, t \in [0,TE],$$

and expand the operator $(1 + 2K^*)^{-1}$ for short time t (corresponding with $2K^*$ being a contraction) as

$$\mu(x^0,t) = \frac{2}{D_0} (1 - 2K^* + 4(K^*)^2 + \ldots) \beta(x^0,t),$$

to obtain

$$\mu(x^0,t) = \frac{2}{D_0} \beta(x^0,t) - \frac{4}{D_0} K^* [\beta](x^0,t) + \text{higher order terms}.$$

This means in particular that

$$S[\mu](x^0,t) = S \left[\frac{2}{D_0} \beta \right] (x^0,t) + S \left[-\frac{4}{D_0} K^* [\beta] \right] (x^0,t) + \text{higher order terms}.$$

We will now compute the first term on the right hand side of the above equation to get an approximate expression for $\omega(x^0,t) = S[\mu](x^0,t)$ and we will compute the second term to get an expression for the error.

We note here that asymptotic results for small values of $(t - \tau)$ concerning $B_S[\mu]$ and $B_K[\mu]$ for a density μ that has a Taylor expansion in both the space and the time variables have been obtained in [12, 24], but only in two dimensions. However, we expect that the generalization to three dimensions should be straightforward. In particular, the curvature term and higher order spatial derivatives need to be generalized to analogous quantities in three dimensions.

Here, we summarize the results derived in [12, 24] for two dimensions. Suppose a local parametrization for Γ around x^0 of the form

$$\Gamma = \{(s,y(s)), s = -\infty \cdots \infty\},$$

having translated and rotated the x and y-axes so that the origin is at x^0 and the tangent of Γ at x^0 is parallel to the x-axis, with the end points extended to $\pm \infty$ because such an approximation facilitates the computation of the integrals and the resulting error is exponentially small. Let $y(s)$ be oriented counter-clockwise, with the following expansion in terms of the curvilinear abscissa s :

$$y(s) = \frac{1}{2} \gamma_{ss}s^2 + \frac{1}{6} \gamma_{sss}s^3 + \frac{1}{24} \gamma_{ssss}s^4 + \ldots.$$

For the operator S, it was shown in [12, 24] that:

$$B_S[\mu](x^0,t,\tau) = \mu(x^0,t) + \left(\frac{\gamma_{ss}(x^0)^2}{4} \mu(x^0,t) + \mu_t(x^0,t) - \mu_{ss}(x^0,t) \right) (t-\tau) + O((t-\tau)^2)$$
and for the operator K^* it was shown that:

\begin{equation}
B_K[\mu](x^0, t, \tau) = \gamma_{ss}(x^0)\mu(x^0, t) + \frac{1}{8}\left[16\gamma_{sss}(x^0)\mu_s(x^0, t) + 12\gamma_{ss}(x^0)\mu_{ss}(x^0, t)
+ 4\gamma_{ss}(x^0)\mu_t(x^0, t) + (6\gamma_{ssss}(x^0) - 15\gamma_{ss}(x^0)^3)\mu(x^0, t)\right](t - \tau)
+ O((t - \tau)^2).
\end{equation}

Specifically γ_{ss} is the curvature of Γ at the point x^0 and in what follows we will indicate it as $k(x^0)$. In three dimensions, it should be easy to see that the constant term in $B_S[\mu](x^0, t, \tau)$ would not change, and the constant term in $B_K[\mu](x^0, t, \tau)$ would contain spatial derivatives on a two dimensional manifold.

For the PGSE sequence, $\beta(x^0, t)$ assumes the following three expressions in the three time intervals:

\begin{equation}
\beta(x^0, t) = \mathcal{D}_0u \nu(x^0) \begin{cases}
t & 0 < t \leq \delta, \\
\delta & \delta < t \leq \Delta, \\
\Delta - \delta - t & \Delta < t \leq \Delta + \delta.
\end{cases}
\end{equation}

First, using the definition (40) and the result (52) we obtain

\begin{equation}
S \left[\frac{2}{\mathcal{D}_0} \beta\right](x^0, t) = \frac{4(\mathcal{D}_0)^{1/2}}{3\sqrt{\pi}} u \nu(x^0) \begin{cases}
t^{3/2} + O((t - \delta)^{3/2}) & 0 < t \leq \delta, \\
(t^{3/2} - (t - \delta)^{3/2}) & \delta < t \leq \Delta, \\
(t^{5/2} - (t - \delta)^{5/2}) & \Delta < t \leq \Delta + \delta.
\end{cases}
\end{equation}

Similarly, using the definition (45) and the result (53) we obtain

\begin{equation}
K^*[\beta](x^0, t) = \alpha_1(x_0)\alpha_2(t) + O(\alpha_3(t))
\end{equation}

where

\begin{equation}
\alpha_1(x_0) = \frac{(\mathcal{D}_0)^{3/2}k(x^0)}{3\sqrt{\pi}} (u \nu(x^0)),
\end{equation}

\begin{equation}
\alpha_2(t) = \begin{cases}
t^{3/2} & 0 < t \leq \delta, \\
(t^{3/2} - (t - \delta)^{3/2}) & \delta < t \leq \Delta, \\
(t^{3/2} - (t - \delta)^{3/2} - (t - \Delta)^{3/2}) & \Delta < t \leq \Delta + \delta.
\end{cases}
\end{equation}

\begin{equation}
\alpha_3(t) = \begin{cases}
t^{5/2} & 0 < t \leq \delta, \\
(t^{5/2} - (t - \delta)^{5/2}) & \delta < t \leq \Delta, \\
(t^{5/2} - (t - \delta)^{5/2} - (t - \Delta)^{5/2}) & \Delta < t \leq \Delta + \delta.
\end{cases}
\end{equation}

To compute $S \left[-\frac{4}{\mathcal{D}_0}K^*[\beta]\right](x^0, t)$, we first observe that $S \left[-\frac{4}{\mathcal{D}_0}K^*[\beta]\right](x^0, t) = -\frac{4}{\mathcal{D}_0}S[K^*[\beta]](x^0, t)$.

Moreover, to compute $S[K^*[\beta]](x^0, t)$ we cannot use the result (52) because α_2 and
\(\alpha_3\) do not have a Taylor expansion in \(t\). Following the idea in [12], we explicitly compute the lowest order terms of \(S[K^*[\beta]](x^0, t)\) in two dimensions by

\[
S[K^*[\beta]](x_0, t) = \int_0^t \frac{1}{\sqrt{4\pi D_0(t-\tau)}} B_S[K^*[\beta]](x_0, t, \tau) d\tau,
\]

where

\[
B_S[K^*[\beta]](x_0, t, \tau) = \int_{-\infty}^{+\infty} \frac{D_0}{\sqrt{\pi}} e^{-\frac{(\tau-s)^2}{4D_0(t-\tau)}} \left(\alpha_1(s)\alpha_2(\tau) + O(\alpha_3(\tau)) \right) \sqrt{1 + (y'(s))^2} ds.
\]

Note for simplicity, we replaced \(\alpha_1(x_0)\) by \(\alpha_1(s)\) to indicate the local parametrization of \(\Gamma\) around \(x_0\), as described previously.

To compute the above spatial integral we note the dominant contribution of the Gaussian \(e^{-\frac{v^2}{4D_0(t-\tau)}}\) and make the change of variables \(r = \frac{\tau}{\sqrt{4D_0(t-\tau)}}\) to obtain

\[
B_S[K^*[\beta]](x_0, t, \tau) = \int_{-\infty}^{+\infty} \frac{D_0}{\sqrt{\pi}} e^{-r^2} e^{-\frac{2(rv)^2}{4D_0}} \left(\alpha_1(rv)\alpha_2 \left(t - \frac{v^2}{4D_0} \right) + O \left(\alpha_3 \left(t - \frac{v^2}{4D_0} \right) \right) \right) \sqrt{1 + (y'(rv))^2} dr,
\]

where \(v = \sqrt{4D_0(t-\tau)}\). We would like an asymptotic expansion of the above integral in \(v\). We note \(y(rv) = \frac{1}{2}k(x_0)v^2 + O(v^3e^3)\) and \(\alpha_1(0) = \frac{(\mathcal{D}_0)^{3/2}}{3\sqrt{\pi}} (u_g \cdot \nu(x^0))\).

The order \(O(v)\) term only occurs in \(\alpha_1\) and we do not need to take it into account due to the anti-symmetry of \(e^{-r^2}r\). So we compute the space integral to obtain

\[
\begin{align*}
&= \int_{-\infty}^{+\infty} \frac{D_0}{\sqrt{\pi}} e^{-r^2} \left(\alpha_1(0) + O(v^2) \right) \alpha_2 \left(t - \frac{v^2}{4D_0} \right) + O \left(\alpha_3 \left(t - \frac{v^2}{4D_0} \right) \right) dr \\
&= \alpha_2 \left(t - \frac{v^2}{4D_0} \right) \left(\mathcal{D}_0 \alpha_1(0) + O(v^2) \right) + O \left(\alpha_3 \left(t - \frac{v^2}{4D_0} \right) \right).
\end{align*}
\]

We now take the above expression and put it into the time integral to get \(S[K^*[\beta]](x_0, t)\):

\[
\int_0^t \frac{1}{\sqrt{4\pi D_0(t-\tau)}} \left(\alpha_2 \left(\mathcal{D}_0 \alpha_1(0) + O(t-\tau) \right) + O(\alpha_3(\tau)) \right) d\tau.
\]

Using the following property of the beta function (the Euler integral of the first kind)

\[
\int_0^t (t-\tau)^w \tau^p d\tau = t^{p+w+1} \Gamma(p+1)\Gamma(w+1) \Gamma(w+p+2),
\]

This manuscript is for review purposes only.
we can compute \(\int_0^t \frac{1}{\sqrt{t-\tau}} \alpha_2(\tau) d\tau \) exactly:

\[
\begin{align*}
\int_0^t \frac{\tau^2}{\sqrt{t-\tau}} d\tau &= \frac{3\pi}{8} t^2, \\
\int_0^\delta \frac{\tau^2}{\sqrt{t-\tau}} d\tau + \int_\delta^t \frac{\tau^2 - (\tau - \delta)^2}{\sqrt{t-\tau}} d\tau &= \frac{3\pi}{8} (t^2 - (t-\delta)^2) \\
\int_0^\delta \frac{\tau^2}{\sqrt{t-\tau}} d\tau + \int_\delta^\Delta \frac{\tau^2 - (\tau - \delta)^2}{\sqrt{t-\tau}} d\tau + \int_\Delta^t \frac{\tau^2 - (\tau - \delta)^2 - (\tau - \Delta)^2}{\sqrt{t-\tau}} d\tau \\
&= \frac{3\pi}{8} (t^2 - (t-\delta)^2 - (t-\Delta)^2).
\end{align*}
\]

Therefore, the dominant asymptotic terms are:

\[
\begin{align*}
S \left[-\frac{4}{D_0} K^\ast[\beta] \right] (x^0, t) &= -\frac{4}{D_0} \frac{D_0^2}{16} k(x^0) (u_g \cdot \nu(x^0)) \begin{cases}
 t^2 & \text{if } 0 < t \leq \delta, \\
 t^2 - (t-\delta)^2 & \text{if } \delta < t \leq \Delta, \\
 t^2 - (t-\delta)^2 - (t-\Delta)^2 & \text{if } \Delta < t \leq \Delta + \delta,
\end{cases}
+ O \left(\begin{array}{c}
 (t^3) \\
 (t^3 - (t-\delta)^3) \\
 (t^3 - (t-\delta)^3 - (t-\Delta)^3)
\end{array} \right)
\end{align*}
\]

where we computed the error term by evaluating \(\int_0^t \frac{1}{\sqrt{t-\tau}} \alpha_2(\tau)(t-\tau) d\tau \) and

\[
\int_0^t \frac{1}{\sqrt{t-\tau}} \alpha_3(\tau) d\tau,
\]

again using property of the beta function. Namely, for

\[
\begin{align*}
\int_0^t \frac{\tau^2}{\sqrt{t-\tau}} (t-\tau) d\tau &= \frac{\pi}{16} t^3, \\
\int_0^\delta \frac{\tau^2}{\sqrt{t-\tau}} (t-\tau) d\tau + \int_\delta^t \frac{\tau^2 - (\tau - \delta)^2}{\sqrt{t-\tau}} (t-\tau) d\tau &= \frac{\pi}{16} (t^3 - (t-\delta)^3) \\
\int_0^\delta \frac{\tau^2}{\sqrt{t-\tau}} (t-\tau) d\tau + \int_\delta^\Delta \frac{\tau^2 - (\tau - \delta)^2}{\sqrt{t-\tau}} (t-\tau) d\tau \\
&\quad + \int_\Delta^t \frac{\tau^2 - (\tau - \delta)^2 - (\tau - \Delta)^2}{\sqrt{t-\tau}} (t-\tau) d\tau \\
&= \frac{\pi}{16} (t^3 - (t-\delta)^3 - (t-\Delta)^3).
\end{align*}
\]
For \(\int_0^t \frac{1}{\sqrt{(t-\tau)}} \alpha_3(\tau)d\tau \), we have
\[
\int_0^t \frac{\tau^2}{\sqrt{t-\tau}} d\tau = \frac{5\pi}{16} t^3,
\]
\[
\int_0^{\delta} \frac{\tau^2}{\sqrt{t-\tau}} d\tau + \int_{\delta}^{t} \frac{\tau^2 - (\tau-\delta)^2}{\sqrt{t-\tau}} d\tau = \frac{5\pi}{16} (t^3 - (t-\delta)^3)
\]
(63)
\[
\int_0^{\delta} \frac{\tau^2}{\sqrt{t-\tau}} d\tau + \int_{\delta}^{\Delta} \frac{\tau^2 - (\tau-\delta)^2}{\sqrt{t-\tau}} d\tau + \int_\Delta^t \frac{\tau^2 - (\tau-\delta)^2 - (\tau-\Delta)^2}{\sqrt{t-\tau}} d\tau
\]
\[= \frac{5\pi}{16} (t^3 - (t-\delta)^3 - (t-\Delta)^3).\]

Replacing the various expressions in (50) with the calculations we did above, we obtain the approximation with the error bound:
\[
S[\mu](x^0, t) = \frac{4(D_0)^{1/2}}{3\sqrt{\pi}} u_g \cdot \nu(x^0) \begin{cases}
t^{3/2} & t^{3/2} - (t-\delta)^{3/2} - (t-\Delta)^{3/2} \\
- \frac{D_0}{16} k(x^0)(u_g \cdot \nu(x^0)) & t^{3/2} - (t-\delta)^{3/2} - (t-\Delta)^{3/2} + \text{higher order terms.}
\end{cases}
\]
(64)

Now using (64) we compute the approximate expressions of \(h(t) \) in each time-interval with the corresponding errors in time.

In the first interval, we obtain
\[
h(t) = \frac{1}{|\Omega|} \int_{\Gamma} \omega(x, t) (u_g \cdot \nu(x)) ds_x = P t^{3/2} + O(P_{err} t^2),
\]
(65)
where
\[
P = \frac{1}{|\Omega|} \int_{\Gamma} \left(\frac{4}{3\sqrt{\pi}} \sqrt{D_0 (u_g \cdot \nu(x))^2} \right) ds_x
\]
(66)
\[
P_{err} = - \frac{D_0}{4|\Omega|} \int_{\Gamma} k(x)(u_g \cdot \nu(x))^2 ds_x
\]
(67)
and
\[
I = \frac{D_0}{\delta^2 (\Delta - \frac{\delta}{3})} \int_0^\delta t h(t) dt = \frac{2D_0 P}{7 (\Delta - \frac{\delta}{3})} \delta^{7/2} + O \left(\frac{D_0 P_{err}}{4 (\Delta - \frac{\delta}{3})} \delta^2 \right).
\]
(68)

Between the pulses, we obtain
\[
h(t) = \frac{1}{|\Omega|} \int_{\Gamma} \omega(x, t) (u_g \cdot \nu(x)) ds_x = P \left(t^{3/2} - (t-\delta)^{3/2} \right) + O(P_{err} (t^2 - (t-\delta)^2))
\]
(69)
and
\[
II = \frac{D_0}{\delta^2 (\Delta - \frac{\delta}{3})} \int_\delta^{\Delta} \delta h(t) dt = \frac{2D_0 P}{5} \left(\delta^{7/2} - \Delta^{5/2} \delta + (\Delta - \delta)^{5/2} \delta \right) \delta^2 (\Delta - \frac{\delta}{3})
\]
\[+ O \left(\frac{D_0 P_{err} (\Delta^2 - \delta \Delta)}{\Delta - \frac{\delta}{3}} \right).\]
(70)
During the second pulse, we find

\[h(t) = \frac{1}{|\Omega|} \int_{\Gamma} \omega(x,t) (u_g \cdot \nu(x)) \, ds_x = P \left(t^{3/2} - (t - \delta)^{3/2} - (t - \Delta)^{3/2} \right)
+ O \left(P_{err} (t^2 - (t - \delta)^2 - (t - \Delta)^2) \right) \]

(71)

and

\[III = \frac{D_0}{\delta^2 (\Delta - \frac{\delta}{3})} \int_{\Delta}^{\Delta + \delta} (\Delta + \delta - t) \, h(t) \, dt
= \frac{2}{35} \frac{D_0 P}{\delta (\Delta - \frac{\delta}{3})} \left((2\Delta^3 + \Delta^2 \delta - 8\Delta \delta^2 + 5\delta^3) \sqrt{\Delta - \delta} + 2 (\Delta + \delta)^{7/2}
- 4\Delta^{7/2} - 7\Delta^{5/2} \delta - 2\delta^{7/2} \right) + O \left(\frac{D_0 P_{err}}{\delta (\Delta - \frac{\delta}{3})^2} \right) \]

(72)

Finally, adding up the above expressions, we obtain that using the layer potentials representation,

\[D_{u_g}^{\text{eff}} = D_0 \left[1 - \frac{4}{35} \frac{P}{\delta (\Delta - \frac{\delta}{3})} \left((\Delta + \delta)^{7/2} - 2 \left(\delta^{7/2} + \Delta^{7/2} \right) + (\Delta - \delta)^{7/2} \right) \right] + O \left(\frac{D_0 P_{err}}{\delta (\Delta - \frac{\delta}{3})^2} \right), \]

(73)

(74)

with \(P \) and \(P_{err} \) defined in (66) and (67), respectively.

We observe that, in the narrow pulse limit, \(\delta \ll \Delta \), the expression (73)

\[D_{u_g}^{\text{eff}} = D_0 \left(1 - \frac{4}{3\sqrt{\pi}} \sqrt{D_0 \Delta \int_{\Gamma} (u_g \cdot \nu)^2 \, ds_x} \right) + O(D_0 P_{err} \Delta), \]

(76)

which is the ratio of surface to volume divided by the space dimension \(d \), exactly the quantity contained in the formula in [27]. Hence our new formula in (73) is a correction of the results in [1, 9, 27] because it takes into account the contribution of \(\delta \). This makes the new formula applicable for cases where the narrow pulse assumption \(\delta \ll \Delta \) does not hold. Of course, this description still hold only for short times due to the nature of the asymptotic expansions for layer potentials.

3.3. Mixed approximation.

When the pulses are short but the delay between the pulses is not short (with respect to diffusion in \(\Omega \)), we use the single layer potential representation in the first and third intervals and the eigenfunction representation between the pulses.

In the first pulse, \(t \in [0, \delta] \), we have the same results as in the previous section, namely,

\[I = \frac{8}{21A|\Omega|\sqrt{\pi}} D_0^{3/2} \delta^{7/2} \int_{\Gamma} (u_g \cdot \nu)^2 \, ds_x + O \left(\frac{\delta^2}{(\Delta - \frac{\delta}{3})} \right). \]

(77)
Between the pulses, $t \in [\delta,\Delta]$, the Neumann boundary condition in (18) is

\[
\omega(x, \delta) = S [2\delta u_g \cdot \nu] (x, t) + O(\delta^2), \quad x \text{ in } \Omega.
\]

The function $\tilde{\omega}(x, t) = \omega(x, t) - \delta x \cdot u_g$ satisfies homogeneous Neumann boundary condition and the initial condition

\[
\tilde{\omega}(x, \delta) = S [(2\delta u_g \cdot \nu)] (x, \delta) - \delta x \cdot u_g.
\]

This means

\[
\tilde{\omega}(x, t) = c_0 + \sum_{n=1}^{\infty} c_n e^{-\lambda_n D_0 (t-\delta)} \phi_n(x)
\]

where

\[
c_0 = -\delta a_0 + b_0 = -\frac{\delta}{|\Omega|} \int_\Omega x \cdot u_g dx + \frac{1}{|\Omega|} \int_\Omega \omega(x, \delta) dx,
\]

\[
c_n = -\delta a_n + b_n = -\delta \int_\Omega x \cdot u_g \phi_n(x) dx + \int_\Omega \omega(x, \delta) \phi_n(x) dx
\]

with again ϕ_n and λ_n the Neumann eigenfunctions and eigenvalues associated to the Laplace operator ($n = 1, 2, \ldots$). Thus, for $t \in [\delta,\Delta]$,}

\[
\omega(x, t) = c_0 + \sum_{n=1}^{\infty} c_n e^{-\lambda_n D_0 (t-\delta)} \phi_n(x) + \delta x \cdot u_g + O(\delta^2),
\]

and

\[
h(t) = \sum_{n=1}^{\infty} \frac{c_n \lambda_n a_n}{|\Omega|} e^{-\lambda_n D_0 (t-\delta)} + \delta + O \left(\frac{\delta^2}{\Delta} \right),
\]

\[
II = \frac{1}{A} \sum_{n=1}^{\infty} \frac{c_n a_n}{|\Omega|} \left(1 - e^{-\lambda_n D_0 (\Delta-\delta)} \right) + \frac{D_0 \delta^2 (\Delta-\delta)}{A} + O \left(\frac{\delta (\Delta-\delta)}{(\Delta-\delta)^2} \right).
\]

During the second pulse, $t \in [\Delta, \Delta + \delta]$, we keep the solution from the previous interval in Eq. (83) which satisfies homogeneous boundary conditions and just add a single layer potential to match the Neumann boundary condition. We obtain

\[
\omega(x, t) = c_0 + \sum_{n=1}^{\infty} c_n e^{-\lambda_n D_0 (t-\delta)} \phi_n(x) + \delta x \cdot u_g
\]

\[
+ S [(-2\tau u_g \cdot \nu)] (x, t - \Delta) + O((t - \Delta)^2),
\]

where $t \in [\Delta, \Delta + \delta]$. The density in the single layer potential is $-2\tau u_g \cdot \nu$ with $\tau \in [0, \delta]$ from a shift in time $\tau = t - \Delta$. Similar reasoning as in the previous sections gives

\[
S [(-2\tau u_g \cdot \nu)] (x, t - \Delta) = -\frac{4}{3\sqrt{\pi |\Omega|}} \sqrt{D_0} (t - \Delta)^{3/2} \int_\Gamma (u_g \cdot \nu) + O((t - \Delta)^{5/2}),
\]

This manuscript is for review purposes only.
which leads to

\[h(t) = \sum_{n=1}^{\infty} \frac{c_n}{|\Omega|} e^{-\lambda_n D_0(t-\delta)} \lambda_n a_n \left(\frac{4}{3 \sqrt{\pi} |\Omega|} \sqrt{D_0} (t-\Delta)^{3/2} \int_{\Gamma} (u_{g \cdot \nu})^2 ds_{x} + \delta + O \left(\frac{(t-\Delta)^2}{A} \right) \right) + O \left(\frac{\delta^2}{(\Delta - \delta)^{3/2}} \right). \]

and

\[III = \frac{D_0}{2A} \delta^3 + \frac{16}{105 \sqrt{\pi} A |\Omega|} D_0^{3/2} \int_{\Gamma} (u_{g \cdot \nu})^2 ds_{x} + \delta^7/2 + O \left(\frac{\delta^2}{(\Delta - \delta)^{3/2}} \right). \]

The effective diffusion coefficient for the compartment \(\Omega \) assumes thus the form

\[D_{\text{eff}} = \frac{D_0 \delta^3}{6(\Delta - \frac{\delta}{3})} - \frac{8D_0^{3/2} \delta^{3/2}}{35 \sqrt{\pi} |\Omega| (\Delta - \frac{\delta}{3})} \int_{\Gamma} (u_{g \cdot \nu})^2 ds_{x} + \delta^7/2 + O \left(\frac{\delta^2}{(\Delta - \delta)^{3/2}} \right). \]

In the narrow pulse limit, we get

\[D_{\text{eff}} \approx \sum_{n=1}^{\infty} \frac{(\delta a_n - b_n) a_n}{|\Omega| \delta (\Delta - \frac{\delta}{3})} (1 - e^{-\lambda_n D_0 \Delta}) \]

which again tells us that \(D_{\text{eff}} \) approaches its long time limit as \(1/\Delta \), because \(b_n = O(\delta^{3/2}) \) for all \(n \geq 1 \) due to the maximum principle for heat equation applied to \(\omega(x, t) \) in the first pulse:

\[\| \omega(x, t) \| \leq \| \omega(x^0, t) \| \approx O(t^{3/2}) \quad \forall x \in \Omega, x^0 \in \Gamma, t \in [0, \delta]. \]

4. Averaging \(D_{\text{eff}} \) over multiple gradient directions. If we average the effective diffusion coefficient \(D_{\text{eff}} \) over all the possible gradient directions \(u_g \), we can obtain a new formula that is independent of the orientation of the biological cells. We define the orientationally averaged effective diffusion coefficient as

\[D_{\text{ave}} := \frac{\int_{S^d} D_{\text{eff}} du_{g}}{\int_{S^d} du_{g}}. \]

We recall that

\[D_{\text{eff}} = D_0 - \frac{D_0}{A |\Omega|} \int_{0}^{T_E} F(t) \int_{\Omega} u_{g \cdot \nabla \omega_{u_g}(x, t)} dx dt \]

This manuscript is for review purposes only.
where $\omega_{u_g}(x, t)$ solves the problem (17). Because of the linearity of the Neumann problem, for every direction $u_g = [u_1, \ldots, u_d]$ we have that

$$\omega_{u_g}(x, t) = \sum_{i=1}^d u_i \omega_{e_i}(x, t),$$

where e_i is the i-th vector of the canonical basis of \mathbb{R}^d. As a consequence

$$D_{u_g}^{\text{eff}} = D_0 - \frac{D_0}{A[\Omega]} \int_0^{TE} F \int_{\Omega} (u_1 e_1 + \cdots + u_d e_d) \cdot (u_1 \nabla \omega_{e_1} + \cdots + u_d \nabla \omega_{e_d}) \, dx \, dt$$

$$= D_0 - \frac{D_0}{A[\Omega]} \int_0^{TE} F \left(\sum_{i=1}^d u_i^2 \int_{\Omega} e_i \cdot \nabla \omega_{e_i} \, dx + \sum_{i \neq j}^d u_i u_j \int_{\Omega} e_i \cdot \nabla \omega_{e_j} \, dx \right) \, dt$$

and thus, if we want to average over all the possible directions, we are interested in the integrals

$$\int_{S^{d-1}} \frac{u_i^2 \, du}{\int_{S^{d-1}} du}, \ i = 1, \ldots, d \quad \text{and} \quad \int_{S^{d-1}} \frac{u_i u_j \, du}{\int_{S^{d-1}} du}, \ i, j = 1, \ldots, d, i \neq j.$$

We observe that, for all $i, j = 1, \ldots, d$ and $i \neq j$,

$$\int_{S^{d-1}} u_i u_j \, du = 0.$$

Therefore, what remains in the average are just the terms

$$\sum_{i=1}^d \int_{S^{d-1}} \frac{u_i^2 \, du}{\int_{S^{d-1}} du} \int_{\Omega} e_i \cdot \nabla \omega_{e_i} \, dx,$$

i.e. simply the average over d perpendicular directions and then

$$D_{\text{ave}}^{\text{eff}} = D_0 - \sum_{i=1}^d \frac{D_0}{d A[\Omega]} \int_0^{TE} F(t) \int_{\Omega} u_g^i \cdot \nabla \omega_{u_g^i}(x, t) \, dx \, dt$$

where u_g^i, $i = 1, \ldots, d$ are d orthogonal directions. In short, averaging over all the possible directions is equivalent to average only over d orthogonal normalized directions.

We use the fact that

$$\sum_{i=1}^d \int_{[\Gamma]} (u_g^i \cdot \nu)^2 \, ds_x = \frac{[\Gamma]}{d}$$

and we define

$$k_n := \sum_{i=1}^d -\frac{(a_n^i)^2}{d[\Omega]} = \sum_{i=1}^d -\frac{(\int_{\Omega} x \cdot u_g^i \phi_n(x) \, dx)^2}{d[\Omega]},$$

i.e. the mean over d orthogonal directions of the square of the first moment along these directions, and

$$j_n := \sum_{i=1}^d \frac{b_n^i a_n^i}{d[\Omega]} = \sum_{i=1}^d \left(\int_{\Omega} \omega_{u_g^i}(x, t) \phi_n(x) \, dx \right) \left(\int_{\Omega} x \cdot u_g^i \phi_n(x) \, dx \right).$$
In summary, the eigenfunction expansion in (36) gives
\[
D_{\text{ave}}^{\text{eff}} = \sum_{n=1}^{\infty} \frac{k_n}{D_0^2 \lambda_n^2 \delta^2 \left(\Delta - \frac{4}{3} \right)} \left[e^{-D_0 \lambda_n (\Delta + \delta)} + e^{-D_0 \lambda_n (\Delta - \delta)} - 2 \left(D_0 \lambda_n \delta + e^{-D_0 \lambda_n \delta} + e^{-D_0 \lambda_n \Delta} - 1 \right) \right]
\]
The single layer potential representation gives
\[
D_{\text{ave}}^{\text{eff}} = D_0 - \frac{16}{35} \frac{\Delta^{3/2}}{\Delta^2 (3 \Delta - \delta)} \sqrt{\pi} \left[(\Delta - \delta)^{7/2} + (\Delta + \delta)^{7/2} - 2 \left(\delta^{7/2} + \Delta^{7/2} \right) \right] \frac{|\Gamma|}{d[\Omega]}
+ O(\Delta).
\]
The mixed approximation in (89) gives
\[
D_{\text{ave}}^{\text{eff}} = \frac{D_0 \delta}{6(\Delta - \frac{4}{3})} - \frac{8D_0^{3/2} \delta^{3/2}}{35 \sqrt{\pi} (3 \Delta - \delta)} \frac{|\Gamma|}{d[\Omega]}
- \sum_{n=1}^{\infty} \frac{\delta k_n + j_n}{\delta^2 (\Delta - \frac{4}{3})} \left(\delta - \frac{e^{-\lambda_n \Delta} (1 - e^{\lambda_n D_0 \delta})}{\lambda_n D_0} \right)
+ O \left(\max \left\{ \frac{\delta^2}{(\Delta - \frac{4}{3})}, \frac{\delta (\Delta - \delta)}{(\Delta - \frac{4}{3})} \right\} \right).
\]

5. Numerical results. In this Section we numerically validate the approximate formulas we derived in the previous sections. To compute the reference quantities we solved the diffusion equation in (17) using the Matlab PDEToolbox. The eigenvalues and eigenfunctions of the Laplace equation with Neumann boundary conditions were also computed with the same software. The convergence between the H-ADC model and the Bloch-Torrey equation was shown previously in [14].

First we show the three approximations of $h(t)$. We consider a 2D geometry of one vertically orientated ellipse with semi-axes of 19\,\mu m and 9\,\mu m. The intrinsic diffusion coefficient is set to $D_0 = 1e^{-3}$\,mm2/s and we vary the values of δ, Δ and u_g. To compute the reference solution $h(t)$ we solved the problem (17) on the finite element mesh shown in Fig. 2. The eigenvalues and eigenfunctions are also computed on the same finite element mesh. The projections a_n and b_n are computed according the the formulas in (25) and (81).

For this particular geometry the first four non-zero eigenvalues are
\[
\lambda_1 = 0.0097, \quad \lambda_2 = 0.0325, \quad \lambda_3 = 0.0383, \quad \lambda_4 = 0.0644,
\]
and their numerically calculated projections a_i are reported in the table below.

Clearly, among the four eigenvalues, in the direction $u_g = [1, 0]$, all but λ_3 have negligible contribution, and in the direction $u_g = [0, 1]$, all but λ_1 have negligible contribution.

In the following plots we always indicate the reference quantity with a line, the single layer approximation with squares, the eigenfunction approximation with circles and the mixed approximation with asterisks.

In Figure 3 we considered $\delta = 5$\,ms, $\Delta = 10$\,ms and $u_g = [1, 0]$. As we can see the single layer approximation (squares) fits very well the reference quantity (continuous line) in all three time intervals. We also notice that the mixed approximation
Fig. 2: Finite elements mesh of an ellipse with semiaxes of 19µm and 9µm, orientated vertically along the y-axis.

Table 1: The first moments of the eigenfunction associated with the first four non-zero eigenvalues in the two directions $u_g = [1, 0]$ and $u_g = [0, 1]$.

<table>
<thead>
<tr>
<th>a_0</th>
<th>a_1</th>
<th>a_2</th>
<th>a_3</th>
<th>a_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[1, 0]$</td>
<td>38.9</td>
<td>−25.7</td>
<td>$-4.62e^{-3}$</td>
<td>−0.97</td>
</tr>
<tr>
<td>$[0, 1]$</td>
<td>$1.07e^{-6}$</td>
<td>1.75</td>
<td>−4.49</td>
<td>−5.58</td>
</tr>
</tbody>
</table>

Fig. 3: $h(t)$ and its approximation (using the three different formulas found) with respect to the gradient directions $u_g = [1, 0]$ for an ellipse of semi-axes 19µm and 9µm. Intrinsic diffusion coefficients $D_0 = 1 \times 10^{-3}$mm2/s, pulses duration $\delta = 5$ms and time-delay between pulses $\Delta = 10$ms.
UNDERSTANDING THE TIME-DEPENDENT ADC: INTRA-CELLULAR CASE

Fig. 4: $h(t)$ and its approximation (using the three different formulas found) with respect to the gradient directions $u_g = [1, 0]$ for an ellipse of semiaxes 19 μm and 9 μm. Intrinsic diffusion coefficients $D_0 = 1 \times 10^{-3}$ mm2/s, pulses duration $\delta = 5$ ms and time-delay between pulses $\Delta = 50$ ms.

(asterisks) works sufficiently well during the two pulses but not between them. For the eigenfunctions approximation, the fit is far from the reference quantity.

In Figure 4 we considered $\delta = 5$ ms, $\Delta = 50$ ms and $u_g = [1, 0]$. As we can see the single layer approximation fits well the reference quantity during the first pulse and until $t \approx 25$ ms, but after that, the approximation is no longer good. The eigenfunction approximation is not good during the pulses but it becomes accurate at the end of the interval between them. The mixed approximation fits well during the pulses and is the same as the eigenfunction approximation between the pulses.

In Figures 5a and 5b we show the behaviour of D_{eff} computed for two different directions of the gradient ($u_g = [1, 0]$ and $u_g = [0, 1]$) but the same parameters ($\delta = 5$ ms and thirty different values of Δ equally distributed in the interval $[8, 80]$ ms).

In Figure 5c we show the average of $D_{\text{eff ave}}/D_0$ along the two perpendicular directions. Clearly, the single layer formula works well for at short $\Delta + \delta$, the eigenfunctions formula for long $\Delta + \delta$.

To conclude, in Figure 6 we report the absolute error $|D_{\text{eff}} - D_{\text{approx}}|$ for the same parameters as before in the two orthogonal directions. As we can see, the single layer approximation is better at short times and the eigenfunctions approximation is better at long times. The time at which the switch between the short and the long diffusion time approximations occurs at around $t = 50$ ms in the direction [1, 0] and it occurs at around $t = 25$ ms in the direction [0, 1].

6. Conclusions. Diffusion Magnetic Resonance Imaging (dMRI) can be used to measure a time and direction dependent effective diffusion coefficient which can in turn reveal information about the tissue micro-structure. Recently a new mathematical model for the effective diffusion coefficient, the H-ADC model, was obtained using homogenization techniques after imposing a certain scaling relationship between the physical parameters. The resulting model depends on the solution of a diffusion equation subject to time-dependent Neumann boundary conditions.
Fig. 5: D_{eff} with respect to two different gradient directions as well as D_{ave}, the average over both direction, compared to approximations using the three different formulas, for an ellipse of semiaxes $19\mu m$ and $9\mu m$. Intrinsic diffusion coefficients $D_0 = 1 \times 10^{-3} \text{mm}^2/\text{s}$, pulses duration $\delta = 5\text{ms}$ and thirty different values of the time-delay between pulses in the interval $[8, 80]\text{ms}$.

In this paper, we analysed the H-ADC model in the case of finite sub-domains. In particular, we obtained three representations of the effective diffusion coefficient.
that are appropriate in different diffusion time regimes. In the short time regime, we proposed using a representation based on the single layer potential. In the long time regime when the pulse duration is not short, we proposed using a representation based on the eigenfunctions expansion of the Neumann Laplace operator. In the long time regime when the pulse duration is short, we proposed a representation that combines the single layer potential during the pulses with the eigenfunction expansion between the pulses. In particular, in the short time regime, our representation corrects an existing formula by correctly accounting for the pulse duration. Our work helps to make more precise how parameters of the tissue micro-structure such as the surface to volume ratio or the dominant eigenvalue and its projection affect the effective diffusion coefficient.

REFERENCES

D. Le Bihan and H. Johansen-Berg, Diffusion MRI at 25: Exploring brain tissue structure

