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Abstract

The number of connected devices is growing continu-
ously, and so is their presence into our everyday lives.
From GPS-enabled fitness trackers, to smart fridges
that tell us what we need to buy at the grocery store,
connected devices—things—have the potential to col-
lect and make available significant amounts of infor-
mation. On the one hand, this information may pro-
vide useful services to users, and constitute a statisti-
cal gold mine. On the other, its availability poses se-
rious privacy threats for users. In this paper we pro-
pose a novel protocol that makes it possible to aggre-
gate personal information collected by smart devices
in the form of an average, while preventing attack-
ers from learning the details of the non-aggregated
data.?!

1 Introduction

The Internet of Things has become a reality. Personal
connected devices allow people to keep track of their
weight, their fitness progress, or the distance they
walk. Medical devices can inform doctors in real time
about the health parameters of the patient wearing
them. Smart environmental monitors make it possi-

1 Albeit appearing last in alphabetical order, Julien Lepiller
was the main contributor to the work in this paper.

ble to aggregate data into detailed maps to monitor
pollution, weather, or other parameters. Home appli-
ances like refrigerators connect to the Internet to tell
people what to buy at the grocery store, while smart
meters collect information from one’s home electric-
ity usage to compute area statistics and optimize dis-
tribution. It is easy to foresee that more and more
devices will become available in the near future and
that more and more of them will access and make
available personal data.

These data constitute a gold mine not only
for their direct recipients—doctors, users, electrical
companies—but also for researchers, companies, or
even end users interested in global statistical infor-
mation. Electrical companies already use data about
electric consumption to manage their smart-grid in-
frastructures. Public health agency could use data
from health sensors to identify areas of a city that
have a higher risk for a given disease. Supermar-
kets may use the data from smart fridges to adapt
their stocks to the demands of their customers. How-
ever, the state-of-the art equates the implementation
of these use cases with clear threats to the privacy of
users.

Today’s typical IoT applications collect the data
of huge numbers of users into a single data store,
possibly on the cloud or on a private data center, and
process it, for example to compute relevant statistics.
But this gives the application provider unconditioned



access to the data of all users.

A promising solution to the privacy issues associ-
ated with the analysis of large-scale privacy-sensitive
information consists instead in decentralizing the pro-
cessing itself. Keeping data where it is generated pre-
vents service providers from accessing sensitive user
information. However, decentralizing computation,
whether on the edge or through completely peer-to-
peer protocols, does not automatically eliminate all
privacy risks. Even if sensors themselves aggregate
data in a peer-to-peer fashion, they may still leak
sensitive information to potentially malicious neigh-
boring devices.

To address privacy in decentralized data process-
ing, some authors have proposed the use of homo-
morphic encryption techniques [1, 5]. But like in
the case of centralized solutions, the high cost as-
sociated with encryption and decryption operations
makes them ill-suited to environments consisting of
low-power devices like most IoT nodes.

In this paper, we address the limitations of existing
techniques by proposing a novel lightweight protocol
for decentralized averaging. The protocol exploits
randomness and decomposition into shares as tech-
niques to obfuscate the value associated with each
node, and lightweight encryption techniques to with-
stand eavesdropping attacks. Although a thorough
evaluation is out of the scope of this paper, we briefly
analyze the protocol’s resistance to colluding nodes
and to eavesdropping attacks.

2 Background
ments

and Require-

We focus on the problem of computing the average of
a set of values in a decentralized manner while main-
taining the individual values private. To this end, we
take inspiration from existing decentralized averaging
protocols, and in particular from the gossip-based ag-
gregation solution in [7].

In the epidemic protocol in [7], each participating
node maintains and iteratively refines a local approx-
imation of the desired aggregate (the average). Ini-
tially, each node sets the value of its local approxima-

tion to its own value. Then it updates it as a result
of gossip exchanges. In particular, each node, u, pe-
riodically contacts a random other node, v. The two
nodes, v and v, exchange and update their values so
that they both correspond to the average of the two
values before the exchange.

This simple protocol causes the local estimates of
all nodes to converge to the average of all the initial
values. [7] further analyzes the speed of convergence
and shows that it does not depend on the number of
nodes but only on the variance of the initial distribu-
tion of values. This makes the protocol particularly
suited to very large scale networks, and the very sim-
ple computation performed at every gossip exchange
makes the protocol an excellent candidate for moni-
toring devices with limited computing power.

Unfortunately, this decentralized averaging proto-
col requires each node to exchange its initial value
with another node at the beginning of the proto-
col. This makes the protocol unable to operate on
privacy-sensitive information. To address this lim-
itation, we propose a protocol that is at the same
time: (i) lightweight, and (ii) resistant to honest-but-
curious adversaries.

2.1 Lightweight Operation

Large-scale systems consisting of communicating
“things” require lightweight protocols that can op-
erate on devices with limited memory, computation,
and communication capabilities and rules out so-
lutions based on expensive encryption techniques.
For example, Chiaroscuro [1] includes an privacy-
preserving variant of [7]. But we experimentally ver-
ified that its encryption and decryption operations
can take as long as 200s on a RaspberryPI, an al-
ready fairly powerful device.

2.2 Attack Resilience

We aim to design a protocol that can enable a set of
cooperating users to compute the average of their ini-
tial values, while limiting the information that can be
deduced by attackers. We consider two types of at-
tackers: a node attacker, and an edge-attacker, which
we describe in the following.



Node Attacker The node attacker models the case
in which one or more users attempt to learn the ini-
tial values of a target user while participating in the
protocol. We consider an honest-but-curious node
attacker that controls a set of ¢ nodes. Each of the
controlled nodes, faithfully follows the protocol, but
it forwards all the information it receives to the at-
tacker which attempts to learn the initial value of a
target node. Equivalently, we can view this attack as
being played by a set of colluding users that follow
the protocol, and exchange information to learn the
initial value of the target user.

Edge/Eavesdropping Attacker The edge, or
eavesdropping, attacker models instead the case in
which a network service provider, or other external
entity can observe all communication links between
the users connected to its network. Again, we assume
the attacker to be honest but curious, meaning that
it cannot modify the data being exchanged. How-
ever, it will try to use all the information it observes
to infer the initial value of a target node.

3 Private Lightweight Averag-
ing through Random Shares

To address this problem, we start by observing that
the protocol in [7] operates by having nodes exchange
successive approximations of the average of all the
nodes values. While towards the end of the proto-
col’s execution, all values tend to be similar to each
other, at the beginning they are very different, and at
the first round, each node exchanges its own original
value, the value that we wish to protect. More pre-
cisely, after k rounds of execution, we can intuitively
observe that the value held and shared by a node will
be the result of the average of O(2%) values. Based on
this observation, it appears therefore clear that the
protocol in [7] leaks most of the information about a
node in the first few rounds of its execution, while it
leaks almost none in later rounds.

While some existing protocols protect this infor-
mation by means of homomorphic encryption tech-
niques [1], we adopt a more lightweight solution. We

obfuscate the initial value of a node by decomposing
it into a set of s shares, that is s values whose aver-
age corresponds to the initial value of the node. After
creating the shares, each node creates a new virtual
node for each of these shares and participates in the
same protocol as in [7] with each of its virtual nodes.
Specifically, in each round, a node u selects the value
of one of its virtual nodes u; and sends it to another
node v; upon receiving the message, v also randomly
selects one of its virtual nodes v; and sends the corre-
sponding value back to u. Both v and v then update
the values of their corresponding shares so that they
are both equal to w, where V(z) denotes the
value of virtual node x.

Creating Random Shares This simple idea,
which takes inspiration from well-known secret-
sharing techniques [8], effectively protects the initial
value of the target node from curious nodes (node
attacker from Section 2.2) provided that the value of
each virtual node lies sufficiently far from the node’s
real initial value.

To achieve this, each node builds its random shares
by adding a random value to its original value. The
choice of this value clearly determines the effective-
ness of the obfuscation solution. For example, a value
drawn from a bounded interval would make high and
low values easy to guess. We therefore opt for a dis-
tribution over an infinite domain: a Gaussian with
a mean of ;4 = 0 and a variance of 02. We explore
possible values for ¢ in Section 4.

Protection from the Edge Attacker As sug-
gested above, the use of virtual nodes with perturbed
initial values serves as a protection from a node at-
tacker that controls one or more curious network
nodes. However, it offers absolutely no protection
against an edge attacker, that is one that can ob-
serve all the messages exchanged by a node, or by a
set of nodes. Such an attacker can simply monitor
the messages sent and received by a node and av-
erage the corresponding values. By monitoring the
exchanges, the attacker can thus easily compute the
initial value of any node.

To counteract this kind of attack, we therefore aug-
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Figure 2: Distributions seen by edge attacker: impact of the number of encrypted rounds, k, and of the

noise’s standard deviation, o, with s = 5 shares.

ment our protocol with public-key encryption. To
this end, we rely on the underlying peer-sampling
protocol to disseminate the public key of nodes along
the lines of [4], and use them to encrypt the mes-
sages sent during the first phases of the protocol. As
we show in Section 4, a few encrypted rounds suffice
to protect the privacy of users thanks to the con-
vergence properties of the averaging protocol. Addi-
tionally, nodes send encrypted bait messages—empty
messages—to random nodes to mask the set of nodes
they are communicating with. Nodes receiving such

messages reply with their own encrypted bait mes-
sages.

4 Analysis

Node Attacker We start by considering a simple
attack in which a coalition of ¢ colluding nodes, at-
tempts to obtain all the shares from a given target
node thereby learning its initial value.? In this pre-
liminary analysis, we assume that nodes run a byzan-
tine resilient peer-sampling protocol (e.g. [3]) that
prevents nodes from communicating with the same
node too often, and that the samples provided by
such a protocol are independent of each other. Fi-
nally, we assume that nodes exchange the values of
their shares in a round-robin fashion: they first do

2 A more sophisticated attack could consist in acquiring only
a subset of the shares thereby obtaining an approximation of

the actual value. We leave the analysis of such a variant to
future work.



a first exchange for all their shares, then a second
exchange for all their shares and so on.

The most straightforward way for this attack to
succeed consists in the target node’s doing the first
exchange for each of its shares with one of the col-
luding nodes. If the network comprises n nodes, of
which ¢ controlled by the attacker, then a node will
exchange a given share with an attacker with a rel-
atively small probability, . However, the attacker
may learn about the value of a node’s share indi-
rectly if it has information about the nodes that have
previously communicated with the target. Precisely
modeling the probability that an attacker may per-
form this kind of inference would be quite compli-
cated. But we may easily compute an upper bound if
we observe that if the target node communicates the
initial value of a share to another node which is also
communicating the initial value of its share, then the
attacker will never be able to learn the exact value
of either of these, but only their average. Conversely
if the target node communicates the initial value of
a share to a node that has already communicated its
share value to someone else, then there is a possi-
bility that the attacker may exploit this information.
To model this probability, consider a node A that is
exchanging its ith share with node B. Let P(i,j)
be the probability that B has already exchanged j
values since the beginning of the protocol. If we con-
sider ¢ to be the average number of exchanges since
the start of the protocol, then we can model P(i, j)
as a Poisson distribution with parameter :

ile™?
7!
The probability that, after ¢ communication steps, a
specific node has already exchanged all its original
values Px,| corresponds to the probability of having
exchanged at least s values, that is:

P(i,j) =

s—1

Pyqi(i) =1-=Y_ P(i,j).

Jj=0

The probability, Pjgyr, that the attacker will learn
about all the s shares of a specific node can therefore
be bounded from above as follows:

S lc n—c .
Plearn < H ( + 'PXaII(l)) .

. n n
=1

From this, we can bound the probability Pany of
an attacker’s learning all the shares of at least one
node.

Pany < (n —¢) - Pgarp-

Figure 1 depicts this probability and evaluates the
number of shares required to manage different per-
centages of attackers (corruption) with increasing
network sizes (n varying from 100 to 100, 000). For
example, the left plot shows that 10 shares provide
enough if the attacker controls 10% of the nodes,
while 30 are required to withstand an attacker con-
trolling half of the network.

Edge Attacker The edge attacker has no way to
acquire the initial values of a node’s share since nodes
encrypt the first rounds of exchanges. However, it
can easily monitor all the data exchanged by nodes
as soon as non-encrypted rounds begin. By mon-
itoring the non-encrypted rounds, the attacker can
easily estimate the average of a node’s current share
values. The information this provides will depend on
the number of encrypted rounds as well as on the
variance of the noise added when creating the shares.
To evaluate this trade-off we ran an experiment with
a network of n = 1,000 nodes. One high-valued node
starts with an initial value of 10,000 while all the
other low-valued nodes start with an initial value of 0.
Initially each node creates its shares by adding a nor-
mally distributed noise A (val, o). Then the protocol
runs for k£ encrypted rounds after which we measure
the average of the shares of the node that started with
a value of 10, 000, and that of a node that started with
a value of 0. We repeat the experiment 10, 000 times
to obtain a distribution of values for both high- and
low-valued nodes. Figure 2 compares the resulting
distributions for several configurations. Results show
that privacy can be enhanced by increasing either &
or 0. Yet we expect that increasing 0 may make the
protocol more vulnerable to churn in the first rounds.



5 Related Work

The use of gossip to aggregate information lies on
well established results [7]. But only recently have
researchers started to explore how to tweak these well
known aggregation protocols in order to preserve pri-
vacy. One of the authors of this paper proposed a
decentralized system for k-means computation which
provides a differentially private average [1]. Yet, the
protocol relies on expensive homomorphic encryption
primitives that make it unsuitable for IoT scenarios.

Another recent contribution [6] uses gossip to
achieve differentially private stochastic gradient de-
scent. The use of noise to achieve differential privacy
may appear similar to what we do in this paper, but
contrary to [6], we seek to eliminate noise to obtain
as precise an average as possible, rather than a differ-
entially private one. Some related work [5] proposes
the use of shares for gradient descent learning. How-
ever, unlike our protocol, their solution still relies on
expensive homomorphic encryption.

Finally, [2] proposes DiPA, a protocol that also re-
lies on shares but with a more structured topology.
This requires special mechanisms to deal with node
failures which are not required in the case of gossip.
Moreover DiPA does not take into account the pres-
ence of an edge attacker.

6 Conclusions

We presented a novel protocol for privacy-preserving
averaging. The protocol is resilient to colluding nodes
as well as to eavesdropping attacks, without relying
on expensive homomorphic encryption operations.
Our preliminary results encourage us to perform a
more thorough evaluation of security and scalability
properties, while addressing open questions like the
impact of stronger attackers.
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