
HAL Id: hal-01422209
https://inria.hal.science/hal-01422209

Submitted on 24 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SLV: a software for real root isolation
Elias Tsigaridas

To cite this version:
Elias Tsigaridas. SLV: a software for real root isolation . ACM Communications in Computer Algebra,
2016, 50 (3), pp.117 - 120. �10.1145/3015306.3015317�. �hal-01422209�

https://inria.hal.science/hal-01422209
https://hal.archives-ouvertes.fr

ACM Communications in Computer Algebra, TBA TBA

SLV: a software for real root isolation

Elias TSIGARIDAS
Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA,

Laboratoire d’Informatique de Paris 6 (LIP6), Équipe POLSYS

4 place Jussieu, 75252 Paris Cedex 05, France

elias.tsigaridas@inria.fr

The problem of isolating the real roots of a univariate polynomial with integer coefficients is an
important problem in computational mathematics. Given a polynomial with integer coefficients,
f =

∑d
i=0 aix

i ∈ Z[x], the objective is to isolate the real roots of f , that is to compute intervals
with rational endpoints that contain one and only one root of f . SLV is an open source software
package written in C that provides functions for isolating the real roots of univariate polynomials
with integer coefficients. It also provides functionality to approximate the isolated roots up to an
arbitrary precision. Currently, it is realizes a subdivision algorithm based on Descartes’ rule of
sign, with modifications to improve its performance. SLV assumes that the input is a square-free
polynomial. It performs all the operations using exact arithmetic based on the library gmp and
it exploits as much as possible computations with dyadic numbers, that is numbers of the form
a/2k where a and k are integers. It builds upon a constant memory variant of Descartes’ rule of
sign [3]. To minimize the number of allocations in the memory we wrote a small wrapper to use
the queue.h library of OpenBSD, in order to have access to a fast implementation of lists and
queues. Even though queue.h is written in C, it is a library that follows the generic programming
paradigm, and if it is programmed carefully, it could be used with various data sets.

Description The source code is at http://www-polsys.lip6.fr/˜elias/soft.html
The solver takes as an input a file that contains the polynomial that we want to isolate its real

roots. The input file contains the degree of polynomial and then its coefficients in ascending order
with respect to the degree. For example the file test.dat that comes with SLV is as follows

> more test.dat

5 −120 600 −600 200 −25 1

and corresponds to the polynomial −120 + 600x− 600x2 + 200x3 − 25x4 + x5.
To obtain a description of the functionality of SLV we type

> slv -h

The s y n t a x i s :
s l v [−h] [− f f i l e] [− i p r e c] [−p]
D e t a i l s :
−h : p r i n t s h e l p message

1

elias.tsigaridas@inria.fr
http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html

ACM Communications in Computer Algebra, TBA TBA

−f fname : r e a d t h e c o e f f s from t h e fname
−i p r e c : t h e o u t p u t i n t e r v a l s have wid th 2ˆ(− p r e c)
−p : p r i n t r o o t s (D e f a u l t : no p r i n t)

Assuming that there is a file named test.dat, a sample run of the program is
> ./slv -f ../test.dat -i 20 -p

The output of SLV gives isolating intervals and various information about the isolation process.

#bound It is an upper bound on the magnitude of the negative and the positive real roots. If the number
is b, then the roots are in the interval (0, 2b). We need this bound to “put” all the (positive)
real roots inside the interval (0, 1). If the bound is negative, then the real roots, if any, are
already in (0, 1) and so there is no need to perform a (homothetic) transformation.

#roots The number of negative, positive real roots, and their sum.

#Nodes The total number of nodes of the subdivision tree of the algorithm.

#depth The depth of the subdivision tree.

#trans The total number of Taylor shifts performed by the algorithm, i.e., x 7→ x+ 1.

#homo The total number of homothetic transformations, i.e., x 7→ x/2b, for an integer b.

#pos h 1 The total numbers of hacks of the first type. This hack is as follows: To obtain an estimation
of the number of roots of a polynomial f in an interval I ⊂ (0, 1), we transform f to fI , using
Möbius transformation. The roots of f in I correspond to the roots of fI in (0,∞). Before
performing the transformation, which actually corresponds to a Taylor shift, we check if all
the coefficients of f are positive. Then f does not have any positive real roots.

#pos h 2 The total number of hacks of the second type. As in the description of #pos h 1 to obtain an
estimation of the number of roots of a polynomial f in an interval I ⊂ (0, 1), we transform
f to fI , using Möbius transformation. We only need fI in order to obtain an estimation on
the number of roots. To construct fI we need to perform a Taylor shift. We construct the
coefficients of fI incrementally and we count the number of sign variations that occur. If at
some point we obtain more that two sign variations, then we stop the process, as we know
that we need to subdivide further the interval I .

#half h The total number of the 1
2
-hacks. If in the interval (a, b) the polynomial admits two sign

variations, then we check if the number a+b
2

isolates the two possible roots.

Experiments We perform various experiments on various data sets and we compared SLV with
various available solvers. We used a linux machine having 8 cores of Intel(R) Xeon(R) CPU
E3-1275 v3 @ 3.50GHz and 32 GB of RAM. We concentrate the experiments on polynomials
with a lot of real roots. When the input consists of random polynomials, that usually have a
small number of real roots, say equal to the logarithm or the square-root of the degree, then the
other solvers are more efficient than SLV. This is also the case, if there are clusters of roots. We

2

http://www-polsys.lip6.fr/~elias/soft.html

ACM Communications in Computer Algebra, TBA TBA

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

degree

tim
e

(s
ec

)

Hermite polynomials

0 500 1,000 1,500 2,000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

degree

Laguerre polynomials

ADsc
AnewDsc

RS-15
RS-18
SLV

0 500 1,000 1,500 2,000

0

500

1,000

1,500

2,000

2,500

3,000

degree

Chebyshev polynomials

7 8 9 10 11 12

0

0.5

1

1.5

2
·104

log (degree)

tim
e

(s
ec

)

ADsc
AnewDsc

RS-15
SLV

7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

1

1.2

·105

log (degree)

tim
e

(s
ec

)

SLV
f-SLV

Figure 1: Graphs of timings for various experiments

refer to [1] for a detailed comparison of solvers and to [2] for recent theoretical and practical
improvements for the case of clustered roots. We performed experiments with three solvers
available at http://anewdsc.mpi-inf.mpg.de: ADsc, an implementation of approximate
Descartes’ algorithm, ANewDsc, an implementation of approximate Descartes’ algorithm combined
with Newton operator, and RS-15, a version of RS. We also tested RS-18, the version of RS in
MAPLE 18. We refer to Figure 1 and Tables 1,2,3.

The next version The basic operation that SLV performs is the Taylor shift. The current imple-
mentation uses a suboptimal implementation of the Taylor shift that has arithmetic complexity
Õ(d2). The Taylor shift is used in two cases. The first is when we need to subdivide an interval
and the second when we transform an interval to (0,∞) to estimate, using Descartes’ rule of sign
the number of real roots in this interval. Actually, we only need to know if the number of sign
variations is bigger than one. This is where the hack of the second type applies, as we construct the
coefficients of the transformed polynomial incrementally. This translates to a huge gain in running
times. To be able to construct the coefficients incrementally, we use the Õ(d2) algorithm. If we use
an optimal algorithm, of complexity Õ(d) for performing the Taylor shift, then we are not able to

3

http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html
http://anewdsc.mpi-inf.mpg.de
http://www-polsys.lip6.fr/~elias/soft.html

ACM Communications in Computer Algebra, TBA TBA

construct the coefficients incrementally and the hack of the second type does not apply. To have a
gain we need to combine the two algorithms so that the hack of the second type to be applicable.
This is ongoing work and the implementation is in FLINT. We call this version f-SLV.

To give an idea of the gain in running times using this combination of algorithms and the hack of
the second type we have performed experiments withe current version of SLV and our experimental
version of f-SLV. We can see the results of the experiments in the right of Fig. 1 and Table 1. For
n = 13 the experimental version f-SLV is more than two times faster than SLV.

dg ADsc AnewDsc RS-15 SLV f-SLV #roots bitsize
27 = 128 0 1 0 0 0 44 698
28 = 256 1 1 1 1 1 84 1486
29 = 512 7 12 7 2 5 120 3158

210 = 1024 77 87 76 26 74 216 6626
211 = 2048 1036 1743 966 324 586 326 14955
212 = 4096 18328 18065 18245 7940 6282 582 31828
213 = 8192 n/a n/a n/a 120155 52936 900 69784

Table 1: Timings for Katsura polynomials.

dg ADsc AnewDsc RS-15 RS-18 SLV
100 0 0 0 0.1 0
200 1 1 1 0.6 0
300 2 1 2 1.8 1
400 5 4 5 2.1 2
500 11 9 11 4.2 4
600 19 16 19 8.8 8
700 36 27 37 16.3 15
800 55 41 57 28.0 25
900 88 63 90 46.3 39

1000 123 104 123 71.1 58
1100 164 144 164 102.6 84
1200 213 196 213 146.0 119
1300 337 248 337 199.9 159
1400 452 316 453 278.1 219
1500 558 398 557 346.4 283
1600 708 589 709 422.6 366
1700 857 720 858 539.6 468
1800 1174 902 1179 682.1 588
1900 1398 1072 1400 829.5 740
2000 1652 1278 1656 998.6 932

Table 2: Hermite polynomials

dg ADsc AnewDsc RS-15 RS-18 SLV
100 1 0 0 0.1 1
200 0 1 1 0.6 1
300 2 2 1 1.8 1
400 6 5 6 1.8 1
500 11 9 11 3.5 4
600 20 16 19 7.2 7
700 37 28 37 13.3 13
800 58 41 58 22.5 21
900 91 65 90 35.5 33

1000 125 106 124 53.8 51
1100 166 146 164 78.5 70
1200 214 197 214 110.5 99
1300 306 247 306 152.3 136
1400 453 319 454 201.3 180
1500 554 396 555 264.4 236
1600 707 592 710 343.1 306
1700 859 724 866 436.6 397
1800 1166 918 1168 544.7 488
1900 1379 1059 1389 679.3 611
2000 1641 1270 1630 838.4 762

Table 3: Laguerre polynomials

Acknowledgments. Partially supported by HPAC (ANR-11-BS02-013) and FP7 Marie Curie Career Integration Grant.

References
[1] M. Hemmer, E. P. Tsigaridas, Z. Zafeirakopoulos, I. Z. Emiris, M. I. Karavelas, and B. Mourrain. Experimental evaluation and cross-

benchmarking of univariate real solvers. In H. Kai and H. Sekigawa, editors, Proc. 3rd ACM Int’l Work. Symbolic Numeric Computation
(SNC), pages 45–54, New York, NY, USA, 2009. ACM.

[2] A. Kobel, F. Rouillier, and M. Sagraloff. Computing real roots of real polynomials... and now for real! In Proc. ISSAC, 2016.
[3] F. Rouillier and Z. Zimmermann. Efficient isolation of polynomial’s real roots. J. of Computational & Applied Math., 162(1):33–50, 2004.

4

http://flintlib.org/
http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html
http://www-polsys.lip6.fr/~elias/soft.html

