A Three-step Methodology for Dimensional Tolerance Synthesis of Parallel Manipulators

Abstract : Computing the maximal pose error given an upper bound on model parameters uncertainties, called perturbations in this paper, is challenging for parallel robots, mainly because the direct kinematic problem has several solutions, which become unstable in the vicinity of parallel singularities. In this paper, a local uniqueness hypothesis that allows safely computing pose error upper bounds using nonlinear optimization is proposed. This hypothesis, together with a corresponding maximal allowed perturbation domain and a certified crude pose error upper bound valid over the complete workspace, will be proved numerically using a parametric version of Kantorovich theorem and certified nonlinear global optimization. Then, approximate linearizations are used in order to determine approximated tolerances reaching a prescribed maximal pose error over a given workspace. Those tolerances are finally verified using optimal pose error upper bounds, which are computed using global optimization techniques. Two illustrative examples are studied in order to highlight the contributions of the paper.
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01721237
Contributeur : Stéphane Caro <>
Soumis le : jeudi 1 mars 2018 - 18:29:27
Dernière modification le : mercredi 5 septembre 2018 - 01:15:09
Document(s) archivé(s) le : mercredi 30 mai 2018 - 15:19:40

Fichier

MMT2016_Goldsztejn_Caro_Chaber...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Alexandre Goldsztejn, Stéphane Caro, Gilles Chabert. A Three-step Methodology for Dimensional Tolerance Synthesis of Parallel Manipulators. Mechanism and Machine Theory, Elsevier, 2016, 105, pp.213-234. 〈10.1016/j.mechmachtheory.2016.06.013〉. 〈hal-01721237〉

Partager

Métriques

Consultations de la notice

429

Téléchargements de fichiers

134