Model-Based Co-clustering for Functional Data

Yosra Slimen 1, 2 Sylvain Allio 1 Julien Jacques 3, 2
3 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille - École polytechnique universitaire de Lille, Université de Lille, Sciences et Technologies
Abstract : In order to provide a simplified representation of key performance indicators for an easier analysis by mobile network maintainers, a model-based co-clustering algorithm for functional data is proposed. Co-clustering aims to identify block patterns in a data set from a simultaneous clustering of rows and columns. The algorithm relies on the latent block model in which each curve is identified by its functional principal components that are modeled by a multivariate Gaussian distribution whose parameters are block-specific. These latter are estimated by a stochastic EM algorithm embedding a Gibbs sampling. In order to select the numbers of row-and column-clusters, an ICL-BIC criterion is introduced. In addition to be the first co-clustering algorithm for functional data, the advantage of the proposed model is its ability to extract the hidden double structure induced by the data and its ability to deal with missing values. The model has proven its efficiency on simulated data and on a real data application that helps to optimize the topology of 4G mobile networks.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Julien Jacques <>
Soumis le : lundi 26 décembre 2016 - 22:08:27
Dernière modification le : mercredi 14 novembre 2018 - 14:40:11
Document(s) archivé(s) le : mardi 21 mars 2017 - 13:15:59


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01422756, version 1



Yosra Slimen, Sylvain Allio, Julien Jacques. Model-Based Co-clustering for Functional Data. 2016. 〈hal-01422756〉



Consultations de la notice


Téléchargements de fichiers