Efficient Utility Improvement for Location Privacy

Konstantinos Chatzikokolakis 1 Ehab Elsalamouny 2, 1 Catuscia Palamidessi 1
1 COMETE - Concurrency, Mobility and Transactions
LIX - Laboratoire d'informatique de l'École polytechnique [Palaiseau], Inria Saclay - Ile de France, X - École polytechnique, CNRS - Centre National de la Recherche Scientifique : UMR7161
Abstract : The continuously increasing use of location-based services poses an important threat to the privacy of users. A natural defense is to employ an obfuscation mechanism, such as those providing geo-indistinguishability, a framework for obtaining formal privacy guarantees that has become popular in recent years. Ideally, one would like to employ an optimal obfuscation mechanism, providing the best utility among those satisfying the required privacy level. In theory optimal mechanisms can be constructed via linear programming. In practice, however, this is only feasible for a radically small number of locations. As a consequence, all known applications of geo-indistinguishability simply use noise drawn from a planar Laplace distribution. In this work, we study methods for substantially improving the utility of location obfuscation, while maintaining practical applicability as a main goal. We provide such solutions for both infinite (continuous or discrete) as well as large but finite domains of locations, using a Bayesian remapping procedure as a key ingredient. We evaluate our techniques in two real world complete datasets, without any restriction on the evaluation area, and show important utility improvements with respect to the standard planar Laplace approach.
Type de document :
Article dans une revue
Proceedings on Privacy Enhancing Technologies, De Gruyter Open, 2017, 2017 (4), pp.308-328. 〈10.1515/popets-2017-0051〉
Liste complète des métadonnées

Littérature citée [41 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01422842
Contributeur : Konstantinos Chatzikokolakis <>
Soumis le : samedi 22 juillet 2017 - 19:02:50
Dernière modification le : mardi 11 septembre 2018 - 14:54:08

Fichier

PoPETS-published.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Konstantinos Chatzikokolakis, Ehab Elsalamouny, Catuscia Palamidessi. Efficient Utility Improvement for Location Privacy. Proceedings on Privacy Enhancing Technologies, De Gruyter Open, 2017, 2017 (4), pp.308-328. 〈10.1515/popets-2017-0051〉. 〈hal-01422842v2〉

Partager

Métriques

Consultations de la notice

604

Téléchargements de fichiers

200