
HAL Id: hal-01423760
https://hal.inria.fr/hal-01423760

Submitted on 31 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif

Bruno Blanchet

To cite this version:
Bruno Blanchet. Modeling and Verifying Security Protocols with the Applied Pi Calculus and ProVerif.
Foundations and Trends® in Privacy and Security , Now publishers inc, 2016, 1 (1-2), pp.1 - 135.
<10.1561/3300000004>. <hal-01423760>

https://hal.inria.fr/hal-01423760
https://hal.archives-ouvertes.fr


Modeling and Verifying Security
Protocols with the Applied Pi

Calculus and ProVerif

Suggested Citation: Bruno Blanchet (2016), “Modeling and Verifying Security Pro-
tocols with the Applied Pi Calculus and ProVerif”, : Vol. 1, No. 1, pp 1–135. DOI:
10.1561/3300000004.

Bruno Blanchet
INRIA Paris, France

Bruno.Blanchet@inria.fr

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft



Contents

1 Introduction 2
1.1 Verifying security protocols . . . . . . . . . . . . . . . . . 2
1.2 Structure of ProVerif . . . . . . . . . . . . . . . . . . . . 10
1.3 Comparison with previous surveys . . . . . . . . . . . . . . 11

2 The Protocol Specification Language 12
2.1 Core language: syntax and informal semantics . . . . . . . 12
2.2 An example of protocol . . . . . . . . . . . . . . . . . . . 20
2.3 Core language: type system . . . . . . . . . . . . . . . . . 23
2.4 Core language: formal semantics . . . . . . . . . . . . . . 24
2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Verifying Security Properties 42
3.1 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Secrecy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Correspondences . . . . . . . . . . . . . . . . . . . . . . . 64
3.4 Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 Usage heuristics . . . . . . . . . . . . . . . . . . . . . . . 81

4 Link with the Applied Pi Calculus 83



5 Applications 88
5.1 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 ProVerif as back-end . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion 92

Acknowledgments 95

Appendices 96

A Proof of Theorem 3.5 97

B Proofs for Chapter 4 100
B.1 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . 100
B.2 Proof of Propositions 4.2 and 4.3 . . . . . . . . . . . . . . 107
B.3 Relating definitions of observational equivalence . . . . . . 114

References 118



Modeling and Verifying Security
Protocols with the Applied Pi
Calculus and ProVerif
Bruno Blanchet1

1INRIA Paris, France; Bruno.Blanchet@inria.fr

ABSTRACT

ProVerif is an automatic symbolic protocol verifier. It sup-
ports a wide range of cryptographic primitives, defined by
rewrite rules or by equations. It can prove various security
properties: secrecy, authentication, and process equivalences,
for an unbounded message space and an unbounded number
of sessions. It takes as input a description of the protocol
to verify in a dialect of the applied pi calculus, an exten-
sion of the pi calculus with cryptography. It automatically
translates this protocol description into Horn clauses and
determines whether the desired security properties hold by
resolution on these clauses. This survey presents an overview
of the research on ProVerif.

Bruno Blanchet (2016), “Modeling and Verifying Security Protocols with the Applied
Pi Calculus and ProVerif”, : Vol. 1, No. 1, pp 1–135. DOI: 10.1561/3300000004.



1
Introduction

1.1 Verifying security protocols

The verification of security protocols has been an active research area
since the 1990s. This topic is interesting for several reasons. Security
protocols are ubiquitous: they are used for e-commerce, wireless net-
works, credit cards, e-voting, among others. The design of security
protocols is notoriously error-prone. This point can be illustrated by
attacks found against many published protocols. For instance, a famous
attack was discovered by Lowe, 1996 against the Needham-Schroeder
public-key protocol (Needham and Schroeder, 1978) 17 years after its
publication. Attacks are also found against many protocols used in
practice. Important examples are SSL (Secure Sockets Layer) and its
successor TLS (Transport Layer Security), which are used for https://
connexions. The first version dates back to 1994, and since then many
attacks were discovered, fixed versions were developed, and new attacks
are still regularly discovered (Beurdouche et al., 2015; Adrian et al.,
2015). Moreover, security errors cannot be detected by functional test-
ing, since they appear only in the presence of a malicious adversary.
These errors can also have serious consequences. Hence, the formal
verification or proof of protocols is particularly desirable.

2

https://


1.1. Verifying security protocols 3

1.1.1 Modeling security protocols

In order to verify protocols, two main models have been considered:

• In the symbolic model, often called Dolev-Yao model and due
to Needham and Schroeder, 1978 and Dolev and Yao, 1983, cryp-
tographic primitives are considered as perfect blackboxes, modeled
by function symbols in an algebra of terms, possibly with equa-
tions. Messages are terms on these primitives and the adversary
can compute only using these primitives. This is the model usually
considered by formal method practitioners.

• In contrast, in the computational model, messages are bitstrings,
cryptographic primitives are functions from bitstrings to bitstrings,
and the adversary is any probabilistic Turing machine. This is the
model usually considered by cryptographers.

The symbolic model is an abstract model that makes it easier to build
automatic verification tools, and many such tools exist: AVISPA (Ar-
mando et al., 2005), FDR (Lowe, 1996), Scyther (Cremers, 2008),
Tamarin (Schmidt et al., 2012), for instance. The computational model
is closer to the real execution of protocols, but the proofs are more
difficult to automate; we refer the reader to (Blanchet, 2012a) and to
Chapter 6 for some information on the mechanization of proofs in the
computational model.

Most often, the relations between cryptographic primitives given
in the symbolic model also hold in the computational model.1 In this
case, an attack in the symbolic model directly leads to an attack in the
computational model, and a practical attack. However, the converse is
not true in general: a protocol may be proved secure in the symbolic
model, and still be subject to attacks in the computational model. For
this reason, the computational soundness approach was introduced: it
proves general theorems showing that security in the symbolic model
implies security in the computational model, modulo additional assump-
tions. However, since the two models do not coincide, this approach

1Sometimes, one may also overapproximate the capabilities of the adversary in
the symbolic model.



4 Introduction

typically requires strong assumptions on the cryptographic primitives
(for instance, encryption has to hide the length of the messages) and
on the protocol (for instance, absence of key cycles, in which a key is
encrypted under itself; correctly generated keys, even for the adversary).
This approach was pioneered by Abadi and Rogaway, 2002. This work
triggered much research in this direction; we refer to (Cortier et al.,
2011) for a survey.

Even though the computational model is closer to reality than the
symbolic model, we stress that it is still a model. In particular, it
does not take into account side channels, such as timing and power
consumption, which may give additional information to an adversary
and enable new attacks. Moreover, one often studies specifications of
protocols. New attacks may appear when the protocol is implemented,
either because the specification has not been faithfully implemented, or
because the attacks rely on implementation details that do not appear
at the specification level.

In this survey, we focus on the verification of specifications of proto-
cols in the symbolic model. Even though it is fairly abstract, this level
of verification is relevant in practice as it enables the discovery of many
attacks.

1.1.2 Target security properties

Security protocols can aim at a wide variety of security goals. The main
security properties can be classified into two categories, trace properties
and equivalence properties. We define these categories and mention two
particularly important examples: secrecy and authentication. These are
two basic properties required by most security protocols. Some protocols,
such as e-voting protocols (Delaune et al., 2009), require more complex
and specific security properties, which we will not discuss.

Trace and equivalence properties

Trace properties are properties that can be defined on each execution
trace (each run) of the protocol. The protocol satisfies such a property
when it holds for all traces. For example, the fact that some states are



1.1. Verifying security protocols 5

unreachable is a trace property.
Equivalence properties mean that the adversary cannot distinguish

two processes (that is, protocols). For instance, one of these processes can
be the protocol under study, and the other one can be its specification.
Then, the equivalence means that the protocol satisfies its specification.
Therefore, equivalences can be used to model many subtle security
properties. Several variants exist (observational equivalence, testing
equivalence, trace equivalence) (Abadi and Gordon, 1999; Abadi and
Gordon, 1998; Abadi and Fournet, 2001). Observational equivalence
provides compositional proofs: if a protocol P is equivalent to P ′, P can
be replaced with P ′ in a more complex protocol. However, the proof
of equivalences is more difficult to automate than the proof of trace
properties: equivalences cannot be expressed on a single trace, they
require relations between traces (or processes).

Secrecy

Secrecy, or confidentiality, means that the adversary cannot obtain
some information on data manipulated by the protocol. Secrecy can be
formalized in two ways:

• Most often, secrecy means that the adversary cannot compute
exactly the considered piece of data. In this survey, this prop-
erty will simply be named secrecy, or when emphasis is needed,
syntactic secrecy.

• Sometimes, one uses a stronger notion, strong secrecy, which
means that the adversary cannot detect a change in the value
of the secret (Abadi, 1999; Blanchet, 2004). In other words, the
adversary has no information at all on the value of the secret.

The difference between syntactic secrecy and strong secrecy can be
illustrated by a simple example: consider a piece of data for which the
adversary knows half of the bits but not the other half. This piece
of data is syntactically secret since the adversary cannot compute it
entirely, but not strongly secret, since the adversary can see if one
of the bits it knows changes. Syntactic secrecy cannot be used to



6 Introduction

express secrecy of data chosen among known constants. For instance,
talking about syntactic secrecy of a boolean true or false does not make
sense, because the adversary knows the constants true and false from
the start. In this case, one has to use strong secrecy: the adversary
must not be able to distinguish a protocol using the value true from
the same protocol using the value false. These two notions are often
equivalent (Cortier et al., 2007), for atomic data (data that cannot be
split into several pieces, such as nonces, which are random numbers
chosen independently at each run of the protocol) and for probabilistic
cryptographic primitives. Syntactic secrecy is a trace property, while
strong secrecy is an equivalence property.

Authentication

Authentication means that, if a participant A runs the protocol appar-
ently with a participant B, then B runs the protocol apparently with
A, and conversely. One often requires that A and B also share the same
values of the parameters of the protocol.

Authentication is generally formalized by correspondence proper-
ties (Woo and Lam, 1993; Lowe, 1997), of the form: if A executes a
certain event e1 (for instance, A terminates the protocol with B), then
B has executed a certain event e2 (for instance, B started a session of
the protocol with A). There exist several variants of these properties.
For instance, one may require that each execution of e1 corresponds to
a distinct execution of e2 (injective correspondence) or, on the contrary,
that if e1 has been executed, then e2 has been executed at least once
(non-injective correspondence). The events e1 and e2 may also include
more or fewer parameters depending on the desired property. These
properties are trace properties.

1.1.3 Symbolic verification

Basically, to verify protocols in the symbolic model, one computes the
set of terms (messages) that the adversary knows. If a message does
not belong to this set, then this message is secret. The difficulty is
that this set is infinite, for two reasons: the adversary can build terms



1.1. Verifying security protocols 7

of unbounded size, and the considered protocol can be executed any
number of times. Several approaches can be considered to solve this
problem:

• One can bound the size of messages and the number of executions
of the protocols. In this case, the state space is finite, and one can
apply standard model-checking techniques. This is the approach
taken by FDR (Lowe, 1996) and by SATMC (Armando et al.,
2014), for instance.

• If we bound only the number of executions of the protocol, the
state space is infinite, but under reasonable assumptions, one
can show that the problem of security protocol verification is
decidable: protocol insecurity is NP-complete (Rusinowitch and
Turuani, 2003). Basically, the non-deterministic Turing machine
guesses an attack and polynomially checks that it is actually an
attack against the protocol. There exist practical tools that can
verify protocols in this case, using for instance constraint solving
as in Cl-AtSe (Turuani, 2006) or extensions of model checking as
in OFMC (Basin et al., 2005).

• When the number of executions of the protocol is not bounded,
the problem is undecidable (Durgin et al., 2004) for a reasonable
model of protocols. Hence, there exists no automatic tool that
always terminates and solves this problem. However, there are
several approaches that can tackle an undecidable problem:

– One can rely on help from the user. This is the approach
taken for example by Isabelle (Paulson, 1998), which is an
interactive theorem prover, Tamarin (Schmidt et al., 2012),
which just requires the user to give a few lemmas to help the
tool, or Cryptyc (Gordon and Jeffrey, 2004), which relies on
typing with type annotations.

– One can have incomplete tools, which sometimes answer “I
don’t know” but succeed on many practical examples. For
instance, one can use abstractions based on tree-automata to



8 Introduction

represent the knowledge of the adversary (Monniaux, 2003;
Boichut et al., 2006).

– One can allow non-termination, as in Maude-NPA (Meadows,
1996; Escobar et al., 2006).

The symbolic protocol verifier ProVerif represents protocols by
Horn clauses, in the line of ideas by Weidenbach, 1999: Horn
clauses are first order logical formulas, of the form F1∧· · ·∧Fn ⇒
F , where F1, . . . , Fn, F are facts. This representation introduces
abstractions. It is still more precise than tree-automata because
it keeps relational information on messages. However, using this
approach, termination is not guaranteed in general.

Let us compare ProVerif with some other tools that verify protocol
specifications in the symbolic model. AVISPA (Armando et al., 2005)
is a platform that offers four different protocol verification back-ends:
SATMC (Armando et al., 2014) for bounded attack depth (which im-
plies bounded sessions and messages), Cl-AtSe (Turuani, 2006) and
OFMC (Basin et al., 2005; Mödersheim and Viganò, 2009) for bounded
sessions, and TA4SP (Boichut et al., 2006) for unbounded sessions.
In contrast, ProVerif focuses only on the case of unbounded sessions,
and the Horn-clause abstraction it uses is more precise than the tree-
automata abstraction of TA4SP, as mentioned above. SATMC supports
basic cryptographic primitives that can be defined by rewrite rules.
Cl-AtSe additionally supports exclusive or, Diffie-Hellman exponentia-
tion (including equations of the multiplicative group modulo p), and
associative concatenation. OFMC supports cryptographic primitives
defined by finite equational theories (theories under which every term
has a finite equivalence class) and subterm convergent theories (theories
generated by rewrite rules that are convergent, that is, terminating and
confluent, and whose right-hand side is either a subterm of the left-hand
side or a constant). However, in order to guarantee termination, it
bounds the number of instantiations of variables. TA4SP handles alge-
braic properties of exponentiation and exclusive or. ProVerif supports
cryptographic primitives defined by rewrite rules and by equations that
satisfy the finite variant property (Comon-Lundh and Delaune, 2005),



1.1. Verifying security protocols 9

which excludes associativity. AVISPA focuses on trace properties, while
ProVerif can also verify some equivalence properties.

Maude-NPA (Meadows, 1996; Escobar et al., 2006) relies on narrow-
ing in rewrite systems. It is fully automatic and supports an unbounded
number of sessions, but in contrast to ProVerif, it does not make any
abstraction. Hence, it is sound and complete, but may not terminate. It
supports cryptographic primitives defined by convergent rewrite rules
plus associativity and commutativity (Escobar et al., 2007), as well as
homomorphic encryption (Escobar et al., 2011), while ProVerif does not
support associativity nor homomorphic encryption. It initially focused
on reachability properties and was recently extended to prove some
equivalences (Santiago et al., 2014), using the same idea as ProVerif
(see §3.4).

Scyther (Cremers, 2008) is fully automatic, always terminates, and
can provide three different results: verification for an unbounded number
of sessions, attack, or verification for a bounded number of sessions.
It supports only a fixed set of cryptographic primitives (symmetric
and asymmetric encryption and signatures). It proves secrecy and
authentication properties. A version named scyther-proof generates
Isabelle proofs of security of the verified protocols (Meier et al., 2010).

Tamarin (Schmidt et al., 2012) verifies protocols for an unbounded
number of sessions, but often relies on the user to provide some lemmas
in order to guide the proof. It initially proved trace properties expressed
in temporal first-order logic, and was recently extended to prove some
equivalences (Basin et al., 2015), using the same idea as ProVerif. It
supports cryptographic primitives defined by subterm convergent equa-
tions, Diffie-Hellman exponentiation, bilinear pairings, and associative
and commutative operators (Schmidt et al., 2014). It also supports
mutable state and loops; the lemmas provided by the user basically give
loop invariants. Protocols in Tamarin are specified as multiset rewriting
systems; Kremer and Künnemann, 2014 wrote a translator from an
extension of the applied pi calculus with state.

The rest of this survey focuses on ProVerif. We refer the reader
to (Blanchet, 2012b) for a more complete survey of security protocol
verification.



10 Introduction

Pi calculus + cryptography Secrecy, authentication, ...

Horn clauses Derivability queries

Resolution with selection

Automatic translator

Derivation:No derivation:

Protocol: Properties to prove:

The property is true Attack at the Horn clause level

Attack reconstruction

False attack
"I don’t know"

Attack at the pi
The property is false

calculus level

Figure 1.1: Structure of ProVerif

1.2 Structure of ProVerif

The structure of ProVerif is represented in Figure 1.1. ProVerif takes as
input a model of the protocol in an extension of the pi calculus with
cryptography, similar to the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016) and detailed in the next chapter. It supports
a wide variety of cryptographic primitives, modeled by rewrite rules or
by equations. ProVerif also takes as input the security properties that
we want to prove. It can verify various security properties, including se-
crecy, authentication, and some observational equivalence properties. It
automatically translates this information into an internal representation
by Horn clauses: the protocol is translated into a set of Horn clauses,
and the security properties to prove are translated into derivability
queries on these clauses. ProVerif uses an algorithm based on resolution



1.3. Comparison with previous surveys 11

with free selection to determine whether a fact is derivable from the
clauses. If the fact is not derivable, then the desired security property
is proved. If the fact is derivable, then there may be an attack against
the considered property: the derivation may correspond to an attack,
but it may also correspond to a “false attack”, because the Horn clause
representation makes some abstractions. These abstractions are key to
the verification of an unbounded number of sessions of protocols.

Chapter 2 presents the protocol specification language of ProVerif.
Chapter 3 explains how ProVerif verifies the desired security properties.
Chapter 4 relates the protocol specification language of ProVerif to the
applied pi calculus (Abadi and Fournet, 2001; Abadi et al., 2016). Finally,
Chapter 5 summarizes some applications of ProVerif and Chapter 6
concludes.

1.3 Comparison with previous surveys

Previous surveys on ProVerif (Blanchet, 2011; Blanchet, 2014) focus only
on secrecy. The general protocol verification survey Blanchet, 2012b also
outlines the verification of secrecy in ProVerif. Previous journal papers
present individual features of the tool: secrecy (Abadi and Blanchet,
2005a), correspondences (Blanchet, 2009), and equivalences Blanchet et
al., 2008. Our habilitation thesis (Blanchet, 2008b), in French, presents
a general survey of ProVerif that includes secrecy, correspondences, and
equivalences.

This survey is the first one to present all these features in English,
in a common framework. Moreover, it includes features that never
appeared in previous surveys: the extended destructors of (Cheval and
Blanchet, 2013), the proof of equivalences using swapping (Blanchet
and Smyth, 2016), as well as the link with the applied pi calculus
(Chapter 4), which was never published before.



2
The Protocol Specification Language

This chapter presents the protocol specification language used by
ProVerif, by giving its syntax and semantics. Our presentation is based
on earlier ones (Abadi and Blanchet, 2005a; Blanchet, 2009; Blanchet,
2014), with some features added: extended destructors (Cheval and
Blanchet, 2013), support for equations and phases (Blanchet et al.,
2008), enriched terms, pattern-matching, and table of keys (Blanchet
et al., 2016).

2.1 Core language: syntax and informal semantics

Figure 2.1 gives the syntax of terms (data, messages), expressions
(computations on terms), and processes (programs) of the input lan-
guage of ProVerif. Terms are typed. The types T include channel for
channels, bool for boolean values, and bitstring for bitstrings. The user
may declare other types. ProVerif checks that processes given by the
user are well-typed. This is helpful in order to detect mistakes in
protocol specifications. However, by default, it ignores types for the
verification of security properties. This behavior allows the adversary
to bypass the type system, therefore enabling the detection of type-flaw

12



2.1. Core language: syntax and informal semantics 13

M,N ::= terms
x, y, z variable
a, b, c, k, s name
f(M1, . . . ,Mn) constructor application

D ::= expressions
M term
h(D1, . . . , Dn) function application
fail failure

P,Q ::= processes
0 nil
out(N,M);P output
in(N, x : T );P input
P | Q parallel composition
!P replication
new a : T ;P restriction
let x : T = D in P else Q expression evaluation
if M then P else Q conditional

Figure 2.1: Syntax of the core language

attacks (Heather et al., 2000). For this reason, we remove types in the
definition of the formal semantics and in the verification of security
properties. If desired, ProVerif can also be configured to take into ac-
count types in the verification of security properties. We focus on the
default configuration in this survey.

The identifiers a, b, c, k, and similar ones range over names, and x,
y, and z range over variables. Names represent atomic data, such as
keys and nonces. Variables can be substituted by terms. Names and
variables are declared with their type. The syntax also assumes a set of
function symbols for constructors and destructors; we often use f for a
constructor, g for a destructor, and h for a constructor or a destructor.
Function symbols are declared with types: h(T1, . . . , Tn) : T means that
the function h takes n arguments of types T1, . . . , Tn respectively, and



14 The Protocol Specification Language

returns a result of type T .
Constructors are used to build terms. Therefore, terms are variables,

names, and constructor applications of the form f(M1, . . . ,Mn). For
instance, symmetric encryption is typically represented by a constructor
senc, and the term senc(c, k) represents the encryption of c under the
key k. On the other hand, destructors do not appear in terms, but
manipulate terms in expressions. They are functions on terms that
processes can apply, via the expression evaluation construct. A destruc-
tor g is defined by a finite ordered list of rewrite rules def(g) of the
form g(U1, . . . , Un)→ U where U1, . . . , Un, U are may-fail terms, that is,
termsM , the constant fail, which represents the failure of a computation,
or may-fail variables u. Hence, we have two kinds of variables: ordinary
variables, or simply variables, which can be substituted by terms, and
may-fail variables, which can be substituted by may-fail terms. In the
rewrite rules, U1, . . . , Un, U do not contain names, and the variables
of U also occur in U1, . . . , Un. The types of U1, . . . , Un must be the
types of the arguments of g, and the type of U must be the type of the
result of g. Destructors occur in expressions D, which evaluate either
to a term M or to the special constant fail. To evaluate g(D1, . . . , Dn),
we first evaluate D1, . . . , Dn, which yields U1, . . . , Un, where each Ui is
either a term M or the constant fail. Then, we consider the first rewrite
rule g(U ′1, . . . , U ′n)→ U ′ in def(g). If there exists a substitution σ such
that σU ′i = Ui for all i ∈ {1, . . . , n}, then this rewrite rule applies and
g(D1, . . . , Dn) evaluates to σU ′. Otherwise, the first rewrite rule does
not apply, and we consider the second one, and so on. If no rewrite
rule applies, the evaluation of g(D1, . . . , Dn) fails: it evaluates to the
constant fail.

Using constructors and destructors, we can represent data structures,
such as tuples, and cryptographic operations, for instance as follows:

• tupleT1,...,Tn
(M1, . . . ,Mn) is the tuple of the terms M1, . . . ,Mn,

where tupleT1,...,Tn
is a constructor that takes arguments of types

T1, . . . , Tn and returns a result of type bitstring, that is, the type
declaration of tupleT1,...,Tn

is tupleT1,...,Tn
(T1, . . . , Tn) : bitstring.

(We often abbreviate tupleT1,...,Tn
(M1, . . . ,Mn) to (M1, . . . ,Mn).)

The n projections are destructors ithT1,...,Tn for i ∈ {1, . . . , n},



2.1. Core language: syntax and informal semantics 15

defined by

ithT1,...,Tn(tupleT1,...,Tn
(x1, . . . , xn))→ xi .

• senc(M,N) is the symmetric (shared-key) encryption of the mes-
sage M under the key N , where senc(bitstring, key) : bitstring is
a constructor. The corresponding destructor sdec(bitstring, key) :
bitstring is defined by

sdec(senc(x, y), y)→ x .

Thus, sdec(M ′, N) returns the decryption ofM ′ ifM ′ is a message
encrypted under N . Otherwise, it fails.

• In order to represent asymmetric (public-key) encryption, we may
use two constructors pk(skey) : pkey and aenc(bitstring, pkey) :
bitstring, where skey is the type of secret keys and pkey is the
type of public keys: pk(M) builds a public key from a secret key
M and aenc(M,N) encrypts M under the public key N . The
corresponding destructor adec(bitstring, skey) : bitstring is defined
by

adec(aenc(x, pk(y)), y)→ x . (2.1)

It decrypts the ciphertext aenc(x, pk(y)) using the secret key
y corresponding to the public key pk(y) used to encrypt this
ciphertext.

• Cryptographically, a secure asymmetric encryption scheme must
be probabilistic. We can represent a probabilistic encryption
scheme by adding a third argument to the constructor aenc to rep-
resent the randomness. This constructor becomes aenc(bitstring,
pkey, rand) : bitstring and the rewrite rule for adec becomes

adec(aenc(x, pk(y), z), y)→ x . (2.2)

For protocols that do not test equality of ciphertexts, for secrecy
and authentication, one can use the simpler, deterministic model
of encryption (Cortier et al., 2006). However, for equivalence
properties, or for protocols that test equality of ciphertexts, using



16 The Protocol Specification Language

probabilistic encryption does make a difference. Probabilistic
versions can also be defined for symmetric encryption (above) and
for digital signatures (below) (Blanchet et al., 2016, §4.2.5); we
omit such models here.

• For digital signatures, we may use two constructors pk(skey) :
pkey as above and sign(bitstring, skey) : bitstring, where sign(M,

N) represents the message M signed with the signature key N .
The corresponding destructors check(bitstring, pkey) : bitstring and
getmess(bitstring) : bitstring are defined by:

check(sign(x, y), pk(y))→ x , (2.3)
getmess(sign(x, y))→ x . (2.4)

The destructor check verifies that the signature sign(x, y) is a
correct signature under the secret key y, using the public key
pk(y). When the signature is correct, it returns the message that
was signed. The destructor getmess always returns the message
that was signed. (This encoding of signatures assumes that the
message that was signed can be recovered from the signature.)

• We may represent a one-way hash function by the construc-
tor h(bitstring) : bitstring. There is no corresponding destructor;
so we model that the term M cannot be retrieved from its hash
h(M).

• Boolean constants true : bool and false : bool are nullary construc-
tors, and equality between terms may be defined as a destructor
equal(T, T ) : bool with rewrite rules:

equal(x, x)→ true ,
equal(x, y)→ false .

(2.5)

The second rewrite rule applies only when the first one does
not apply, that is, when x 6= y. We will write M = N for
equal(M,N). Disequality as well as boolean operations (nega-
tion not, conjunction &&, disjunction ||) may also be defined
as destructors. For instance, conjunction can be defined as a



2.1. Core language: syntax and informal semantics 17

destructor and(bool, bool) : bool with rewrite rules:

and(true, u)→ u ,

and(x, u)→ false .

This destructor returns its second argument when its first argu-
ment is true, and false when its first argument is a term different
from true. (We consider all boolean terms that are not true as false.)
The variable u is a may-fail variable, so that the rewrite rules
apply even if the second argument fails. Therefore, and(false, fail)
evaluates to false. Hence, and may not fail even if its second argu-
ment fails. Intuitively, the second argument need not be evaluated
when the first argument is not true. If we replaced u with an
ordinary variable y, and would fail when one of its arguments
fails, corresponding to the intuition that we would evaluate both
arguments before computing the conjunction. We write M &&N

for and(M,N) for readability.

We can also define an if-then-else destructor ifthenelse(bool, T,
T ) : T with rewrite rules:

ifthenelse(true, u, u′)→ u ,

ifthenelse(x, u, u′)→ u′ .

This destructor returns its second argument when its first argu-
ment is true. It returns its third argument when its first argument
is a term different from true. Otherwise, that is, when its first
argument fails, it fails. Similarly to the conjunction above, the
variables u and u′ are may-fail variables, so that the rewrite rules
apply even if the second or third argument fails. As a consequence,
ifthenelse(true,M, fail) and ifthenelse(false, fail,M) both evaluate
to M . Hence, ifthenelse may not fail even if its second or third
argument fails. Intuitively, the third argument need not be evalu-
ated when the first argument is true, and the second argument
need not be evaluated when the first argument is not true.

• Type-converter functions are unary functions, whose only goal is
to convert a term from a type to another, so that it has the right



18 The Protocol Specification Language

type to be passed to other functions. Type-converter functions
are declared with the annotation typeConverter so that ProVerif
can recognize them. Since it ignores types for the verification of
security properties, ProVerif removes type-converter functions at
this stage.
For instance, we may define a type-converter function k2b(key) :
bitstring, which converts terms from type key to type bitstring, so
that keys can be encrypted or signed by the functions defined
above. The inverse function b2k(bitstring) : key is defined by the
rewrite rule

b2k(k2b(x))→ x .

The function k2b always succeeds: all keys are bitstrings; while
the function b2k succeeds only when its argument is of the form
k2b(M), that is, the terms k2b(M) are the only terms of type
bitstring that are keys and can be converted to type key.

Thus, destructors defined by rewrite rules support many of the opera-
tions common in security protocols. This way of specifying cryptographic
primitives also has limitations, though: for example, modular exponen-
tiation cannot be directly represented in this framework. To overcome
this limitation, ProVerif supports equations, as explained in §2.5.1.

Most constructs of processes in the syntax of Figure 2.1 come from
the pi calculus (Milner et al., 1992).

• The nil process 0 does nothing.

• The input process in(N, x : T );P inputs a message on channel N ,
and executes P with x bound to the input message.
The output process out(N,M);P outputs the message M on the
channel N and then executes P .
Here, we use an arbitrary term N to represent a channel: N can
be a name, a variable, or a constructor application. The calculus
is monadic (in that the messages are terms rather than tuples
of terms), but a polyadic calculus can be simulated since tuples
are terms. It is also synchronous (in that a process P is executed
after the output of a message). We may omit P when it is 0.



2.1. Core language: syntax and informal semantics 19

• The process P | Q is the parallel composition of P and Q.

• The replication !P represents an unbounded number of copies
of P in parallel. It makes it possible to represent an unbounded
number of executions of the protocol.

• The restriction new a : T ;P creates a new name a of type T , and
then executes P . It can model the creation of a fresh key or nonce.

• The process let x : T = D in P else Q tries to evaluate D; if D
evaluates to a term M , then x is bound to M and P is executed;
if the evaluation of D fails, then Q is executed. The type T may
be omitted when it can be determined from D, that is, when D
is not fail.

• The conditional if M then P else Q executes P if M is true (or
is a variable bound to true); it executes Q if M is different from
true.

We may omit an else branch when it consists of 0.
The name a is bound in the process new a : T ;P . The variable x is

bound in P in the processes in(N, x : T );P and let x : T = D in P else Q.
Processes are considered equal modulo renaming of bound names and
variables. We write fn(P ) and fv(P ) for the sets of names and variables
free in P , respectively. A process is closed if it has no free variables;
it may have free names. The protocol to verify is represented by a
closed process P0. Free names are declared with their type. They may
be public or private: the adversary initially has access to the public
free names, but not to the private ones. We write Npub for the set of
public free names and Npriv for the set of private free names, so we have
fn(P0) ⊆ Npub ∪Npriv. (One may declare free names not present in P0,
but used for instance in security queries.) Similarly, function symbols
may be public or private: the adversary has access to the public function
symbols, but not to the private ones.

We write {M1/x1 , . . . ,
Mn /xn} for the substitution that replaces x1,

. . . , xn withM1, . . . ,Mn, respectively. WhenD is some term, expression,
or process, we write D{M1/x1 , . . . ,

Mn /xn} for the result of applying
this substitution to D, but we write σD when the substitution is



20 The Protocol Specification Language

simply denoted σ. Except when stated otherwise, substitutions always
map variables (not names) to terms. Furthermore, substitutions never
substitute fail or a may-fail variable for an ordinary variable.

The calculus of ProVerif resembles the applied pi calculus (Abadi
and Fournet, 2001; Abadi et al., 2016). Both calculi are extensions of the
pi calculus with (fairly arbitrary) functions on terms. However, there
are also important differences between these calculi. The first one is that
ProVerif uses destructors in addition to the equational theories of the
applied pi calculus, but does not support all equational theories. (§ 2.5.1
explains how ProVerif handles equations.) The second difference is that
ProVerif has a built-in error-handling construct (the else branch of the
expression evaluation), whereas in the applied pi calculus the error-
handling must be done “by hand”. For instance, in ProVerif, the process
let x = sdec(M,k) in P else out(c, error) outputs the error message when
the decryption of M fails. In the applied pi calculus, decryption always
succeeds, but may return junk, and one has to perform an additional
test if one wants to check that M is a ciphertext under the key k.
Chapter 4 provides a more detailed comparison with the applied pi
calculus.

2.2 An example of protocol

We use as a running example a simplified version of the Denning-
Sacco key distribution protocol (Denning and Sacco, 1981), omitting
certificates and timestamps:

Message 1. A→ B : aenc(sign(k2b(k), sskA), pkB)
Message 2. B → A : senc(s, k)

This protocol is illustrated in Figure 2.2. It involves two principals A
and B. The key sskA is the secret, signature key of A and spkA its
public, signature verification key. (We add an s prefix for signature keys
to distinguish them from encryption keys.) The key skB is the secret,
decryption key of B and pkB its public, encryption key. The key k is a
fresh session key created by A. A sends this key, signed with its private
key sskA, and encrypted under the public key of B, pkB. The key k is
first converted to a bitstring by k2b, so that it has the right type for



2.2. An example of protocol 21

B (Bob)A (Alice)

senc(s, k)

aenc(sign(k2b(k), sskA), pkB)k fresh

Figure 2.2: An example of protocol

signing it. When B receives this message, B decrypts it and assumes,
seeing the signature, that the key k has been generated by A. Then B
sends a secret s encrypted under k. Only A should be able to decrypt
the message and get the secret s. (The second message is not really
part of the protocol; we use it to check if the key k can be used to
exchange secrets between A and B. In fact, there is an attack against
this protocol (Abadi and Needham, 1996), so s will not remain secret.
The attack is explained in Example 3.2.)

This protocol can be encoded by the following process:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in
let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(sskA, pkB) | PB(skB, spkA))

PA(sskA, pkB) = ! new k : key;
out(c, aenc(sign(k2b(k), sskA), pkB));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y′ = adec(y, skB) in
let xk = b2k(check(y′, spkA)) in out(c, senc(s, xk))

Such a process can be given as input to ProVerif. This process first
creates the secret keys sskA and skB, computes the corresponding public
keys spkA and pkB, and sends these keys on the public channel c, so
that the adversary has these public keys. Then, it runs the processes
PA and PB in parallel. These processes correspond respectively to the
roles of A and B in the protocol. They both start with a replication,
which makes it possible to model an unbounded number of sessions of
the protocol.



22 The Protocol Specification Language

The process PA executes the role of A: it creates a fresh key k,
converts it to a bitstring by k2b, signs it with its secret key sskA, then
encrypts this message under pkB, and sends the obtained message on
channel c. PA then expects the second message of the protocol on
channel c, stores it in x and decrypts it. If decryption succeeds, the
result (normally the secret s) is stored in z.

The process PB receives the first message of the protocol on channel
c, stores it in y, decrypts it with skB, and verifies the signature with
spkA. If these verifications succeed, B believes that xk is a key shared
between A and B, and it sends the secret s encrypted under xk. If the
protocol is correct, s should remain secret. In this example, there are
two free names, c and s; c is public and s is private, so Npub = {c} and
Npriv = {s}.

This model of the protocol is weak, because A and B talk only to each
other: they do not interact with other, possibly dishonest participants.
We can strengthen the model as follows. We replace the process PA
with the following process:

PA(sskA, pkB) = ! in(c, xpkB
: pkey); new k : key;

out(c, aenc(sign(k2b(k), sskA), xpkB
));

in(c, x : bitstring); let z = sdec(x, k) in 0

This process PA first receives on the public channel c the key xpkB
,

which is the public key of A’s interlocutor in the protocol. This message
is not part of the protocol; it allows the adversary to choose with whom
A is going to execute a session. In a standard session of the protocol,
this key is pkB, but the adversary can also choose another key, for
instance one of his own keys, so that A can interact with the adversary
playing the role of a dishonest participant. Then PA executes the role of
A as before, with the key xpkB

instead of pkB. The process PB does not
need to be modified because B sends the second message senc(s, k) only
if its interlocutor is the honest participant A. (Otherwise, the secret
would obviously be leaked.) Hence the signature is verified with the key
spkA of A and not with an arbitrary key chosen by the adversary.

The above model still assumes for simplicity that A and B each
play only one role of the protocol. One could easily write an even more



2.3. Core language: type system 23

general model in which they play both roles, or one could provide the
adversary with an interface that allows it to dynamically create new
protocol participants. We consider such a model in §2.5.5.

2.3 Core language: type system

Processes must be well-typed in the type system of Figure 2.3. For
simplicity, all bound variables and names are renamed so that they
are pairwise distinct and distinct from free names. The type system
uses a type environment Γ that maps variables and names to their
type. This type environment initially contains the types of the free
names of the closed process under consideration. The type system
defines three judgments: the judgment Γ `M : T means that the term
M is well-typed of type T in the type environment Γ; the judgment
Γ ` D : T means that the expression D is well-typed of type T in the
type environment Γ; and the judgment Γ ` P means that the process
P is well-typed in the type environment Γ.

The typing rules are straightforward. The type of variables and
names is obtained from the type environment Γ. Function applications
h(D1, . . . , Dn) are well-typed when their arguments are well-typed, of
the type expected by the function h, and the type of h(D1, . . . , Dn) is
the type of the result of h. The constant fail can be of any type. The
rules require that input and output channels be of type channel, that
output messages be well-typed, and that conditions be of type bool.

Example 2.1. It is easy to see that the process P0 of §2.2 is well-typed
in the type environment Γ = c : channel, s : bitstring, that is, Γ ` P0.

As mentioned in §2.1, ProVerif checks that processes given by the
user are well-typed, but it ignores types and removes type-converter
functions for the verification of security properties.

Example 2.2. With types and type-converter functions removed, the
process P0 of §2.2 (version in which A may interact with dishonest
participants) becomes:

P0 = new sskA; new skB; let spkA = pk(sskA) in let pkB = pk(skB) in
out(c, spkA); out(c, pkB); (PA(sskA, pkB) | PB(skB, spkA))



24 The Protocol Specification Language

(x : T ) ∈ Γ
Γ ` x : T

(a : T ) ∈ Γ
Γ ` a : T

f(T1, . . . , Tn) : T Γ `M1 : T1 . . . Γ `Mn : Tn
Γ ` f(M1, . . . ,Mn) : T

h(T1, . . . , Tn) : T Γ ` D1 : T1 . . . Γ ` Dn : Tn
Γ ` h(D1, . . . , Dn) : T

Γ ` fail : T

Γ ` N : channel Γ `M : T Γ ` P
Γ ` out(N,M);P

Γ ` N : channel Γ, x : T ` P
Γ ` in(N, x : T );P

Γ ` 0 Γ ` P Γ ` Q
Γ ` P | Q

Γ ` P
Γ ` !P

Γ, a : T ` P
Γ ` new a : T ;P

Γ ` D : T Γ, x : T ` P Γ ` Q
Γ ` let x : T = D in P else Q

Γ `M : bool Γ ` P Γ ` Q
Γ ` if M then P else Q

Figure 2.3: Type system

PA(sskA, pkB) = ! in(c, xpkB
); new k;

out(c, aenc(sign(k, sskA), xpkB
)); in(c, x); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y); let y′ = adec(y, skB) in
let xk = check(y′, spkA) in out(c, senc(s, xk))

ProVerif verifies this process when it is given the process of §2.2.

2.4 Core language: formal semantics

The formal semantics of this language is defined in Figure 2.4. The
definition proceeds in two steps. First, we define the semantics of



2.4. Core language: formal semantics 25

M ⇓M
fail ⇓ fail
h(D1, . . . , Dn) ⇓ σU ′j if and only if
D1 ⇓ U1, . . . , Dn ⇓ Un,
def(h) consists of the rewrite rules

h(U ′i,1, . . . , U ′i,n)→ U ′i for i ∈ {1, . . . , k},
σU ′j,1 = U1, . . . , σU ′j,n = Un, and
for all i ≤ j, for all σ′, σ′U ′i,1 6= U1, . . . , σ′U ′i,n 6= Un.

E,P ∪ {0 } → E,P (Red Nil)
E,P ∪ {P | Q } → E,P ∪ {P,Q } (Red Par)
E,P ∪ { !P } → E,P ∪ {P, !P } (Red Repl)

(Npub,Npriv),P ∪ { new a;P } → (Npub,Npriv ∪ {a′}),P ∪ {P{a
′
/a} }

where a′ /∈ Npub ∪Npriv (Red Res)
E,P ∪ { out(N,M);Q, in(N, x);P } → E,P ∪ {Q,P{M/x} }

(Red I/O)
E,P ∪ { let x = D in P else Q } → E,P ∪ {P{M/x} }

if D ⇓M (Red Eval 1)
E,P ∪ { let x = D in P else Q } → E,P ∪ {Q }

if D ⇓ fail
(Red Eval 2)

E,P ∪ { if true then P else Q } → E,P ∪ {P } (Red Cond 1)
E,P ∪ { if M then P else Q } → E,P ∪ {Q }

if M 6= true
(Red Cond 2)

Figure 2.4: Operational semantics



26 The Protocol Specification Language

expressions: the relation D ⇓ U means that the closed expression D

evaluates to the closed may-fail term U , which may be a closed term M

or the constant fail. To ease the definition of this relation, we associate to
each constructor f of arity n a list of rewrite rules def(f) that contains
the identity rewrite rule

f(x1, . . . , xn)→ f(x1, . . . , xn) .

Furthermore, for each constructor or destructor h of arity n, we add
the following rewrite rule as final rewrite rule of def(h):

h(u1, . . . , un)→ fail , (2.6)

where u1, . . . , un are may-fail variables. This rewrite rule expresses
that the function h returns fail when no other rewrite rule applies. In
particular, constructors return fail when one of their argument fails.
In Figure 2.4, the first two rules of the definition of ⇓ express that a
closed term and fail evaluate to themselves; the third rule deals with
function application. It first evaluates the arguments of the function
D1, . . . , Dn to U1, . . . , Un respectively. Then, it applies the j-th rewrite
rule of h, h(U ′j,1, . . . , U ′j,n)→ U ′j , instantiated with the substitution σ,
so h(U1, . . . , Un) = h(σU ′j,1, . . . , σU ′j,n) reduces into σU ′j . The last line
checks that the rewrite rules before the j-th cannot be applied.

Example 2.3. For instance, we have

adec(aenc(sign(k, sskA), pk(skB)), skB) ⇓ sign(k, sskA)

by the rewrite rule (2.1). Hence

check(adec(aenc(sign(k, sskA), pk(skB)), skB), pk(sskA)) ⇓ k

by the rewrite rule (2.3). On the other hand,

adec(aenc(sign(k, sskA), pk(skB)), sskA) ⇓ fail

by the rewrite rule (2.6). (The rewrite rule (2.1) cannot be applied
because the decryption key does not match the encryption key.) Hence,

check(adec(aenc(sign(k, sskA), pk(skB)), sskA), pk(sskA)) ⇓ fail

by the rewrite rule (2.6) again.



2.4. Core language: formal semantics 27

Second, we define the semantics of processes, by reduction of se-
mantic configurations. A semantic configuration is a pair E,P where
the environment E is a pair of two finite sets of names (Npub,Npriv)
and P is a finite multiset of closed processes. The set Npub contains
the public names, the set Npriv contains the private names, and the
multiset of processes P contains the processes currently running.1 The
configuration ({a1, . . . , an}, {b1, . . . , bm}), {P1, . . . , Pk} corresponds in-
tuitively to the process new b1; . . . new bm; (P1 | . . . | Pk). (Recall that
types are ignored, so we need not type the names b1, . . . , bm.) A con-
figuration (Npub,Npriv),P is valid when Npub and Npriv are disjoint
and fn(P) ⊆ Npub ∪Npriv. We only consider valid configurations. The
reduction relation→ on semantic configurations is defined in Figure 2.4.
The reduction rules define the semantics of each language construct.
The rule (Red Nil) removes processes 0, since they do nothing. The
rule (Red Par) expands parallel compositions. The rule (Red Repl) cre-
ates an additional copy of a replicated process; since this rule can be
applied again on the resulting configuration, it allows creating an un-
bounded number of copies of the replicated process. The rule (Red Res)
creates a fresh name a′, substitutes it for a, and adds it to the private
names Npriv. The fresh name a′ is required to occur neither in Npriv,
which contains the initial private free names as well as any fresh name
created by a previous application of (Red Res), nor in Npub, which
contains the public free names. The rule (Red I/O) allows communi-
cation between processes. The message M is sent by the output and
received by the input in the variable x, provided the output and input
channels are equal. The rules (Red Eval 1) and (Red Eval 2) define the
semantics of expression evaluations. They evaluate D. In case of success,
(Red Eval 1) runs P with the result M of the evaluation substituted
for x. In case of failure, (Red Eval 2) runs Q. The rules (Red Cond 1)
and (Red Cond 2) define the semantics of conditionals. WhenM is true,
(Red Cond 1) runs P . When M is different from true, (Red Cond 2)
runs Q.

1In (Blanchet, 2009), the environment E is simply a set of names, corresponding
to Npub ∪ Npriv. Indeed, the distinction between public and private names is not
essential for trace properties. It is useful for treating equivalences in §3.4.



28 The Protocol Specification Language

The process P0, which represents the protocol to verify, is usually
run in parallel with an adversary Q. In this case, the initial configuration
is (Npub,Npriv), {P0, Q}.

Example 2.4. Let us consider the process P0 of Example 2.2. This
process cannot run alone since it sends messages on channel c without
any process to receive them. Hence, we must run P0 in parallel with an
adversary Q. As an example, we consider the following adversary:

Q = in(c, xspkA
); in(c, xpkB

); out(c, xpkB
) ,

which receives the two public keys, and sends the B’s public key to A,
so that A runs a session with B. This system runs a correct session of
the protocol between A and B as follows:

({c}, {s}), {P0, Q}
→∗ E1, {out(c, pk(sskA)); out(c, pk(skB));

(PA(sskA, pk(skB)) | PB(skB, pk(sskA))), Q}
by (Red Res) twice and (Red Eval 1) twice

→∗ E1, {PA(sskA, pk(skB)), PB(skB, pk(sskA)),
out(c, pk(skB))} by (Red I/O) twice and (Red Par)

→∗ E1,P ∪ {P ′A, P ′B, out(c, pk(skB))} by (Red Repl) twice

where

E1 = ({c}, {s, sskA, skB})
P = {PA(sskA, pk(skB)), PB(skB, pk(sskA))}
P ′A = in(c, xpkB

); new k; out(c, aenc(sign(k, sskA), xpkB
));P ′′A

P ′′A = in(c, x); let z = sdec(x, k) in 0
P ′B = in(c, y); let y′ = adec(y, skB) in

let xk = check(y′, pk(sskA)) in out(c, senc(s, xk)) .

By (Red I/O), P ′A reduces with out(c, pk(skB)); by (Red Nil), we remove
the omitted final 0. With E2 = ({c}, {s, sskA, skB, k}), we obtain

E1,P ∪ {new k; out(c, aenc(sign(k, sskA), pk(skB)));P ′′A, P ′B}



2.5. Extensions 29

→ E2,P ∪ {out(c, aenc(sign(k, sskA), pk(skB)));P ′′A, P ′B}
by (Red Res) (A creates the fresh key k)

→ E2,P ∪ {P ′′A,
let y′ = adec(aenc(sign(k, sskA), pk(skB)), skB) in
let xk = check(y′, pk(sskA)) in out(c, senc(s, xk))}

by (Red I/O) (A sends message 1 to B)
→∗ E2,P ∪ {P ′′A, out(c, senc(s, k))} by (Red Eval 1) twice
→ E2,P ∪ {let z = sdec(senc(s, k), k) in 0,0}

by (Red I/O) (B sends message 2 to A)
→ E2,P ∪ {0,0} by (Red Eval 1)
→∗ E2,P by (Red Nil) twice

There exist other approaches to define the semantics of such a
language. We discuss one such approach in Chapter 4.

2.5 Extensions

This section presents the main extensions of the core language imple-
mented in ProVerif, and gives their operational semantics, by extending
the semantics given in §2.4.

2.5.1 Equations

In addition to cryptographic primitives defined by rewrite rules, ProVerif
also supports primitives defined by equations. We consider an equational
theory E that consists of a finite set of equations M = N between
terms M , N without names and of the same type. Equality modulo
the equational theory E is obtained from these equations by reflexive,
symmetric, and transitive closure, closure under application of function
symbols, and closure under substitution of terms for variables. We write
M =E N an equality modulo E , and M 6=E N a disequality modulo E .
We only consider non-trivial equational theories, that is, for each type
T , there exist terms M and N of type T such that M 6=E N .

As an example, the Diffie-Hellman key agreement (Diffie and Hell-
man, 1976) can be modeled using equations. The Diffie-Hellman key



30 The Protocol Specification Language

agreement relies on the following property of modular exponentiation:
(ga)b = (gb)a = gab in a cyclic multiplicative subgroup G of Z∗p, where p
is a large prime number and g is a generator of G, and on the assumption
that it is difficult to compute gab from ga and gb, without knowing the
random numbers a and b (computational Diffie-Hellman assumption),
or on the stronger assumption that it is difficult to distinguish ga, gb, gab
from ga, gb, gc without knowing the random numbers a, b, and c (deci-
sional Diffie-Hellman assumption). These properties are exploited to
establish a shared key between two participants A and B of a protocol:
A chooses randomly a and sends ga to B; symmetrically, B chooses
randomly b and sends gb to A. A can then compute (gb)a, since it has
a and receives gb, while B computes (ga)b. These two values are equal,
so they can be used to compute the shared key. The adversary, on the
other hand, has ga and gb but not a and b so by the computational
Diffie-Hellman assumption, it cannot compute the key. (This exchange
resists passive attacks only; to resist active attacks, we need additional
ingredients, for instance signatures.) We can model the Diffie-Hellman
key agreement by the equation (Abadi and Fournet, 2001; Abadi et al.,
2007)

exp(exp(g, x), y) = exp(exp(g, y), x) (2.7)

where g : G is a constant and exp(G,Z) : G is modular exponentiation.
Obviously, this is a basic model: it models the main functional equation
but misses many algebraic relations that exist in the group G.

We can also model a symmetric encryption scheme in which decryp-
tion always succeeds (but may return a meaningless message) by the
equations

sdec(senc(x, y), y) = x

senc(sdec(x, y), y) = x
(2.8)

where senc(bitstring, key) : bitstring and sdec(bitstring, key) : bitstring
are constructors. In this model, decryption always succeeds, because
sdec(M,N) is always a term, even when M is not of the form senc(M ′,
N). The first equation is standard; the second one avoids that the
equality test senc(sdec(M,N), N) = M reveals that M is a ciphertext
under N : in the presence of the second equation, this equality always



2.5. Extensions 31

holds, even when M is not a ciphertext under N . These equations are
satisfied by block ciphers, which are bijective.

Equations allow one to model cryptographic primitives that cannot
be modeled by destructors with rewrite rules. However, rewrite rules
are easier to handle for ProVerif, so they should be preferred when they
are sufficient to express the desired properties.

The formal semantics of the language is extended to equations as
follows. We extend the evaluation of expressions by considering equality
modulo E :

h(D1, . . . , Dn) ⇓ σU ′j if and only if
D1 ⇓ U1, . . . , Dn ⇓ Un,
def(h) consists of the rewrite rules

h(U ′i,1, . . . , U ′i,n)→ U ′i for i ∈ {1, . . . , k},
σU ′j,1 =E U1, . . . , σU ′j,n =E Un, and
for all i ≤ j, for all σ′, σ′U ′i,1 6=E U1, . . . , σ′U ′i,n 6=E Un.

We also extend the reduction rules by considering equality modulo E :

E,P ∪ { out(N,M);Q, in(N ′, x);P } → E,P ∪ {Q,P{M/x} }
if N =E N ′ (Red I/O′)

E,P ∪ { if M then P else Q } → E,P ∪ {P }
if M =E true

(Red Cond 1′)

E,P ∪ { if M then P else Q } → E,P ∪ {Q }
if M 6=E true

(Red Cond 2′)

To handle equations, ProVerif translates them into a set of rewrite
rules associated to constructors. For instance, the equations (2.8) are
translated into the rewrite rules

senc(x, y)→ senc(x, y) sdec(x, y)→ sdec(x, y)
senc(sdec(x, y), y)→ x sdec(senc(x, y), y)→ x

(2.9)

while the equation (2.7) is translated into

exp(x, y)→ exp(x, y) exp(exp(g, x), y)→ exp(exp(g, y), x) (2.10)

Intuitively, these rewrite rules allow one, by applying them exactly once
for each constructor, to obtain the various forms of the terms modulo



32 The Protocol Specification Language

the considered equational theory.2 These forms are named variants, and
since the number of rewrite rules must be finite, ProVerif only supports
equational theories that have the finite variant property (Comon-Lundh
and Delaune, 2005). Constructors are then evaluated similarly to de-
structors. The only difference is that the rewrite rules that come from
equations are not ordered: all applicable rewrite rules are applied. With
Abadi and Fournet, we have formally defined when a set of rewrite rules
models an equational theory, and designed algorithms that translate
equations into rewrite rules that model them (Blanchet et al., 2008, §5).
Then, each trace in the calculus with equational theory corresponds
to a trace in the calculus with rewrite rules, and conversely (Blanchet
et al., 2008, Lemma 1).3 Hence, we reduce to the calculus with rewrite
rules. The main advantage of this approach is that resolution can still
use ordinary syntactic unification (instead of having to use unification
modulo the equational theory), and therefore remains efficient: it avoids
the explosion of the number of clauses that occurs when many unifiers
modulo the equational theory need to be considered during resolution.

This approach still has limitations: associative operations, such as ex-
clusive or, are not supported, because they would require an infinite num-
ber of rewrite rules. It may be possible to handle these operations using
unification modulo the equational theory instead of syntactic unification,
at the cost of a larger complexity. In the case of a bounded number of
sessions, exclusive or is handled in (Comon-Lundh and Shmatikov, 2003;
Chevalier et al., 2005) and a more complete theory of modular exponen-
tiation is handled in (Chevalier et al., 2003). A unification algorithm for
modular exponentiation is presented in (Meadows and Narendran, 2002).
For an unbounded number of sessions, extensions of the Horn clause

2The rewrite rules like sdec(x, y) → sdec(x, y) are necessary so that sdec al-
ways succeeds when its arguments succeed. Thanks to this rule, the evaluation of
sdec(M, N) succeeds and leaves this term unchanged when M is not of the form
senc(M ′, N).

3More precisely, the disequality tests in D ⇓ U and (Red Cond 2′) must still be
performed modulo the equational theory, even in the calculus with rewrite rules. The
impact on the performance of the resolution algorithm is limited because disequalities
are less common than other facts and, when there are several unifiers modulo the
equational theory in a disequality, that leads to several disequalities in a single clause,
not to several clauses.



2.5. Extensions 33

approach have been proposed. Küsters and Truderung, 2008 support
exclusive or provided one of its two arguments is a constant in the
clauses that model the protocol. Küsters and Truderung, 2009 support
Diffie-Hellman key agreements with more detailed algebraic relations
(including equations of the multiplicative group modulo p), provided
the exponents are constants in the clauses that model the protocol. By
extending that line of research, Pankova and Laud, 2012 support bilinear
pairings, provided the exponents are constants in the clauses that model
the protocol. These approaches proceed by transforming the initial
clauses into richer clauses on which the standard resolution algorithm is
applied. The tools Maude-NPA (Meadows, 1996; Escobar et al., 2006)
and Tamarin (Schmidt et al., 2012) support equational theories that
ProVerif does not support, at the cost of a more costly verification or by
requiring user intervention. Maude-NPA supports equations defined by
convergent rewrite rules plus associativity and commutativity (Escobar
et al., 2007) (which includes Diffie-Hellman exponentiation and exclusive
or), as well as homomorphic encryption (Escobar et al., 2011). Tamarin
supports subterm convergent equations, Diffie-Hellman exponentiation
(including equations of the multiplicative group modulo p), bilinear
pairings, and associative and commutative operators (Schmidt et al.,
2014).

2.5.2 Enriched terms

ProVerif allows all occurrences of terms M in processes (input and
output channels, output messages, and conditions) to be replaced with
expressions D, which may contain destructors, hence the syntax of
processes becomes:

P,Q ::= processes
. . .

out(D,D′);P output
in(D,x : T );P input
if D then P else Q conditional

Each such expression D is evaluated; when the evaluation fails, the
process does nothing; when it succeeds with result M , it executes the



34 The Protocol Specification Language

process withM instead of D. Hence the formal semantics can be defined
as follows:

E,P ∪ { out(D′, D);Q, in(D′′, x);P } → E,P ∪ {Q,P{M/x} }
if D ⇓M , D′ ⇓M ′, D′′ ⇓M ′′, and M ′ =E M ′′ (Red I/O′′)

E,P ∪ { if D then P else Q } → E,P ∪ {P }
if D ⇓M and M =E true

(Red Cond 1′′)

E,P ∪ { if D then P else Q } → E,P ∪ {Q }
if D ⇓M and M 6=E true

(Red Cond 2′′)

Alternatively, processes with such expressions can easily be encoded
into the core calculus by introducing additional expression evaluations.
For instance, in(D,x : T );P can be encoded as

let y = D in in(y, x : T );P .

Furthermore, ProVerif allows expressions to contain some constructs
from processes: restriction, expression evaluation, and conditional, so
that the syntax of expressions is extended as follows:

D ::= expressions
. . .

new a : T ;D restriction
let x : T = D in D′ else D′′ expression evaluation
if D then D′ else D′′ conditional

Processes that contain such expressions are handled by transforming
them into processes without such expressions, by moving restrictions,
expression evaluations, and conditionals from expressions to processes.

2.5.3 Pattern-matching

We enrich the input and expression evaluation constructs with pattern-
matching as follows:

P,Q ::= processes
. . .

in(D, pat);P input
let pat = D in P else Q expression evaluation



2.5. Extensions 35

where patterns pat are defined by the following grammar:

pat ::= patterns
x : T variable
=D equality test
f(pat1, . . . , patn) data constructor

The pattern x : T matches any term and stores it in variable x. The
type T can be omitted when it can be inferred. The variables x inside
a pattern must be pairwise distinct.

The pattern =D matches only terms that are equal to the result
of the evaluation of D. When the evaluation of D fails, the pattern-
matching fails.

The pattern f(pat1, . . . , patn) matches terms of the form f(M1, . . . ,

Mn), when pati matches Mi for all i ≤ n. This pattern can be used only
when f is data constructor. A data constructor is a constructor f of arity
n that comes with associated destructors gi for i ∈ {1, . . . , n} defined
by gi(f(x1, . . . , xn)) → xi. Data constructors are typically used for
representing data structures. Tuples are examples of data constructors.
Pattern-matching with data constructors allows one to extract the
contents of the data structures. To be able to pattern-match on data
constructors without considering the equational theory, we require
that the equational theory satisfies the following condition: for all
data constructors f , f(M1, . . . ,Mn) =E M ′ if and only if there exist
M ′1, . . . ,M

′
n such that M ′ = f(M ′1, . . . ,M ′n) and Mi =E M ′i for all

i ∈ {1, . . . , n}.
When the pattern-matching fails, the expression evaluation let pat =

D in P else Q runs Q. For an input in(D, pat);P , the communication
is executed even when the pattern-matching fails, but the receiver
process does nothing after the input. In other words, in(D, pat);P is an
abbreviation for in(D,x : T ); let pat = x in P else 0 where T is the type
of the pattern pat.

Example 2.5. We consider again the protocol of §2.2. We may add the
public key of B inside the first message, which becomes

Message 1. A→ B : aenc(sign((pkB, k), sskA), pkB)



36 The Protocol Specification Language

B (Bob)A (Alice)

senc(s, k)

aenc(sign((pkB, k), sskA), pkB)k fresh

Figure 2.5: Modified example of protocol

The modified protocol is illustrated in Figure 2.5. The processes PA
and PB are then modified accordingly:

PA(sskA, pkB) = ! in(c, xpkB
: pkey); new k : key;

out(c, aenc(sign((xpkB
, k), sskA), xpkB

));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(skB, spkA) = ! in(c, y : bitstring); let y′ = adec(y, skB) in
let (=pk(skB), xk : key) = check(y′, spkA) in out(c, senc(s, xk))

The process PA signs the pair (xpkB
, k). When PB verifies the signature,

it uses pattern-matching to verify that the signed message is a pair
whose first component is its own public key pkB = pk(skB), and to store
the second component in the variable xk. Because of the overloading
of tuples, the type of xk, namely key, must be explicitly mentioned, so
that ProVerif knows that the pair (_,_) stands for tuplepkey,key(_,_).

Pattern-matching can be encoded into the core language using
equality tests and the destructors associated to data constructors, as
shown by the following example.

Example 2.6. The process PB of Example 2.5 can be encoded into the
calculus without pattern-matching as follows:

PB(skB, spkA) = ! in(c, y : bitstring); let y′ = adec(y, skB) in
let z = check(y′, spkA) in if 1thpkey,key(z) = pk(skB) then
let xk = 2thpkey,key(z) in out(c, senc(s, xk))

This process uses the extension of §2.5.2 to allow destructors in if
1thpkey,key(z) = pk(skB) then. It can be encoded in the core calculus as



2.5. Extensions 37

follows:

PB(skB, spkA) = ! in(c, y : bitstring); let y′ = adec(y, skB) in
let z = check(y′, spkA) in let z′ = (1thpkey,key(z) = pk(skB)) in
if z′ then let xk = 2thpkey,key(z) in out(c, senc(s, xk))

Obviously, the formal semantics of calculus can also be extended
with pattern-matching as well as the following extensions described in
this section. We omit these formal details for simplicity.

2.5.4 Phases

Some situations can be modeled with several phases or stages (Blanchet
et al., 2008, §8). For instance, the protocol may run in a first phase,
and a long-term key may be compromised in a later phase. One may
hope that the secret messages exchanged in the first phase remain secret
even after the compromise of the key. This property is named forward
secrecy. Voting protocols may also include several phases, for instance
a registration phase, a voting phase, and a tallying phase (Kremer
and Ryan, 2005). ProVerif includes a phase construct to model such
situations:

P,Q ::= processes
. . .

phase n;P phase

The phase construct acts as a global synchronization. The processes
initially run in phase 0. Then at some point, phase 1 starts. All processes
that did not reach a phase n construct with n ≥ 1 are discarded, and
processes that start with phase 1 run. Phases continue being incremented
in the same way.

Example 2.7. The following process

P0 = new sskA : skey; (P | phase 1; out(c, sskA)) ,

where P does not contain phases, models a protocol P that runs in
phase 0, using the secret key sskA. This key is then compromised in
phase 1, by sending it on the public channel c.



38 The Protocol Specification Language

2.5.5 Tables

Tables are often useful in the modeling of security protocols. For instance,
an SSH client stores a list of names and keys of the servers it has
contacted so far; this list can be modeled as a table. ProVerif supports
specific constructs for modeling tables:

P,Q ::= processes
. . .

insert tbl(D1, . . . , Dn);P insertion in a table
get tbl(pat1, . . . , patn) suchthat D in P else Q

lookup in a table

The process insert tbl(D1, . . . , Dn);P inserts the record (M1, . . . ,Mn)
in the table tbl, where D1, . . . , Dn evaluate to M1, . . . ,Mn respectively,
then runs P . The process get tbl(pat1, . . . , patn) suchthat D in P else Q
looks for a record (M1, . . . ,Mn) in the table tbl that matches the patterns
(pat1, . . . , patn) and such that the condition D evaluates to true. When
such a record is found, it runs P with the variables of pat1, . . . , patn
bound to the corresponding values. Otherwise, it runs Q. The condition
“suchthat D” can be omitted when D is true. The branch “else Q” can
be omitted when Q is 0.

Example 2.8. We consider again the protocol of §2.2. Instead of adding
the public key of B to the first message, as in Example 2.5, we may
add the name of B. The first message would then become

Message 1. A→ B : aenc(sign((B, k), sskA), pkB) .

However, with such a protocol, the participants need to relate the keys
(e.g. pkB) to the identities (e.g. B). We establish this relation using
certificates, in the same way as in the original Denning-Sacco key distri-
bution protocol (Denning and Sacco, 1981): we use sign((e, B, pkB), sskS)
as a certificate that pkB is the public encryption key of B and sign((s,
A, spkA), sskS) as a certificate that spkA is the public signature verifi-
cation key of A, where sskS is the signature key of a trusted certificate
authority S (server). The protocol becomes:



2.5. Extensions 39

{s}k

cA, cB, aenc(sign((B, k), sskA), pkB)k fresh

S (server)
A, B

cA, cB

A (Alice) B (Bob)

Figure 2.6: Protocol with certificates

Message 1. A→ S : A,B
Message 2. S → A : cA, cB
Message 3. A→ B : cA, cB, aenc(sign((B, k), sskA), pkB)
Message 4. B → A : senc(s, k)

where cA = sign((s, A, spkA), sskS) and cB = sign((e, B, pkB), sskS).
This protocol is illustrated in Figure 2.6. A first asks the server for the
certificate for its own signature key spkA and for the encryption key pkB
of B. The second certificate allows A to obtain the key pkB. Then it
sends the message aenc(sign((B, k), sskA), pkB) with the certificates to
B. B uses cA to obtain A’s signature verification key spkA. It decrypts
and verifies the signature as before; it additionally verifies that B is the
first component of the signed message.

A ProVerif model for this protocol is shown in Figure 2.7. This model
considers two participants Alice and Bob, which can play both roles A
and B of the protocol. The process P0 first generates the encryption
and signature keys for Alice and Bob, and inserts them in a table keys,
which contains triples (identity, encryption key, signature verification
key) for each participant. It also generates the signature keys for the
server S, and publishes all public keys by sending them on the public
channel c. Finally, it runs the processes that model Alice, Bob, and



40 The Protocol Specification Language

P0 = new sskA : skey; let spkA = pk(sskA) in
new skA : skey; let pkA = pk(skA) in
insert keys(Alice, pkA, spkA);
new sskB : skey; let spkB = pk(sskB) in
new skB : skey; let pkB = pk(skB) in
insert keys(Bob, pkB, spkB);
new sskS : skey; let spkS = pk(sskS) in
out(c, (pkA, spkA, pkB, spkB, spkS));
(PA(spkS ,Alice, sskA, spkA) | PA(spkS ,Bob, sskB, spkB) |
PB(spkS ,Bob, skB, pkB) | PB(spkS ,Alice, skA, pkA) |
PS(sskS) | PK)

PK = ! in(c, (h : host, pk : pkey, spk : pkey));
if h 6= Alice && h 6= Bob then insert keys(h, pk, spk)

PS(sskS) = ! in(c, (h1 : host, h2 : host));
get keys(=h1, xx, spk1) in get keys(=h2, pk2, yy) in
out(c, (sign((s, h1, spk1), sskS), sign((e, h2, pk2), sskS)))

PA(spkS , A, sskA, spkA) = ! in(c, (cA : bitstring, cB : bitstring));
if (s, A, spkA) = check(cA, spkS) then
let (=e, B, pkB) = check(cB, spkS) in new k : key;
out(c, (cA, cB, aenc(sign((B, k), sskA), pkB)));
in(c, x : bitstring); let z = sdec(x, k) in 0

PB(spkS , B, skB, pkB) =
! in(c, (cA : bitstring, cB : bitstring, y : bitstring));
if (e, B, pkB) = check(cB, spkS) then
let (=s, A, spkA) = check(cA, spkS) in let y′ = adec(y, skB) in
let (=B, xk : key) = check(y′, spkA) in
if A = Alice ||A = Bob then out(c, senc(s, xk))

Figure 2.7: ProVerif example with tables



2.5. Extensions 41

S, as well as the process PK . This process allows the adversary to
register its own keys for participants other than Alice and Bob by
inserting these keys in the table keys. Therefore, the adversary can
implement any number of dishonest participants to the protocol. The
process PS for the server receives two participant names h1 and h2,
obtains their keys from the table keys, and outputs a certificate for
the signature verification key of h1 and one for the encryption key of
h2. The process PA(spkS , A, sskA, spkA) models a participant A with
secret signature key sskA and public signature verification key spkA,
running role A of the protocol. We suppose that the adversary sends
the first message of the protocol himself. (This is possible since the
participant names are public.) So this message does not appear explicitly
in PA. The process PA receives message 2 containing the certificates,
checks them, outputs message 3, and receives message 4. The process
PB(spkS , B, skB, pkB) models a participant B with secret decryption
key skB and public encryption key pkB, running role B of the protocol.
It receives message 3, checks the certificates, and when its interlocutor
A is honest (that is, this interlocutor is Alice or Bob), it sends a secret
s encrypted under the shared key xk as message 4. This message is only
sent when the interlocutor is honest, because it is perfectly normal that
the adversary can decrypt the last message when the interlocutor of B
is dishonest, so the secrecy of s would not be preserved in this case.

Tables can be encoded in the core calculus using private channels.
ProVerif provides a specific construct as it is frequently used and it is
probably easier to understand for users.



3
Verifying Security Properties

This chapter presents the method used by ProVerif for verifying pro-
tocols. This method based on Horn clauses. The idea of using Horn
clauses for verifying protocols was introduced by Weidenbach, 1999. We
extended his work by defining a systematic translation from a formal
model of protocols to clauses (while he built the clauses manually) and
by proving properties other than secrecy. We first formalize the notion of
an adversary, then deal with the various security properties verified by
ProVerif, starting with the simplest one, secrecy, then considering more
complex ones, correspondences and equivalences. The main reference
for the proof of secrecy and correspondences in ProVerif is (Blanchet,
2009) and for equivalences (Blanchet et al., 2008). For simplicity, this
chapter only deals with the core calculus of §2.1. The results can be
adapted to the extended calculus, and ProVerif supports that calculus.

3.1 Adversary

We assume that the protocol is executed in the presence of an adversary
that intercept all messages, compute, and send all messages it has,
following the Dolev-Yao model (Dolev and Yao, 1983). In our calculus,

42



3.2. Secrecy 43

an adversary can be represented by any process that has the set of
public free names Npub in its initial knowledge. (Although the initial
knowledge of the adversary contains only names in Npub, one can give
any terms to the adversary by sending them on a channel in Npub.)

Definition 3.1. Let Npub be a finite set of names. The closed process
Q is an Npub-adversary if and only if fn(Q) ⊆ Npub and all function
symbols in Q are public. (The process Q is not necessarily well-typed.)

3.2 Secrecy

This section deals with the verification of secrecy, the most basic security
property. We first define secrecy formally, then explain how to verify it
by translating the protocol into Horn clauses and using resolution on
these clauses.

3.2.1 Definition

Intuitively, a process P preserves the secrecy of M when M cannot be
output on a public channel, in a run of P with any adversary. Formally,
we define that a trace outputs M as follows:

Definition 3.2. We say that a trace Tr = (Npub,Npriv),P0 →∗ E′,P ′
outputs M publicly if and only if Tr contains a reduction E,P ∪
{ out(N,M);Q, in(N, x);P } → E,P∪{Q,P{M/x} } for some E, P , N ,
x, P , Q, with N ∈ Npub.

We can finally define secrecy:

Definition 3.3. The closed process P0 preserves the secrecy of the closed
term M from Npub if and only if for some Npriv disjoint from Npub
such that fn(M) ∪ fn(P0) ⊆ Npub ∪ Npriv, for any Npub-adversary Q,
for any trace Tr = (Npub,Npriv), {P0, Q} →∗ E′,P ′, the trace Tr does
not output M publicly.

The choice of Npriv does not matter, provided the conditions of
Definition 3.3 are satisfied.



44 Verifying Security Properties

3.2.2 From the pi calculus to Horn clauses

Given a closed process P0 in the language of Chapter 2 and a set of
names Npub representing the initial knowledge of the adversary, ProVerif
builds a set of Horn clauses, representing the protocol P0 in parallel with
any Npub-adversary. This translation was originally given in (Abadi and
Blanchet, 2005a); we extend it to the richer destructors of (Cheval and
Blanchet, 2013). We suppose that the bound names of P0 are pairwise
distinct and distinct from the free names and the names in Npub.

In these clauses, messages are represented by patterns p, defined by
the following grammar:

p ::= patterns
x, y, z, i variable
a[p1, . . . , pn] name
f(p1, . . . , pn) constructor application

Patterns are terms; we use the word patterns to distinguish them from
terms of the process calculus. Patterns differ from those terms by the
representation of names. We assign a pattern a[p1, . . . , pn] to each name
a of P0. We treat a as a function symbol, and write a[p1, . . . , pn] rather
than a(p1, . . . , pn) only to distinguish functions that come from names
from other functions. If a is a free name, then its pattern is a[ ]. To define
the patterns of bound names, we first assign a distinct, fresh session
identifier variable i to each replication of P0. (We will use a distinct
value for i for each copy of the replicated process.) If a is bound by a
restriction new a in P0, then its pattern takes as arguments the terms
received as inputs and the session identifiers of replications above the
restriction. For example, in the process !in(c, x); new a;P , each name
created by new a is represented by a[i, x] where i is the session identifier
for the replication and x is the message received as input in in(c, x).
Session identifiers enable us to distinguish names created in different
copies of processes. Hence, each name created in the process calculus is
represented by a different pattern in the Horn clauses.

The evaluation of expressions may fail. We reflect that in the Horn
clauses by introducing may-fail patterns, which can be the constant fail
or a may-fail variable in addition to an ordinary pattern:



3.2. Secrecy 45

mp ::= may-fail pattern
p pattern
u may-fail variable
fail failure

As in messages and may-fail messages, a may-fail variable u can be
instantiated by a pattern or fail, whereas a variable x cannot be instan-
tiated by fail.

The clauses use facts defined by the following grammar:

F ::= facts
attacker(mp) adversary knowledge
message(p, p′) message on a channel
∀ṽ, (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n) disequality

The fact attacker(mp) means that the adversary may have mp. The
fact message(p, p′) means that the message p′ may appear on channel p.
The fact ∀ṽ, (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n) means that (mp1, . . . ,

mpn) 6= (mp′1, . . . ,mp′n) for all values of variables in ṽ, where ṽ may
contain variables as well as may-fail variables. We write v for a variable
or a may-fail variable. We omit ∀ṽ when ṽ contains no variable. We omit
the parentheses around mp1, . . . ,mpn and mp′1, . . . ,mp′n when n = 1.
We write m̃p as an abbreviation for (mp1, . . . ,mpn).

The clauses are of the form F1 ∧ . . . ∧ Fn ⇒ F , where F1, . . . , Fn, F

are facts. They comprise clauses for the adversary and clauses for the
protocol, defined below. These clauses form the set RP0,Npub,Npriv .

Clauses for the adversary

The abilities of the adversary are represented by the following clauses:

For each a ∈ Npub, attacker(a[ ]) (Init)
attacker(b0[x]) where b0 occurs neither in P0 nor in Npub ∪Npriv

(Rn)
attacker(fail) (Rfail)



46 Verifying Security Properties

For each public function h, such that def(h) consists of the rewrite
rules h(Ui,1, . . . , Ui,n)→ Ui for i ∈ {1, . . . , k}, the variables in these
rewrite rules are renamed so that distinct rewrite rules use different
variables, and ṽi = fv(Ui) ∪

⋃n
l=1 fv(Ui,l),

for each i ∈ {1, . . . , k},
attacker(Ui,1) ∧ . . . ∧ attacker(Ui,n) ∧∧

j<i

∀ṽj , (Ui,1, . . . , Ui,n) 6= (Uj,1, . . . , Uj,n)⇒ attacker(Ui)

(Rh)
message(x, y) ∧ attacker(x)⇒ attacker(y) (Rl)
attacker(x) ∧ attacker(y)⇒ message(x, y) (Rs)

Clause (Init) represents the initial knowledge of the adversary. Clause
(Rn) means that the adversary can generate an unbounded number
of new names; these names are represented by patterns of the form
b0[x]. Clause (Rfail) means that the adversary has the special constant
fail. Clauses (Rh) mean that the adversary can apply all public func-
tions to all terms it has: if it has an instance of Ui,1, . . . , Ui,n, it can
compute the corresponding instance of Ui by applying the rewrite rule
h(Ui,1, . . . , Ui,n)→ Ui, provided no previous rewrite rule applies, which
is checked by

∧
j<i ∀ṽj , (Ui,1, . . . , Ui,n) 6= (Uj,1, . . . , Uj,n). The rewrite

rules in def(h) do not contain names, and terms without names are
also patterns, so these clauses have the required format. When h is a
constructor f of arity n, these clauses simplify into

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)) (Rf)

and when h is a destructor g with a single rewrite rule g(U1, . . . , Un)→
U , they simplify into

attacker(U1) ∧ . . . ∧ attacker(Un)⇒ attacker(U) (Rg)

(The clauses that conclude fail can be removed since they are subsumed
by (Rfail).) Clause (Rl) means that the adversary can listen on all
channels it has, and (Rs) that it can send all messages it has on all
channels it has. When a message is sent on a channel, both the message
and the channel cannot be fail, so x and y are ordinary variables.



3.2. Secrecy 47

Example 3.1. We suppose that public-key encryption is defined by (2.1).
The constructors senc, pk, aenc, and sign yield the following clauses:

attacker(m) ∧ attacker(k)⇒ attacker(senc(m, k)) (senc)
attacker(sk)⇒ attacker(pk(sk)) (pk)
attacker(m) ∧ attacker(pk)⇒ attacker(aenc(m, pk)) (aenc)
attacker(m) ∧ attacker(sk)⇒ attacker(sign(m, sk)) (sign)

The corresponding destructors sdec, adec, check, and getmess yield the
following clauses:

attacker(senc(m, k)) ∧ attacker(k)⇒ attacker(m) (sdec)
attacker(aenc(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m) (adec)
attacker(sign(m, sk)) ∧ attacker(pk(sk))⇒ attacker(m) (check)
attacker(sign(m, sk))⇒ attacker(m) (getmess)

For instance, the clause for sdec models that, when the adversary has
the ciphertext senc(m, k) and the key k, then it can obtain the cleartext
m by decryption. The clause for check is less general than the one for
getmess since, in the former clause, the attacker additionally needs to
know the key pk(sk); more formally, the clause for check is subsumed by
the one for getmess, so it is discarded during the resolution algorithm
(see “Elimination of subsumed clauses” in §3.2.3).

Clauses for the protocol

To translate the protocol into clauses, we first need to define evaluation
on patterns expressions, defined by the following grammar:

Dp ::= pattern expression
mp may-fail pattern
h(Dp1, . . . ,Dpn) function application

Evaluation of open pattern expressions is defined as a relation Dp ⇓′
(mp, σ, φ), where the substitution σ collects instantiations of Dp obtained
by unification and the formula φ collects the side conditions that express
that certain rewrite rules of destructors do not apply. More formally,



48 Verifying Security Properties

the relation Dp ⇓′ (mp, σ, φ) specifies how instances of Dp evaluate: if
Dp⇓′(mp, σ, φ), then for any substitution σ′ such that σ′φ holds, we have
σ′σDp⇓σ′mp. There may be several (mp, σ, φ) such that Dp⇓′ (mp, σ, φ)
in case several instances of Dp reduce in a different way. This relation
is defined as follows:

mp ⇓′ (mp, ∅,>)

h(Dp1, . . . ,Dpn) ⇓′ (σuUi, σuσ′, σuφ′ ∧ σuφ)
if (Dp1, . . . ,Dpn) ⇓′ ((mp1, . . . ,mpn), σ′, φ′),
σu is a most general unifier of (mp1, Ui,1), . . . , (mpn, Ui,n), and
φ =

∧
j<i ∀ṽj , (mp1, . . . ,mpn) 6= (Uj,1, . . . , Uj,n)

for some i ∈ {1, . . . , k},
where def(h) consists of the rewrite rules h(Ui,1, . . . , Ui,n)→ Ui for
i ∈ {1, . . . , k}, the variables in these rewrite rules are renamed so
that distinct rewrite rules use different variables, and
ṽi = fv(Ui) ∪

⋃n
l=1 fv(Ui,l) for all i ∈ {1, . . . , k}.

(Dp1, . . . ,Dpn) ⇓′ ((σnmp1, . . . , σnmpn−1,mpn), σnσ, σnφ ∧ φn)
if (Dp1, . . . ,Dpn−1) ⇓′ ((mp1, . . . ,mpn−1), σ, φ)
and σDpn ⇓′ (mpn, σn, φn)

The substitution ∅ is the identity. The formula > denotes the empty
conjunction, that is, a formula that always holds. The most general
unifier of may-fail patterns is computed similarly to usual most general
unifiers, even though specific cases hold due to may-fail variables and
ordinary variables: there is no unifier of p and fail, for any pattern p
(including variables x, because these variables can be instantiated only
by messages); the most general unifier of u and mp is {mp/u}; the most
general unifier of fail and fail is the identity; finally, the most general
unifier of p and p′ is computed as usual.

The first rule of the definition ⇓′ treats cases without destructors.
The second one treats function application: it applies each rewrite rule
of h. To apply the i-th rewrite rule, it evaluates the arguments of h to
mp1, . . . ,mpn, checks that the rewrite rule actually applies by unifying
mp1, . . . ,mpn with the arguments of h in the rewrite rule, and checks
that all rewrite rules before the i-th do not apply thanks to the formula
φ. Finally, the third rule treats the evaluation of a tuple.



3.2. Secrecy 49

The translation [[P ]]ρsH of a process P is a set of clauses, where ρ is
an environment that associates a pattern with each name and variable,
s is a sequence of patterns, and H is a sequence of facts. We extend
ρ as a substitution by ρ(h(M1, . . . ,Mn)) = h(ρ(M1), . . . , ρ(Mn)) and
ρ(fail) = fail. The empty sequence is written ∅; the concatenation of
a pattern p to the sequence s is written s, p; the concatenation of a
fact F to the sequence H is written H ∧F . Intuitively, H represents the
hypothesis of the clauses, ρ represents the names and variables that are
already associated with a pattern, and s represents the current values
of session identifiers and inputs. The translation [[P ]]ρsH is defined as
follows:

[[0]]ρsH = ∅
[[P | Q]]ρsH = [[P ]]ρsH ∪ [[Q]]ρsH
[[!P ]]ρsH = [[P ]]ρ(s, i)H where i is a fresh variable
[[new a;P ]]ρsH = [[P ]](ρ[a 7→ a[s]])sH
[[in(M,x);P ]]ρsH = [[P ]](ρ[x 7→ x′])(s, x′)(H ∧message(ρ(M), x′))

where x′ is a fresh variable
[[out(M,N);P ]]ρsH = [[P ]]ρsH ∪ {H ⇒ message(ρ(M), ρ(N))}
[[let x = D in P else Q]]ρsH =⋃

{[[P ]]((σρ)[x 7→ p])(σs)(σH ∧ φ) | ρ(D) ⇓′ (p, σ, φ)}

∪
⋃
{[[Q]](σρ)(σs)(σH ∧ φ) | ρ(D) ⇓′ (fail, σ, φ)}

[[if M then P else Q]]ρsH =
[[P ]](σρ)(σs)(σH) ∪ [[Q]]ρs(H ∧ ρ(M) 6= true)
where σ is the most general unifier of ρ(M) and true,
when ρ(M) and true unify

[[Q]]ρsH when ρ(M) and true do not unify

The translation of a process is a set of Horn clauses that express that it
may send certain messages.

• The nil process does nothing, so its translation is empty.

• The clauses for the parallel composition of processes P and Q are



50 Verifying Security Properties

the union of clauses for P and Q.

• For the replication, we create a fresh session identifier i and add
it to the sequence s. The replication is otherwise ignored, because
all Horn clauses are applicable arbitrarily many times.

• For the restriction, we replace the restricted name a in question
with the pattern a[s], where the sequence s contains the previous
inputs and session identifiers.

• The sequence H is extended in the translation of an input, with
the input in question. The sequence s is also extended with the
received message.

• The translation of an output adds a clause, meaning that the
output is triggered when all conditions in H are true.

• The translation of an expression evaluation is the union of the
clauses for the cases where the evaluation succeeds and where
the evaluation fails. In case of success, the variable x is bound
to the result p in ρ. In both cases, ρ, s, and H are instantiated
by σ and the formula φ is added to the hypothesis H, where
ρ(D) ⇓′ (mp, σ, φ).

• The translation of a conditional is also the union of the clauses
for the cases where the condition is true and where it is not true.
(In the second case of the definition, when ρ(M) and true do not
unify, the condition is never true, so the else branch is always
executed.)

The clauses corresponding to the process P0 are computed by [[P0]]ρ0∅∅
where ρ0 = {a 7→ a[ ] | a ∈ fn(P0)}. These clauses are of the form
message(p1, p

′
1) ∧ . . . ∧ message(pn, p′n) ∧ φ ⇒ message(p, p′) when the

process P0 sends message p′ on channel p after receiving messages
p′1, . . . , p

′
n on channels p1, . . . , pn respectively, provided the disequalities

in φ hold. If c ∈ Npub, ProVerif replaces all occurrences of message(c[ ], p)
with attacker(p) in the clauses. Indeed, these facts are equivalent by the
clauses (Rl) and (Rs).



3.2. Secrecy 51

Results and example

We define the clauses corresponding to the process P0 as:

RP0,Npub,Npriv = [[P0]]ρ0∅∅ ∪ {attacker(a[ ]) | a ∈ Npub} ∪
{(Rn), (Rfail), (Rh), (Rl), (Rs)}

The following theorem allows one to prove secrecy using Horn clauses:

Theorem 3.1 (Soundness of the clauses). Let P0 be a closed process
and Npub be a set of names. Let M be a closed term and p be the
pattern obtained from the term M by replacing all names a with
a[ ]. Let Npriv be a set of names disjoint from Npub and such that
fn(P0) ∪ fn(M) ⊆ Npub ∪ Npriv. If attacker(p) is not derivable from
RP0,Npub,Npriv , then P0 preserves the secrecy of M from Npub.

The proof of this result relies on a type system to express the
soundness of the clauses on P0, and on the subject reduction of this
type system to show that soundness of the clauses is preserved during all
executions of the process. This technique was introduced in (Abadi and
Blanchet, 2005a) where a similar result is proved. (Abadi and Blanchet,
2005a) also shows an equivalence between an instance of a generic type
system for proving secrecy properties of protocols and the Horn clause
verification method. This instance is the most precise instance of this
generic type system: if a secrecy property can be proved by any instance
of this type system, then it can be proved by the Horn clause approach.
To use Theorem 3.1, one needs to determine whether a fact is derivable
from the clauses. This is done using a resolution algorithm described in
§3.2.3.

Example 3.2. Let Npub = {c} be the initial knowledge of the adversary
and Npriv = {s} be the private free names. For the process P0 of
Example 2.2, the clauses [[P0]]ρ0∅∅ are, after replacing message(c[ ], p)
with attacker(p):

attacker(pk(sskA[ ])) (3.1)
attacker(pk(skB[ ])) (3.2)
attacker(xpkB

)⇒
attacker(aenc(sign(k[i, xpkB

], sskA[ ]), xpkB
))

(3.3)



52 Verifying Security Properties

attacker(aenc(sign(xm, sskA[ ]), pk(skB[ ])))⇒
attacker(senc(s[ ], xm))

(3.4)

Clauses (3.1) and (3.2) correspond to the two outputs in P0 itself,
out(c, pkA); out(c, pkB). They express that the adversary has the public
keys. Clause (3.3) corresponds to the output in PA: if the adversary has
xpkB

, it can send it to the first input of PA, and PA then replies with
the message aenc(sign(k[i, xpkB

], sskA[ ]), xpkB
), which the adversary

intercepts. The second input of PA and the subsequent expression
evaluation do not generate any clause, since no message is sent. Finally,
Clause (3.4) corresponds to the output in PB: if the adversary obtains
a message of the form aenc(sign(xm, sskA[ ]), pk(skB[ ])), it can send
this message to PB. The decryption and signature verification succeed,
so PB replies by sending s encrypted under xm, which the adversary
intercepts.

The fact attacker(s[ ]) is derivable from the clauses RP0,Npub,Npriv .
Hence the secrecy of s cannot be proved by Theorem 3.1 for this
protocol. The derivation obtained by ProVerif is shown in Figure 3.1.
This derivation corresponds to the following well-known attack (Abadi
and Needham, 1996) against this protocol:

Message 1. A→ C : aenc(sign(k, sskA), pkC)
Message 1’. C(A)→ B : aenc(sign(k, sskA), pkB)
Message 2. B → C(A) : senc(s, k)

This attack is illustrated in Figure 3.2. In this attack, A runs the protocol
with a dishonest principal C. This principal gets the first message of the
protocol aenc(sign(k, sskA), pkC), decrypts it and re-encrypts it under
the public key of B. The obtained message aenc(sign(k, sskA), pkB)
corresponds exactly to the first message of a session between A and B.
Then, C sends this message to B impersonating A. B replies with the
secret s, intended for A, encrypted under k. C, having obtained the key
k by the first message, can decrypt this message and obtain the secret
s.

The key skC corresponds to b0[x] in the derivation of Figure 3.1,
and is generated by the adversary using Clause (Rn). The key pkC cor-
responds to pk(b0[x]) and is computed by the application of Clause (Rf)



3.2. Secrecy 53

by (Rn)
F1 = attacker(b0[x])

by (Rf) for pk
attacker(pk(b0[x]))

by (3.3)
F2 = attacker(aenc(sign(k[i, pk(b0[x])], sskA[ ]), pk(b0[x])))

F2 F1 by (Rg) for adec
F3 = attacker(sign(k[i, pk(b0[x])], sskA[ ])

F3
by (3.2)

attacker(pk(skB[ ]))
by (Rf) for aenc

attacker(aenc(sign(k[i, pk(b0[x])], sskA[ ]), pk(skB[ ])))
by (3.4)

F4 = attacker(senc(s[ ], k[i, pk(b0[x])]))

F4

F3 by (Rg) for getmess
attacker(k[i, pk(b0[x])])

by (Rg) for sdec
attacker(s[ ])

Figure 3.1: Derivation of attacker(s[ ])

for pk. The output of Message 1 corresponds to the application of
Clause (3.3); then the adversary computes Message 1’ by applying de-
structor adec to decrypt it and constructor aenc to reencrypt it under
pkB = pk(skB[]), corresponding to Clauses (Rg) for adec and (Rf) for
aenc of the derivation. The input of Message 1’ and the output of Mes-
sage 2 corresponds to Clause (3.4). Finally, the adversary computes k
(represented in the derivation by k[i, pk(b0[x])]) using Clause (Rg) for
getmess and decrypts Message 2 by Clause (Rg) for sdec.

We can model the fixed version of the protocol, mentioned in Ex-
ample 2.5, in a similar way, and compute the corresponding clauses.
ProVerif then shows that attacker(s[ ]) is not derivable from these clauses.
By Theorem 3.1, we obtain that the fixed protocol preserves the secrecy
of s from {c}.

In the example above, we explained informally that the obtained
derivation corresponds to an attack. Allamigeon and Blanchet, 2005
extended ProVerif so that it automatically reconstructs an attack from



54 Verifying Security Properties

aenc(sign(k, sskA), pkC) aenc(sign(k, sskA), pkB)

senc(s, k)

k fresh

A (Alice)
impersonating A (Alice)
C (adversary) B (Bob)

Figure 3.2: Attack

a derivation. The reconstructed attack is a trace of the process P0 that
outputs s publicly. The strategy for reconstructing this trace consists
in executing the semantics of process P0, guided by the derivation: a
reduction of the process is executed only if a clause in the derivation
corresponds to this reduction. We showed the soundness and termination
of this algorithm. We also gave a formal definition of this correspondence
between clauses and reductions, by giving an explicit construction of a
derivation from a trace of P0. We have then shown a partial completeness
result for attack reconstruction: if all outputs in P0 are of the form
out(M,N);P where M is a name in Npub not bound in P0 or P = 0,
and the derivation corresponds to a trace, then our algorithm succeeds
in reconstructing a trace corresponding to the derivation. Moreover,
with the same assumptions, our algorithm reconstructs a trace without
backtracking. It is therefore very efficient in this case, and in practice it
is generally very fast. We successfully tested this attack reconstruction
algorithm on many protocols of the literature. To mention an extreme
example, we could reconstruct an attack with 200 parallel sessions
against the protocol f200g200 (Millen, 1999). (The protocol fngn has
an attack with n parallel sessions.)

In the example above, the obtained derivation corresponds to an
attack. This is unfortunately not always the case, since Horn clauses
introduce approximations. These approximations are useful in order
to handle an infinite state space, but because of these approximations,
ProVerif may sometimes find a derivation while secrecy is preserved.
In this case, attack reconstruction fails, obviously. The case in which



3.2. Secrecy 55

ProVerif finds a derivation but attack reconstruction fails corresponds
to an “I do not know” answer. In all other cases, ProVerif gives a correct
answer: either it finds no derivation and the desired property is proved,
or attack reconstruction succeeds, and an attack against the property
in question is found.

The main approximation done by ProVerif is that clauses can be
applied any number of times, so the repetitions (or not) of actions
are ignored. As a consequence, protocols with temporary secrets can-
not be proved secure by ProVerif: when some value first needs to
be kept secret and is revealed later in the protocol, the Horn clause
model considers that this value can be reused in the beginning of
the protocol, thus breaking the protocol. For instance, the process
P0 = new c; (out(c, s) | in(c, x); out(d, c)) preserves the secrecy of s from
{d}, but ProVerif cannot prove it, because attacker(s[ ]) is derivable from
the clauses (Rl), message(c[ ], s[ ]) and message(c[ ], x) ⇒ attacker(c[ ]),
which are in RP0,{d},{s}. (The fact message(d[ ], c[ ]) is equivalent to
attacker(c[ ]) since d is a public channel.) The clauses do not take into
account that the output out(c, s) must have been executed before the
adversary obtains the channel c. (In this example, c is the temporary
secret.) This example can also be understood by noticing that the gen-
erated clauses are the same as for the process P ′0 = new c; (!out(c, s) |
!in(c, x); out(d, c)), in which actions are repeated, and which does not
preserve the secrecy of s from {d}.

An additional approximation occurs with outputs on private chan-
nels: for the output out(M,N);P , the Horn clause representation con-
siders that the process P can always be executed, as if the process was
out(M,N) | P , while in fact P can be executed only after sending N
on channel M .

3.2.3 Resolution algorithm

The internal protocol representation is a set of Horn clauses, and our
goal is to determine whether a given fact can be derived from these
clauses or not. This is exactly the problem solved by Prolog systems.
However, we cannot use such systems here, because they would not
terminate. They use SLD-resolution (Kowalski, 1974), so for instance,



56 Verifying Security Properties

with the goal attacker(s[ ]), the clause

attacker(aenc(m, pk(sk))) ∧ attacker(sk)⇒ attacker(m)

leads to considering more and more complex facts

attacker(aenc(. . . aenc(s[ ], pk(sk1 )) . . . , pk(skn))

with an unbounded number of encryptions. We could of course limit
arbitrarily the depth of terms to solve the problem, but we can do
much better than that, by using another resolution strategy. We use
resolution with free selection (Bachmair and Ganzinger, 2001). We could
also use ordered resolution with selection, used by Weidenbach, 1999
and implemented in SPASS (http://www.spass-prover.org/), which is
similar but adds ordering constraints. An advantage of implementing our
own resolution prover is that we can use domain-specific optimizations,
described below, and extensions such as the one needed for proving
correspondences (§3.3).

Since a term is secret when a fact is not derivable from the clauses,
soundness in terms of security (if the verifier claims that there is no
attack, then there is no attack) corresponds to the completeness of the
resolution algorithm in terms of logic programming (if the algorithm
claims that a fact is not derivable, then it is not). The resolution
algorithm that we use must therefore be complete.

Basic algorithm

A resolution step combines two clauses R = H ⇒ C and R′ = F ∧H ′ ⇒
C ′ (where F is any hypothesis of R′) to infer R◦FR′ = σH∧σH ′ ⇒ σC ′

where C and F are unifiable and σ is the most general unifier of C
and F . Hence, the clause R ◦F R′ is the result of resolving R′ with R
upon F ; it combines R and R′, so that R is used in order to prove the
hypothesis F of R′. The resolution is guided by a selection function
sel: sel(R) returns a hypothesis of R or the empty (meaning that the
conclusion of R is selected), and the resolution step above is performed
only when sel(R) = ∅ and sel(R′) = {F}, that is, the facts upon which
we resolve, the conclusion of R and the hypothesis F of R′, are selected.
The saturation algorithm saturate(R0) applies these resolution steps to

http://www.spass-prover.org/


3.2. Secrecy 57

R0 until a fixpoint is reached, that is, no new clause is created. When
the fixpoint is reached, saturate(R0) returns the subset of the clauses
R in the fixpoint such that sel(R) = ∅.

Resolution with free selection is sound and complete for any selection
function, but the choice of this function considerably influences its speed
(and its termination). The fact attacker(v) where v is a variable or a
may-fail variable unifies with any fact attacker(p), so if attacker(v) is
selected, the algorithm will almost never terminate. Therefore, we avoid
selecting attacker(v). Furthermore, disequalities are treated by special
simplification steps, shown below, so we never select them. A natural
selection function is then:

sel0(H ⇒ C) =
∅ if all elements of H are disequalities or of the

form attacker(v), v variable or may-fail variable
{F} where F is not a disequality,

F 6= attacker(v) and F ∈ H, otherwise

Optimizations

The resolution algorithm uses several optimizations, in order to speed up
resolution. We mention the main optimizations in this section. Others
are presented in (Blanchet, 2009). These optimizations are applied
on the initial clauses and after each resolution step. The first three
optimizations are standard, while the last two are domain-specific.

• Elimination of subsumed clauses. The clause H1 ⇒ C1 subsumes
H2 ⇒ C2 if and only if there exists a substitution σ such that
σH1 ⊆ H2 (multiset inclusion) and σC1 = C2. All clauses sub-
sumed by another clause of the current clause set are removed.

• Elimination of duplicate hypotheses. Only one copy of duplicate
hypotheses in a clause is kept.

• Elimination of tautologies. Tautologies (clauses whose conclusion
is already present in the hypotheses) are removed.



58 Verifying Security Properties

• Elimination of hypotheses attacker(v). Hypotheses attacker(v),
where the variable v does not occur elsewhere in the clause, are
removed. Indeed, such an hypothesis is always satisfied for some
value of v, for instance by (Rn).

• Decomposition of data constructors. For each data constructor f ,
the following clauses are generated:

attacker(x1) ∧ . . . ∧ attacker(xn)⇒ attacker(f(x1, . . . , xn)) (Rf)
attacker(f(x1, . . . , xn))⇒ attacker(xi) (Rg)

Therefore, attacker(f(p1, . . . , pn)) is derivable if and only if ∀i ∈
{1, . . . , n}, attacker(pi) is derivable. When a fact of the form
attacker(f(p1, . . . , pn)) is met, it is replaced with attacker(p1) ∧
. . . ∧ attacker(pn). If this replacement is done in the conclusion of
a clause H ⇒ attacker(f(p1, . . . , pn)), n clauses are created: H ⇒
attacker(pi) for each i ∈ {1, . . . , n}. This replacement is of course
done recursively: if pi itself is a data constructor application, it is
replaced again. The clauses (Rf) and (Rg) for data constructors
are left unchanged.

Treatment of disequalities

The disequalities are simplified using the following transformations,
adapted from (Blanchet et al., 2008), where the disequality predicate is
written nounif:

• Elimination of free may-fail variables. Clauses of the form H ∧
∀ṽ, (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n) ⇒ C are transformed as
follows.

When mpi or mp′i is a may-fail variable u not in ṽ, we replace the
clause with two clauses

H ∧ ∀ṽ, (mp1, . . . ,mpn){x/u} 6= (mp′1, . . . ,mp′n){x/u} ⇒ C ,

H ∧ ∀ṽ, (mp1, . . . ,mpn){fail/u} 6= (mp′1, . . . ,mp′n){fail/u} ⇒ C ,

where x is an ordinary variable.



3.2. Secrecy 59

This transformation is repeated until all free may-fail variables
have been removed from disequalities. It preserves the semantics of
clauses because may-fail variables can be instantiated either with
fail or with a pattern, while ordinary variables can be instantiated
with a pattern.

• Unification. The transformation unify transforms clauses of the
form H ∧ ∀ṽ, m̃p 6= m̃p′ ⇒ C as follows. It tries to unify m̃p
and m̃p′. If this unification fails, then the clause becomes H ⇒
C, because ∀ṽ, m̃p 6= m̃p′ holds when σm̃p 6= σm̃p′ for all σ.
Otherwise, unify replaces the clause with

H ∧ ∀ṽ, (v1, . . . , vk) 6= (σv1, . . . , σvk)⇒ C

where σ is the most general unifier of m̃p and m̃p′ and v1, . . . , vk
are all variables affected by σ. In this unification, σ is built so
that all variables in its domain and its image are variables of m̃p
and m̃p′, and the variables in its domain do not occur in its image.
Note that an instance of ∀ṽ, (v1, . . . , vk) 6= (σv1, . . . , σvk) holds
if and only if the same instance of ∀ṽ, m̃p 6= m̃p′ does, because
σ′m̃p = σ′m̃p′ if and only if σ′(v1, . . . , vk) = σ′σ(v1, . . . , vk), for
all σ′.
For instance, unify transforms the clause

H ∧ ∀z, (senc(x′, y′), z′) 6= (senc(z, y), z)⇒ C

into
H ∧ ∀z, (x′, y′, z′) 6= (z, y, z)⇒ C (3.5)

• Elimination of elements of ṽ. The transformation elimGVar trans-
forms facts ∀ṽ, (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n) in clauses ob-
tained after unify, as follows:

1. When mpi = u ∈ ṽ is a may-fail variable, it eliminates the
pair mpi,mp′i from the disequality and removes u from ṽ.

2. When mpi = x ∈ ṽ is a variable and mp′i is a pattern, it
eliminates the pair mpi,mp′i from the disequality and removes
x from ṽ.



60 Verifying Security Properties

3. Otherwise, when mp′i ∈ ṽ, it swaps mpi and mp′i everywhere
in the disequality (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n), then
applies one of the first two cases.

The cases in which mpi is an ordinary variable and mp′i = fail, or
mp′i is an ordinary variable and mpi = fail cannot happen by the
previous application of unify.
We show that, in all cases, an instance of the initial disequality
holds if and only if the same instance of the transformed disequality
holds.
In Case 1, u does not occur elsewhere in the disequality by the
previous application of unify, so for any substitution σ,

σ(∀ṽ, (mp1, . . . ,mpn) 6= (mp′1, . . . ,mp′n))

is equivalent to

σ(∀ṽ′, (∀u, u 6= mp′i) ∨ (mp1, . . . ,mpi−1,mpi+1, . . . ,mpn) 6=
(mp′1, . . . ,mp′i−1,mp′i+1, . . . ,mp′n))

which is equivalent to

σ(∀ṽ′, (mp1, . . . ,mpi−1,mpi+1, . . . ,mpn) 6=
(mp′1, . . . ,mp′i−1,mp′i+1, . . . ,mp′n))

since ∀u, u 6= σmp′i is false for all σ.
In Case 2, ∀x, x 6= σmp′i is false, so we can proceed as in Case 1.
In Case 3, swapping preserves the semantics of the disequality,
since the unification constraints remain the same. Furthermore,
swapping also preserves the property that mpi does not occur
elsewhere.
For instance, elimGVar transforms Clause (3.5) into

H ∧ ∀z, (z, y′, z′) 6= (x′, y, x′)⇒ C

by swapping z and x′ (Case 3), then transforms it into

H ∧ (y′, z′) 6= (y, x′)⇒ C

by Case 2.



3.2. Secrecy 61

• Detection of failed disequality. Clauses that contain the hypothesis
∀ṽ, () 6= () are removed.

Soundness

The soundness and completeness of this algorithm is justified by the
following theorem:
Theorem 3.2. Let F be a closed fact. The fact F is derivable from R0
if and only if it is derivable from saturate(R0).

This theorem is a particular case of (Blanchet, 2009, Lemma 2),
with the treatment of disequalities handled as in (Blanchet et al., 2008,
Lemma 36). It shows that one can saturate the clauses by saturate with-
out changing the set of derivable facts. One can then determine which
instances of pred(p1, . . . , pn) are derivable by the following computation:

solveP0,Npub,Npriv(pred(p1, . . . , pn)) =
{H ⇒ pred(p′1, . . . , p′n) | H ⇒ pred ′(p′1, . . . , p′n) ∈ saturate(R0)} ,

where pred ′ is a new predicate and R0 = RP0,Npub,Npriv ∪ {pred(p1, . . . ,

pn) ⇒ pred ′(p1, . . . , pn)}. Indeed, σpred(p1, . . . , pn) is derivable from
RP0,Npub,Npriv if and only if σpred ′(p1, . . . , pn) is derivable from R0,
so by Theorem 3.2, if and only if σpred ′(p1, . . . , pn) is derivable from
saturate(R0), so if and only if there exist a clause H ⇒ pred(p′1, . . . ,
p′n) in solveP0,Npub,Npriv(pred(p1, . . . , pn)) and a substitution σ′ such
that σ′pred(p′1, . . . , p′n) = σpred(p1, . . . , pn) and σ′H is derivable from
saturate(R0). In particular, if solveP0,Npub,Npriv(attacker(p)) = ∅, then
attacker(p) is not derivable fromRP0,Npub,Npriv . Moreover, if the selection
function is sel0 and solveP0,Npub,Npriv(attacker(p)) is non-empty, then
at least one instance of attacker(p) is derivable. Indeed, in that case
solveP0,Npub,Npriv(attacker(p)) contains a clause R = H ⇒ attacker(σp)
with sel0(R) = ∅, so the hypothesis H contains facts of the form
attacker(x) and disequalities. Consider a substitution σ′ that maps each
variable to b0[M ] for a distinct closed term M . Any fact σ′attacker(x)
is derivable by (Rn). Using invariants of the clauses and properties of
the simplification of disequalities, we can show that for all disequalities
F that occur in H, σ′F holds. Hence σ′H is derivable, so attacker(σ′σp)
is derivable.



62 Verifying Security Properties

Termination

In general, the resolution algorithm may not terminate. (The derivability
problem is undecidable.) In practice, however, it terminates in most
examples.

Blanchet and Podelski, 2005 have shown that it always terminates
on a large and interesting class of protocols, the tagged protocols. They
consider protocols that use as cryptographic primitives only public-key
encryption and signatures with atomic keys, shared-key encryption,
message authentication codes, and hash functions. Basically, a protocol
is tagged when each application of a cryptographic primitive is marked
with a distinct constant tag. It is easy to transform a protocol into a
tagged protocol by adding tags. For instance, our running example of
protocol can be transformed into a tagged protocol, by adding the tags
c0, c1, c2 to distinguish the encryptions and signature:

Message 1. A→ B : aenc((c1, sign((c0, k), sskA)), pkB)
Message 2. B → A : senc((c2, s), k)

Adding tags preserves the expected behavior of the protocol, that is,
the attack-free executions are unchanged. In the presence of attacks,
the tagged protocol may be more secure. Hence, tagging is a feature of
good protocol design, as explained e.g. in (Abadi and Needham, 1996):
the tags are checked when the messages are received; they facilitate
the decoding of the received messages and prevent confusions between
messages. More formally, tagging prevents type-flaw attacks (Heather
et al., 2000), which occur when a message is taken for another message.
Hence, the tagged protocol is potentially more secure than its untagged
version, so, in other words, a proof of security for the tagged protocol
does not imply the security of its untagged version.

We illustrate the effect of tagging on the Needham-Schroeder shared-
key protocol (Needham and Schroeder, 1978). The algorithm does not
terminate on its original version, which is untagged. It terminates after
adding tags. This protocol contains the following messages:

Message 4. B → A : senc(b, k)
Message 5. A→ B : senc(b− 1, k)



3.2. Secrecy 63

where b is a nonce. Representing b− 1 using a function minusone(x) =
x−1, the algorithm does not terminate. Indeed, the output of message 5
is represented by a clause of the form:

H ∧ attacker(senc(x, y))⇒ attacker(senc(minusone(x), y))

where the hypothesis H describes other messages previously received
by A. After some resolution steps, we obtain a clause of the form

attacker(senc(x,Mk))⇒ attacker(senc(minusone(x),Mk)) (Loop)

for some term Mk that represents the key k.
The fact attacker(senc(minusone(Mb),Mk)) is also derived for some

term Mb that represents the nonce b, so by resolution with (Loop),
we derive: attacker(senc(minusone(minusone(Mb)),Mk)). This fact can
again be resolved with (Loop), so that we obtain a cycle that derives
attacker(senc(minusonen(Mb),Mk)) for all n.

When tags are added, the clause (Loop) becomes:

attacker(senc((c1, x),Mk))⇒ attacker(senc((c2,minusone(x)),Mk))
(NoLoop)

and the previous loop disappears because c2 does not unify with c1. The
fact attacker(senc((c2,minusone(Mb)),Mk)) is derived, without yielding
a loop.

Other authors have proved related results: Ramanujam and Suresh,
2003 have shown that secrecy is decidable for tagged protocols. However,
their tagging scheme is stronger since it forbids blind copies. A blind
copy happens when a protocol participant sends back part of a message
he received without looking at what is contained inside this part. On
the other hand, they obtain a decidability result, while Blanchet and
Podelski, 2005 obtain a termination result for an algorithm which is
sound, efficient in practice, but approximate. Arapinis and Duflot, 2007
show that, for a class named “well-formed protocols”, it is enough to
consider well-typed attacks; this theorem allows them to extend the
decidability result of Ramanujam and Suresh, 2003, still forbidding blind
copies. Comon-Lundh and Cortier, 2003 show that an algorithm using
ordered binary resolution, ordered factorization and splitting terminates
on protocols that blindly copy at most one term in each message. In



64 Verifying Security Properties

contrast, the result of Blanchet and Podelski, 2005 puts no limit on the
number of blind copies, but requires tagging.

For protocols that are not tagged, heuristics have been designed to
adapt the selection function in order to obtain termination more often.
We refer the reader to (Blanchet, 2009, §8.2) for more details.

It is also possible to obtain termination in all cases at the cost of
additional abstractions. For instance, Goubault-Larrecq, 2005 shows
that one can abstract the clauses into clauses in the decidable class H1,
by losing some relational information on the messages.

3.3 Correspondences

Correspondences are properties of the form “if an event has been exe-
cuted, then other events have been executed.” Properties on the ordering
of execution of events are also studied in other contexts, for instance in
software verification to check that a file is always opened before being
closed or that a lock is always acquired before being released. However,
in the case of protocols, the events we want to relate are typically in
different parallel processes, which complicates the proof.

To model correspondence properties, we introduce an additional
construct in our process calculus, namely event(M);P , which executes
event M , then process P . The semantics of this construct is simply
defined by

E,P ∪ { event(M);P } → E,P ∪ {P } (Red Event)

The Npub-adversaries are restricted to processes that do not contain
events (otherwise, no correspondence could be proved). We can then
define the fact that a trace executes an event:

Definition 3.4. Let M be a closed term. We say that a trace Tr =
E0,P0 →∗ E′,P ′ executes event M if and only if it contains a reduction
E,P ∪ { event(M);P } → E,P ∪ {P } for some E, P, and P .

The correspondence event(M)  
∨m
j=1

∧lj
k=1 event(Mjk) means in-

tuitively that, if event M has been executed, then there exists j such
that events Mj1, . . . , Mjlj have been executed. More precisely, for any



3.3. Correspondences 65

value of the variables of M , if event M has been executed, then there
exists j and values of the variables of Mj1, . . . , Mjlj that do not appear
in M such that events Mj1, . . . , Mjlj have been executed. The formal
definition is as follows:

Definition 3.5. The closed process P0 satisfies the correspondence

event(M) 
m∨
j=1

lj∧
k=1

event(Mjk)

against Npub-adversaries if and only if, for some Npriv disjoint from
Npub such that fn(P0) ∪ fn(M) ∪

⋃
j,k fn(Mjk) ⊆ Npub ∪Npriv, for any

Npub-adversary Q, for any trace Tr = (Npub,Npriv), {P0, Q} →∗ E′,P ′,
for any substitution σ, if Tr executes event σM , then there exist σ′
and j ∈ {1, . . . ,m} such that σ′M = σM and, for all k ∈ {1, . . . , lj},
Tr executes event σ′Mjk.

Example 3.3. For example, we can modify the process P0 of §2.2 by
adding events as follows:

P0 = new sskA : skey; new skB : skey; let spkA = pk(sskA) in
let pkB = pk(skB) in out(c, spkA); out(c, pkB);
(PA(spkA, sskA) | PB(pkB, skB, spkA))

PA(spkA, sskA) = ! in(c, xpkB
: pkey); new k : key;

event(eA(spkA, xpkB
, k));

out(c, aenc(sign(k2b(k), sskA), xpkB
));

in(c, x : bitstring); let z = sdec(x, k) in 0
PB(pkB, skB, spkA) = ! in(c, y : bitstring); let y′ = adec(y, skB) in

let xk = b2k(check(y′, spkA)) in
event(eB(spkA, pkB, xk)); out(c, senc(s, xk))

The event eA(spkA, xpkB
, k) intuitively means that A started a ses-

sion of the protocol between the participants with public keys spkA
(that is, A) and xpkB

, with the shared key k. Similarly, the event
eB(spkA, pkB, xk) means that B accepted the shared key k in a session
between participants A and B. We can then try to show the corre-
spondence event(eB(x, y, z)) event(eA(x, y, z)), which means that, if



66 Verifying Security Properties

eB(x, y, z) has been executed, then eA(x, y, z) has also been executed.
In other words, if B thinks he runs a session of the protocol with A and
the shared key z, then A thinks she runs a session of the protocol with
B and the same key z. This is an authentication property.

As mentioned above, the Horn clause verification method overap-
proximates the actions that are executed: when attacker(p) is derivable
from the clauses, the adversary may have p, that is, if attacker(p) is
not derivable from the clauses, then the adversary cannot have p, but
the converse is not true. Let us now consider the proof of a correspon-
dence, for instance event(e1(x))  event(e2(x)), that is, we want to
show that, if e1(x) has been executed, then e2(x) has been executed.
In order to prove this correspondence, we can overapproximate the
executions of event e1: if we prove the correspondence with this overap-
proximation, it will also hold in the exact semantics. So we can easily
extend our analysis for secrecy with an additional predicate event, such
that event(p) means that event p (more formally, event M with cor-
responding pattern p) may have been executed. We generate clauses
message(p1, p

′
1) ∧ . . . ∧ message(pn, p′n) ⇒ event(p) when the process

executes event p after receiving messages p′1, . . . , p′n on channels p1, . . . ,
pn respectively. However, such an overapproximation cannot be done for
the event e2: if we prove the correspondence after overapproximating
the execution of e2, we are not really sure that e2 will be executed, so
the correspondence may be wrong in the exact semantics. For instance,
assuming c is public, the process

in(c, x); event(e1(x)) | in(c, x′); event(e2(x′))

may execute e1(x) and e2(x) for all x that the adversary has, but
the correspondence event(e1(x)) event(e2(x)) does not hold for this
process: there is a trace in which it executes e1(c) but does not execute
e2(c). Therefore, we have to use a different method for treating e2.

We use the following idea: we fix the exact set Ev of allowed events
e2(p) and, in order to prove event(e1(x)) event(e2(x)), we check that
only events e1(p) for p such that e2(p) ∈ Ev can be executed. Therefore,
if e1(M) has been executed, then e1(p) has been executed with p the
pattern corresponding to M , so e2(p) ∈ Ev has been executed, so e2(M)



3.3. Correspondences 67

has been executed, since a single termM corresponds to a given pattern
p thanks to session identifiers, which allow us to distinguish the names
created by the same restriction. If we prove this property for any value
of Ev, we have proved the desired correspondence. So we introduce a
predicate m-event (must event), such that m-event(p0) is true if and only
if p0 ∈ Ev. We generate clauses message(p1, p

′
1)∧ . . .∧message(pn, p′n)∧

m-event(p0)⇒ message(p, p′) when the process outputs p′ on channel p
after executing event p0 and receiving messages p′1, . . . , p′n on channels
p1, . . . , pn respectively. In other words, the output of p′ on channel p
can be executed only when m-event(p0) is true, that is, p0 ∈ Ev.

More generally, we extend the computation of Horn clauses to events
as follows:

[[event(M);P ]]ρsH = [[P ]]ρs(H ∧m-event(ρ(M))) ∪
{H ∧m-event(ρ(M))⇒ event(ρ(M))}

We add the hypothesis m-event(ρ(M)) to H to express that P can be
executed only if eventM is allowed (which is useful for e2 in the example
above), and we add the clause H ∧m-event(ρ(M))⇒ event(ρ(M)) to
express that the event may be executed if H is true and the event is
allowed (which is useful for e1 in the example above).

In order to determine whether an event can be executed, we deter-
mine whether the corresponding fact is derivable from the clauses, by
extending the previous resolution-based algorithm. Indeed, the resolu-
tion must be performed for an unknown value of Ev. So, basically, we
keep m-event facts without trying to evaluate them (which we cannot
do since Ev is unknown). To do that, we modify the selection function
so that it never selects a fact of the form m-event(p). We do not know
of an off-the-shelf first-order resolution prover that implements this
feature, though it would probably not be difficult to add to existing
provers. Letting Fme = {m-event(p) | p ∈ Ev}, Theorem 3.2 becomes:

Theorem 3.3. Let F be a closed fact. The fact F is derivable from
R0 ∪ Fme if and only if it is derivable from saturate(R0) ∪ Fme.

As for secrecy, we define R0 = RP0,Npub,Npriv ∪ {pred(p1, . . . , pn)⇒
pred ′(p1, . . . , pn)}. We have that σpred(p1, . . . , pn) is derivable from



68 Verifying Security Properties

RP0,Npub,Npriv ∪ Fme if and only if there exist a clause H ⇒ pred(p′1,
. . . , p′n) in solveP0,Npub,Npriv(pred(p1, . . . , pn)) and a substitution σ′ such
that σ′pred(p′1, . . . , p′n) = σpred(p1, . . . , pn) and σ′H is derivable from
saturate(R0) ∪ Fme. Since no clause outside Fme concludes m-event
facts, the m-event facts in σ′H must be in Fme, which guarantees that
the corresponding events have been executed. We can then show the
following theorem:

Theorem 3.4. Let P0 be a closed process and Npub be a set of names.
Let M , Mjk (j ∈ {1, . . . ,m}, k ∈ {1, . . . , lj}) be terms. Let p, pjk
be the patterns obtained by replacing names a with patterns a[ ] in
terms M , Mjk respectively. Let Npriv be a set of names disjoint from
Npub such that fn(P0) ∪ fn(M) ∪

⋃
j,k fn(Mjk) ⊆ Npub ∪ Npriv. Sup-

pose that, for all clauses R ∈ solveP0,Npub,Npriv(event(p)), there exist
j ∈ {1, . . . ,m}, σ′ and H such that R = H ∧ m-event(σ′pj1) ∧ . . . ∧
m-event(σ′pjlj ) ⇒ event(σ′p). Then P0 satisfies the correspondence
event(M) 

∨m
j=1

∧lj
k=1 event(Mjk) against Npub-adversaries.

This result is a particular case of Blanchet, 2009, Theorem 4.
Intuitively, if all clauses are of the form H ∧ m-event(σ′pj1) ∧ . . . ∧
m-event(σ′pjlj ) ⇒ event(σ′p), then, in order to derive event(σ′p), the
facts m-event(σ′pj1), . . . , m-event(σ′pjlj ) must be true, so in order to
execute event σ′p, the events σ′pj1, . . . , σ′pjlj must have been executed,
which proves the desired correspondence.

Example 3.4. For the process P0 of Example 3.3, the set of clauses
solveP0,Npub,Npriv(event(eB(x, y, z))) contains

m-event(eA(pk(sskA[ ]), pk(y′), k[i, pk(y′)])) ∧ attacker(y′)
⇒ event(eB(pk(sskA[ ]), pk(skB[ ]), k[i, pk(y′)])) .

This clause prevents us from applying Theorem 3.4 to prove the cor-
respondence event(eB(x, y, z))  event(eA(x, y, z)), because the fact
m-event(eA(pk(sskA[ ]), pk(y′), k[i, pk(y′)])) contains pk(y′) instead of
pk(skB[ ]). This point corresponds again to the known attack against
this protocol: A executes a session with C, which has secret key y′

and public key pk(y′), while B thinks he executes a session with A. In



3.3. Correspondences 69

contrast, for the fixed version of the protocol with the public key of B
added inside the signature as in Example 2.5,

solveP0,Npub,Npriv(event(eB(x, y, z))) =
{m-event(eA(pk(sskA[ ]), pk(skB[ ]), k[i, pk(skB[ ])]))⇒

event(eB(pk(sskA[ ]), pk(skB[ ]), k[i, pk(skB[ ])]))} ,

so the desired correspondence is proved.

We extended these results to injective correspondences, that is,
correspondences that additionally require that each execution of eventM
corresponds to a distinct execution of eventsMjk. The proof of injectivity
relies on session identifiers to distinguish different executions of the same
event. We also extended this work to nested correspondences, which can
express constraints on the order in which events are executed (Blanchet,
2009, §7.2).

Attack reconstruction was also extended to non-injective and injec-
tive correspondences, and it reconstructs the attack of Example 3.4.
The extension to injective correspondences presents an additional dif-
ficulty: the derivation corresponds to a single execution of event M
while, to contradict injectivity, event M must be executed twice and an
event Mjk must be executed at most once. To solve this problem, we
consider two copies of the derivation with variables renamed to distinct
variables, and unify some events Mjk between these two copies so that
they correspond to a single event. After this unification, the two copies
of the derivation contain the unified events Mjk with the same session
identifiers, but still contain event M with different session identifiers,
because the derivation does not prove injectivity. We execute the attack
reconstruction algorithm with these two copies of the derivation. That
allows this algorithm to execute most actions (including event M) twice,
but not the unified events Mjk, because they occur with the same
session identifier in both copies of the derivation. We can then look for
a trace that executes event M twice, while still executing the unified
events Mjk once.



70 Verifying Security Properties

3.4 Equivalences

The notion of process equivalence is the main reasoning tool intro-
duced initially with the spi calculus (Abadi and Gordon, 1999; Abadi
and Gordon, 1998) and the applied pi calculus (Abadi and Fournet,
2001; Abadi et al., 2016), with manual proofs. Intuitively, two processes
are equivalent when the adversary cannot distinguish them. Proving
equivalences is more delicate than proving trace properties, because we
need to consider relations between traces or semantic configurations,
instead of a single trace. In general, equivalence is undecidable (Hüttel,
2003; Abadi and Cortier, 2006), so automated techniques are incom-
plete. For a bounded number of sessions, several tools can decide trace
equivalence: SPEC (Tiu and Dawson, 2010) for fixed primitives and
without else branches, APTE (Cheval et al., 2011) for fixed primitives
with else branches and non-determinism, and AKISS (Chadha et al.,
2012; Ciobâcă, 2011) for a wide variety of primitives and determinate
processes, that is, processes whose execution is entirely determined by
the adversary inputs. For an unbounded number of sessions, decision
procedures exist for restricted classes of protocols: there is a decision pro-
cedure for trace equivalence for symmetric-key, type-compliant, acyclic
protocols (Chrétien et al., 2015a), which is too complex for practical
implementation, and for ping-pong protocols (Chrétien et al., 2015b),
which is implemented in a tool. ProVerif also proves a restricted class
of equivalences, explained below.

Next, we give a formal definition of observational equivalence. This
definition, inspired by Baudet, 2007 and Arapinis et al., 2014, relies on
the semantics with configurations while our previous work (Blanchet,
2004; Blanchet et al., 2008) uses a semantics closer to the applied pi
calculus (see Chapter 4).

We consider configurations (Npub,Npriv),P as equal modulo any
bijective renaming of names that leaves names in Npub unchanged. It is
easy to see that such renamings commute with reduction, so all config-
urations in a trace are just transformed by such a renaming. Hence the
semantics is not significantly altered. Allowing such renamings is helpful
in order to define the application of a context to a configuration below.
However, it would be problematic in our definition of correspondences,



3.4. Equivalences 71

since names appear inside events and these names must not be modified
between executions of several events that appear in a correspondence.

A configuration C = (Npub,Npriv),P can output on a channel N ,
denoted, C ↓N , if there exists out(N,M);P ∈ P with fn(N) ⊆ Npub,
for some term M and process P . For equivalences, the adversary is
represented by an adversarial context. A context C[_] is a process
with a hole, written _. Let adversarial contexts be contexts of the
form new ñ; (_ | Q) with fv(Q) = ∅ and all function symbols in Q are
public. When C = (Npub,Npriv),P and C[_] = new ñ; (_ | Q) is an
adversarial context, we define the application of context C[_] to the
configuration C by C[C] = ((Npub ∪ fn(Q)) \ {ñ},Npriv ∪ {ñ}),P ∪ {Q},
after renaming the names in Npriv so that Npriv ∩ fn(Q) = ∅. The
condition Npriv∩ fn(Q) = ∅ avoids clashes between the private names of
the configuration C and the names of the adversary. To compute C[C],
we add the process Q to the multiset P of processes of the configuration
C, so that Q runs in parallel with these processes. The free names of Q
are public, so we add them to Npub. Further, we apply the restriction
new ñ by moving the names ñ from Npub to Npriv.

Definition 3.6 (Observational equivalence). Observational equivalence
between configurations ≈ is the largest symmetric relation R between
valid configurations such that C R C′ implies:

1. if C ↓a, then C′ →∗↓a, for all names a;

2. if C → C1, then C′ →∗ C′1 and C1 R C′1, for some C′1.

3. C[C] R C[C′] for all adversarial contexts C[_].

We define observational equivalence on semantic configurations.
Item 1 guarantees that, if a configuration C emits on a public channel,
then so does C′. Otherwise, an adversary could distinguish them imme-
diately. Item 2 guarantees that this property is preserved by reduction,
and Item 3 guarantees that it is preserved in the presence of an adver-
sary. For proving observational equivalence in general, it is not enough
to consider traces of one process, we need to relate the configurations
of two processes together. For this reason, the proof of observational
equivalence is difficult to automate, so ProVerif was designed to prove



72 Verifying Security Properties

classes of equivalences that are easier to handle, but still interesting in
practice.

The simplest class of equivalences that ProVerif verifies is strong
secrecy (in the case without equational theory) (Blanchet, 2004): strong
secrecy means that the adversary cannot distinguish two versions of the
protocol that use different values of the secret. This property is defined
as follows:

Definition 3.7. The closed process P0 preserves the strong secrecy of
s with private names Npriv if and only if for all closed terms M and
N with (fn(M) ∪ fn(N)) ∩ Npriv = ∅, for some Npub disjoint from
Npriv such that fn(P0) ∪ fn(M) ∪ fn(N) ⊆ Npub ∪ Npriv, we have
(Npub,Npriv), P0{M/s} ≈ (Npub,Npriv), P0{N/s}.

To prove strong secrecy, ProVerif relies on a trace property: it shows
that no test (destructor application, communication on a channel) that
gives a different result for different values of the secret is reachable. This
reachability property is encoded by Horn clauses, with an additional
predicate used for testing whether a unification succeeds for some values
of the secret and not for others.

Example 3.5. ProVerif cannot prove that the protocol of §2.2 preserves
the strong secrecy of s. This is not surprising since it does not even
preserve the secrecy of s. ProVerif proves that the fixed protocol of
Example 2.5 preserves the strong secrecy of s: not only the adversary
cannot compute s, but also it cannot distinguish when the value of s
changes.

ProVerif can also verify a more general class of equivalences, whose
proof is also more difficult: the equivalences between processes P and
Q that differ only by the terms they contain (Blanchet et al., 2008).
These equivalences are again proved by relying on a trace property,
for a process that represents both P and Q. This idea extends the
technique of (Pottier and Simonet, 2002; Pottier, 2002) for information
flow (without cryptography) to the case of security protocols.

ProVerif represents pairs of processes that differ only by the terms
they contain as biprocesses. The grammar of biprocesses is an extension



3.4. Equivalences 73

of the grammar of Figure 2.1, with the additional cases diff[M,M ′]
for terms and diff[D,D′] for expressions. The Npub-adversaries and the
adversarial contexts do not contain diff. Given a biprocess P , we define
two processes fst(P ) and snd(P ), as follows: fst(P ) is obtained by replac-
ing all occurrences of diff[M,M ′] with M and diff[D,D′] with D in P ,
and snd(P ) is obtained by replacing diff[M,M ′] with M ′ and diff[D,D′]
with D′ in P . We define fst(M), snd(M), fst(D), and snd(D) similarly.
We naturally extend fst and snd to multisets of processes, and to con-
figurations by fst(E,P) = E, fst(P) and snd(E,P) = E, snd(P). Our
goal is to show that the processes fst(P ) and snd(P ) are observationally
equivalent.

Definition 3.8. The closed biprocess P0 satisfies observational equiv-
alence with private names Npriv if and only if, for some Npub disjoint
from Npriv such that fn(P0) ⊆ Npub∪Npriv, we have that (Npub,Npriv),
{fst(P0)} ≈ (Npub,Npriv), {snd(P0)}.

The semantics of biprocesses is defined as in Figure 2.4, except that
the rules (Red I/O), (Red Eval 1), and (Red Eval 2) are as follows:

E,P ∪ { out(N,M);Q, in(N ′, x);P } → E,P ∪ {Q,P{M/x} }
if fst(N) = fst(N ′) and snd(N) = snd(N ′) (Red I/O)

E,P ∪ { let x = D in P else Q } → E,P ∪ {P{diff[M,M ′]/x} }
if fst(D) ⇓M and snd(D) ⇓M ′ (Red Eval 1)

E,P ∪ { let x = D in P else Q } → E,P ∪ {Q }
if fst(D) ⇓ fail and snd(D) ⇓ fail

(Red Eval 2)

and the rules for the conditional are omitted because the conditional
if M then P else Q can be encoded as an expression evaluation let x =
istrue(M) in P else Q, where x is a fresh variable and istrue(bool) : bool is
a destructor defined by the rewrite rule istrue(true)→ true. A biprocess
P reduces by this semantics when its two components fst(P ) and snd(P )
reduce in the same way: a communication is executed when the channel
is the same in the input and in the output for both components; an
expression evaluation succeeds (resp. fails) when it succeeds (resp. fails)
for both components. In particular, if C → C′, then fst(C)→ fst(C′) and
snd(C)→ snd(C′).



74 Verifying Security Properties

When the two components do not reduce in the same way, we say
that the configuration C diverges, and we write C ↑ (vocabulary and
notation from (Baudet, 2007)):

E,P ∪ { out(N,M);Q, in(N ′, x);P } ↑
if (fst(N) = fst(N ′)) 6⇔ (snd(N) = snd(N ′))

(Div I/O)

E,P ∪ { let x = D in P else Q } ↑
if fst(D) ⇓ fail 6⇔ snd(D) ⇓ fail

(Div Eval)

When the configuration C does not diverge, the two components always
reduce in the same way, that is, the biprocess reduces. Formally, if C
does not diverge and fst(C) → C1, then C → C′ and C1 = fst(C′) for
some C′, and similarly for snd. If no reachable configuration diverges,
then the two components of the considered biprocess P0 always reduce
in the same way. This property is formally defined as follows:

Definition 3.9. Let P0 be a closed biprocess and Npriv be a set of names.
The biprocess P0 satisfies diff-equivalence with private names Npriv if,
for some Npub disjoint from Npriv such that fn(P0) ⊆ Npub ∪ Npriv,
for all Npub-adversaries Q, there exists no configuration C such that
(Npub,Npriv), {P0, Q} →∗ C ↑.

Diff-equivalence implies observational equivalence, as shown by the
following theorem:

Theorem 3.5. Let P0 be a closed biprocess and Npriv be a set of names.
If P0 satisfies diff-equivalence with private names Npriv, then P0 satisfies
observational equivalence with private names Npriv.

Since the formalism is fairly different from the one used in our pre-
vious work (Blanchet et al., 2008), we provide a proof of this result in
Appendix A. Diff-equivalence is a trace property on biprocesses. By The-
orem 3.5, it suffices in order to obtain observational equivalence. It is how-
ever not necessary: for instance, if (Npub,Npriv), P ≈ (Npub,Npriv), P ′,
then the biprocess if diff[true, false] then P else P ′ satisfies observational
equivalence with private names Npriv, but Theorem 3.5 does not al-
low us to prove it (because this biprocess diverges immediately). The
property on the traces of biprocesses is encoded into Horn clauses as



3.4. Equivalences 75

before. However, in order to represent the semantics of biprocesses,
we use facts attacker′(p1, p2) and message′(p1, p

′
1, p2, p

′
2), where com-

ponents with index 1 correspond to fst(P ) and those with index 2
correspond to snd(P ), instead of attacker′(p) and message′(p, p′). The
fact attacker′(p1, p2) means that, by the same actions, the adversary
obtains p1 by interacting with fst(P ) and p2 by interacting with snd(P ).
The fact message′(p1, p

′
1, p2, p

′
2) means that, by the same actions, fst(P )

sends message p′1 on channel p1 while snd(P ) sends message p′2 on chan-
nel p2. We also use the fact input′(p1, p2) to express that an input on
channel p1 may be executed by fst(P ) while snd(P ) executes an input
on p2. (This situation allows the adversary to test the equality of these
channels with those used in an output.) We can then encode the desired
trace property on biprocesses into clauses and prove it by resolution,
which allows us to apply Theorem 3.5.

Example 3.6. We may consider the property that the secret s exchanged
in our running example is indistinguishable from a fresh name, rep-
resenting intuitively a fresh random value. This notion of secrecy is
the symbolic analog of real-or-random secrecy in the computational
model (Abdalla et al., 2005). This property can be verified in ProVerif
by replacing the final output of the process PB of §2.2 with

new r : bitstring; out(c, senc(diff[s, r], xk))

The obtained process satisfies observational equivalence with private
names {s} when the adversary cannot distinguish whether the output
message contains the encryption of the secret s or of a fresh name r.

ProVerif finds an attack against diff-equivalence, both for the original
version of the protocol (as expected given the attack of Example 3.2),
and for the fixed version. Indeed, the fixed version is also subject to an
attack against this equivalence: if the message from A to B is replayed,
the first component sends the same encrypted message senc(s, k) twice,
while the second component sends two distinct messages senc(r1, k) and
senc(r2, k), with two distinct values of r.

A possible fix against this attack is to use a probabilistic symmetric
encryption scheme, defined with a constructor senc(bitstring, pkey, rand),
such that the encryption of messageM under the key k is represented by



76 Verifying Security Properties

senc(M,k, coins) where coins is a fresh name representing fresh random
coins. Decryption is defined by the rewrite rule

sdec(senc(x, y, z), y)→ x .

The fixed protocol is obtained by replacing the final output of the
process PB of Example 2.5 with

new r : bitstring; new coins : rand; out(c, senc(diff[s, r], xk, coins))

The ciphertexts are then different even when they encrypt the same
plaintext under the same key, and ProVerif proves that the obtained
process satisfies observational equivalence with private names {s}.

Baudet, 2007 shows the decidability of diff-equivalence for processes
without replication, in a framework similar to ours. The protocol verifiers
Maude-NPA (Santiago et al., 2014) and Tamarin (Basin et al., 2015)
can also prove diff-equivalence.

An important application of diff-equivalence is the study of protocols
that rely on weak secrets, such as passwords. These protocols are subject
to guessing attacks, in which the adversary guesses the password (for
instance by trying all words of a dictionary), and verifies that it has
correctly guessed. This verification may be performed either on-line,
by interacting with the protocol participants, which can simply be
prevented by limiting the number of allowed attempts, or off-line, by
computing on intercepted messages without interaction with the other
participants.

Off-line guessing attacks can be modeled by combining observational
equivalence, phases (§2.5.4), and primitives defined by equations (§2.5.1),
since it is often necessary that the failure of decryption cannot be
detected in order to protect oneself against such attacks.

In phase 0, the adversary interacts with the protocol, but the weak
secret w is considered as unguessable. In phase 1, the adversary guesses
a value of the weak secret, and tries to determine whether its guess is
correct or not. The absence of off-line guessing attacks is characterized
by an equivalence: the adversary cannot distinguish the weak secret w
used in phase 0 from a fresh value w′, so it cannot determine whether
its guess is correct or not.



3.4. Equivalences 77

Definition 3.10. Let P0 be a closed process without phase prefix and
Npriv a set of names. We say that P0, with private names Npriv,
prevents off-line guessing attacks against w if new w; (phase 0;P0 |
phase 1; new w′; out(c, diff[w,w′])) satisfies observational equivalence
with private names Npriv.

ProVerif can prove that the protocols EKE (Bellovin and Merritt,
1992) and Augmented EKE (Bellovin and Merritt, 1993) satisfy this
property. This definition is in the line of work by Lowe, 2002; Cohen,
2002; Corin et al., 2003; Corin et al., 2004; Delaune and Jacquemard,
2004; Drielsma et al., 2005. Lowe, 2002 uses the model checker FDR to
handle a bounded number of sessions. Delaune and Jacquemard, 2004
give a decision procedure in this case. Corin et al., 2004 give a definition
based on equivalence like ours but do not consider the first active phase
and analyze a single session.

In order to prove observational equivalence, ProVerif requires that
the considered processes differ only by their terms. As suggested by
Cheval and Blanchet, 2013, this limitation can be partly overcome
by encoding as many constructs as possible into terms. Condition-
als can be encoded into terms using the destructor ifthenelse defined
in §2.1, as shown in Example 3.7. Expression evaluations such as
let x = D in out(c,M1) else out(c,M2) can be transformed into let x =
catch-fail(D) in let m = ifthenelse(not-caught-fail(x),M1,M2) in out(c,
m), where the destructors catch-fail and not-caught-fail are defined by
the rewrite rules

catch-fail(x)→ x not-caught-fail(caught-fail)→ false
catch-fail(fail)→ caught-fail not-caught-fail(x)→ true

and caught-fail is a new constant. After transformation, if D suc-
ceeds, then x has the same value as before, and x 6= caught-fail, so
not-caught-fail(x) = true and ifthenelse(not-caught-fail(x),M1,M2) re-
turns M1; if D fails, then x = caught-fail, not-caught-fail(x) = false, and
ifthenelse(not-caught-fail(x),M1,M2) returns M2.

Example 3.7. As in (Cheval and Blanchet, 2013), we consider a simpli-
fied version of the private authentication protocol by Abadi and Fournet,
2004. In this protocol, a participant A is willing to reveal its identity



78 Verifying Security Properties

to a participant B, without revealing it to other participants. Using
the pattern-matching extension of §2.5.3, the roles of A and B may be
written in ProVerif as follows:

A(skA, skB) = new a : rand; out(c, aenc((a, pk(skA)), pk(skB)));
in(c, x : bitstring)

B(skB, skA) = in(c, y : bitstring); new b : rand;
let (xa : rand, xpkA : pkey) = adec(y, skB) in

(∗) if xpkA = pk(skA) then
out(c, aenc((xa, b, pk(skB)), pk(skA)))

else out(c, aenc(b, pk(skB)))
else out(c, aenc(b, pk(skB)))

where skA and skB are the private keys of A and B, respectively. A first
sends to B a nonce a and its own public key pk(skA) encrypted with
the public key of B, pk(skB). After receiving this message, B checks
that the message is of the correct form and that it contains the public
key of A. If so, B replies with the correct message composed of the
nonce a he received, a freshly generated nonce b, and his own public key
(pk(skB)), all this encrypted with the public key of A. Otherwise, B
replies with an error message, aenc(b, pk(skB)). From the point of view
of the adversary, this error message is indistinguishable from the correct
one since the private keys skA and skB are unknown to the adversary,
so the adversary should not be able to tell whether B is willing to talk
to A or to another participant. Formally, this anonymity property holds
when the process

new skA : skey; new sk ′A : skey; new skB : skey;
out(c, (pk(skA), pk(sk ′A), pk(skB)));B(skB, diff[skA, sk ′A])

satisfies observational equivalence with no private names. This process
generates private keys, publishes the corresponding public keys, and
runs B talking to A in the first component and to A′ in the second one.
(A and A′ need not be explicitly modeled since the role of A uses only
public keys, so it can be included in the adversary.)

ProVerif cannot prove this equivalence, because this process does not
satisfy diff-equivalence. Suppose the adversary sends aenc((a, pk(skA)),



3.4. Equivalences 79

pk(skB)) to B. Then xpkA = pk(skA), so the then branch of the test (∗)
is taken in B(skB, skA), while the else branch is taken in B(skB, sk ′A).

The test (∗) can be performed in a term, by transforming the process
B(skB, skA) into
B′(skB, skA) = in(c, y : bitstring); new b : rand;

let (xa : rand, xpkA : pkey) = adec(y, skB) in
out(c, ifthenelse(equal(xpkA, pk(skA)),

aenc((xa, b, pk(skB)), pk(skA)),
aenc(b, pk(skB))))

else out(c, aenc(b, pk(skB)))
ProVerif proves diff-equivalence for the transformed process.

ProVerif includes an automatic process simplification procedure,
which transforms conditionals and expression evaluations into terms
when possible, as well as a merging procedure, which can merge two
processes into a biprocess in order to prove observational equivalence,
when the processes are sufficiently similar (Cheval and Blanchet, 2013).

Another transformation useful for proving equivalence consists in
swapping data between parallel processes at synchronization points. This
transformation is particularly useful for e-voting protocols. Consider a
process V (idA, vA) that represents a voter idA voting vA. The voting
protocol satisfies ballot secrecy when the process

V (idA, diff[vA, vB]) | V (idB, diff[vB, vA]) (3.6)

satisfies observational equivalence, which means that an adversary can-
not distinguish when two voters swap their votes (Delaune et al., 2009).
In voting protocols, the voters often synchronize with each other, for
instance because the protocol includes several stages, such as registra-
tion, voting, and tallying. To prove this equivalence, one often needs
to swap the votes between the two voters at a synchronization point.
This idea was introduced by Delaune et al., 2008 and developed and
formalized by Blanchet and Smyth, 2016. For instance, as in (Blanchet
and Smyth, 2016), let us consider a toy protocol in which each voter
first sends its identity on an anonymous channel to register, then sends
its vote on an anonymous channel:

V (idA, vA) = out(c, idA); out(c, vA) .



80 Verifying Security Properties

This protocol does not satisfy ballot secrecy because V (idA, vA) | V (idB,
vB) can output idA, vA, idB, vB on channel c in that order, while
V (idA, vB) | V (idB, vA) cannot. To solve this problem, the voters need
to synchronize together after the registration. ProVerif represents the
synchronization by the construct sync n, so the voting process becomes:

V (idA, vA) = out(c, idA); sync 1; out(c, vA) . (3.7)

The synchronization construct sync n is similar to phase n except that
it never drops processes that have not reached the synchronization
yet. The number of processes that must synchronize is fixed from the
beginning of the execution, and sync n blocks until that number of
processes reach the synchronization sync n. For instance, consider the
biprocess (3.6) where V is defined by (3.7), that is,

P0 = out(c, idA); sync 1; out(c, diff[vA, vB])
| out(c, idB); sync 1; out(c, diff[vB, vA]) .

(3.8)

The process P0 contains two occurrences of sync 1, so sync 1 blocks
until two processes reach sync 1. We refer the reader to (Blanchet and
Smyth, 2016) for a formal semantics of synchronization.

The protocol P0 satisfies ballot secrecy, but this property cannot be
shown directly using diff-equivalence, because P0 does not satisfy diff-
equivalence with no private names. Intuitively, diff-equivalence requires
that the subprocesses of the parallel composition, namely, out(c, idA);
sync 1; out(c, diff[vA, vB]) and out(c, idB); sync 1; out(c, diff[vB, vA]), each
satisfy diff-equivalence, which is false, because out(c, vA) is not equiv-
alent to out(c, vB). (Using the definition of diff-equivalence, we let
Npriv = ∅, Npub = {c, idA, idB, vA, vB}, P0 as in (3.8), and Q = in(c, x);
in(c, y); in(c, x′); in(c, y′); let x′′ = istrue(x′ = vA) in out(c, vA). The con-
figuration (Npub,Npriv), {P0, Q} reduces into (Npub,Npriv), {let x′′ =
istrue(diff[vA, vB] = vA) in out(c, vA)} by receiving idA in x and idB
in y, synchronizing, receiving diff[vA, vB] in x′ and diff[vB, vA] in y′,
and removing 0 processes. The evaluation of istrue(diff[vA, vB] = vA)
succeeds in the first component and fails in the second one, hence the
obtained configuration diverges and the biprocess P0 does not satisfy
diff-equivalence.) To prove the equivalence, we need to swap the votes



3.5. Usage heuristics 81

at the synchronization point in the second component of the biprocess,
so that it becomes:

out(c, idA); sync 1; out(c, diff[vA, vA])
| out(c, idB); sync 1; out(c, diff[vB, vB])

which obviously satisfies diff-equivalence. Blanchet and Smyth, 2016 have
designed, proved correct, and implemented a compiler that translates
the synchronization construct into inputs and outputs and allows this
swapping.

3.5 Usage heuristics

Several heuristics can help obtaining the best performance of ProVerif.
Technical details on some of these heuristics can be found in (Blanchet
et al., 2016, §6.3.1).

As mentioned in §2.5.1, using destructors when possible yields better
performance than equations.

The precision and cost of the analysis can also be tuned by adjusting
the arguments of patterns that represent names. By moving restrictions
downwards in the syntax tree as far as possible, more inputs occur above
restrictions, so the representation of the corresponding fresh names has
more arguments. This transformation increases the precision and the
cost of the analysis. Conversely, by moving restrictions upwards, the
representation of the corresponding fresh names has fewer arguments,
and the analysis is faster and less precise. ProVerif also allows the user to
annotate restrictions with the variables that should occur in the internal
representation of fresh names. (The session identifiers are always present.
They are sufficient for soundness.) For the proof of equivalences, false
attacks are sometimes due to names that have different arguments in
the two components of the biprocess. In this case, making sure that
matching names have the same arguments helps avoiding the false
attack. This can be done by annotating the restrictions that create
these names with the desired arguments.

When ProVerif does not terminate, tuning the selection function
of the resolution algorithm may help. In particular, when ProVerif
generates an unbounded number of clauses in which the selected fact is



82 Verifying Security Properties

an instance of a fact F , one can tell ProVerif to avoid selecting a fact
that matches F , by the declaration nounif F . ProVerif tries to detect
some of these cases automatically, and to adjust the selection function
accordingly, but sometimes manual declarations are still useful.

To share the work as much as possible, one can group several secrecy
and correspondence queries together, in a single query declaration.
ProVerif then generates a single set of Horn clauses for these queries,
and saturates this set once. This is particularly beneficial when these
queries use the same events. However, when queries use different events,
it is often better to treat them separately, because the more events
appear in a query, the more complex the generated clauses are, which
can slow down ProVerif considerably. (Events that do not occur in the
query are ignored when ProVerif generates the clauses.)

Finally, for the proof of equivalences, grouping all tests performed
on a message in a single test can help avoiding false attacks. As a toy
example, consider the biprocess

let x = diff[aenc(sign(a, skA), pk(skB)), aenc(a, pk(skA))] in
let y = adec(x, skA) in let z = check(y, pk(skB)) in out(c, z)

This biprocess does not satisfy diff-equivalence with private names {a,
skA, skB}, because the decryption adec(x, skA) fails in the first compo-
nent (the keys do not match), while it succeeds in the second component.
However, this biprocess satisfies observational equivalence, because the
signature verification check(y, pk(skB)) fails in the second component,
so no component executes the output. ProVerif can prove the equiv-
alence after grouping the decryption and the signature verification in
one step:

let x = diff[aenc(sign(a, skA), pk(skB)), aenc(a, pk(skA))] in
let z = check(adec(x, skA), pk(skB)) in out(c, z)

Indeed, this biprocess satisfies diff-equivalence because the combined
decryption and signature verification fails in both components. In case
a proof of equivalence fails, ProVerif performs an automatic process sim-
plification that groups the tests (Cheval and Blanchet, 2013). However,
grouping them manually in the initial process avoids the first failed
proof attempt and yields better performance.



4
Link with the Applied Pi Calculus

The input language of ProVerif is a dialect of the applied pi calculus
introduced by Abadi and Fournet, 2001, and later updated by Abadi
et al., 2016. In this chapter, we use the latter version. The applied pi
calculus is an extension of the pi calculus with function symbols defined
by an equational theory. It can be understood as a minimal core of
the input language of ProVerif. This chapter formally relates the two
languages.

The syntax of terms M of the applied pi calculus is the same as
in ProVerif (Figure 2.1). The syntax of processes P of the applied pi
calculus is given in Figure 4.1. Although the precise syntax of restric-
tions, inputs, and outputs differs, this calculus is very similar to the
input language of ProVerif. More precisely, it matches a subset of the
ProVerif language with equations (§2.5.1) and enriched terms (§2.5.2),
with the following additional conditions: the only destructor is equal
defined by (2.5), equal(M,N) is written M = N , the expression in the
conditional is always of the form M = N , and the destructor equal does
not occur elsewhere; all function symbols are public; the expression
evaluation construct is removed. The correspondence is formalized by
the following encoding function, from ProVerif processes to applied pi

83



84 Link with the Applied Pi Calculus

P,Q,R ::= processes (or plain processes)
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
N(x).P message input
N〈M〉.P message output

Figure 4.1: Syntax of the applied pi calculus

processes:

[[0]] = 0
[[P | Q]] = [[P ]] | [[Q]]
[[!P ]] = ![[P ]]
[[new n : T ;P ]] = νn.[[P ]]
[[if M = N then P else Q]] = if M = N then [[P ]] else [[Q]]
[[in(N, x : T );P ]] = N(x).[[P ]]
[[out(N,M);P ]] = N〈M〉.[[P ]]

The applied pi calculus has a notion of extended processes, which
additionally contain the current knowledge of the adversary, represented
by substitutions. Extended processes are useful for proving observational
equivalence manually, via the notion of labeled bisimilarity (Abadi et al.,
2016), but they are not necessary for relating the calculus to ProVerif,
so we omit them here. We refer to processes as plain processes when we
want to stress that they are not extended processes.

The applied pi calculus has a sort system, which is similar to the type
system of ProVerif. However, in the applied pi calculus, each variable
and name comes with its own sort, so processes are not annotated with
sorts. We write ` M : T when M is a term of sort T and ` P when
the process P is well-sorted in the applied pi calculus. If the type of
each function symbol in ProVerif is the same as its sort in the applied
pi calculus and the type given to each variable and name in the type



85

environment Γ and in the process P matches its sort in the applied pi
calculus, then Γ `M : T if and only if `M : T , and Γ ` P if and only
if ` [[P ]]. The untyped version of the applied pi calculus can be obtained
by giving all terms the sort channel. In this chapter, we assume that
either this untyped version of the applied pi calculus is used, or ProVerif
is configured to take types into account in the verification of security
properties.

In contrast to the semantics of ProVerif, the operational semantics of
the applied pi calculus is defined by a reduction relation→� on processes.
To prepare processes for reduction, we use a structural equivalence
relation �≡. Formally, the semantics for plain processes is defined as
follows (Abadi et al., 2016, §B.2). As usual, a context is a process with
a hole. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output. Structural equivalence
�≡ is the smallest equivalence relation on processes closed by application
of evaluation contexts such that

Par-0 P | 0 �≡ P

Par-A P | (Q |R) �≡ (P |Q) |R
Par-C P |Q �≡ Q | P
Repl !P �≡ P | !P
New-0 νn.0 �≡ 0
New-C νn.νn′.P

�≡ νn′.νn.P

New-Par P | νn.Q �≡ νn.(P |Q) when n 6∈ fn(P )
Rewrite P{M/x}

�≡ P{N/x} when M =E N

Rules Par-A, Par-C, and Par-0 express that parallel composition is
associative, commutative, and has 0 as neutral element. Rule Repl
allows one to create new copies of replicated processes (or to fold
them back by applying Repl from right to left). The scope extrusion
rule New-Par allows one to enlarge the scope of a restriction, for
instance to make processes P and Q communicate. Rule Rewrite
allows one to rewrite terms modulo the equational theory. The reduction
relation →� is the smallest relation on processes closed by �≡ and by



86 Link with the Applied Pi Calculus

application of evaluation contexts such that:

Comm N〈M〉.P |N(x).Q →� P |Q{M/x}

Then if M = M then P else Q →� P

Else if M = N then P else Q →� Q

for any ground terms M and N such that M 6=E N

Rule Comm performs communication between two processes. Rules
Then and Else define the semantics of conditionals. This semantics
is superficially very different from the semantics of ProVerif. However,
we can still relate the two semantics formally. The encoding can be
extended to configurations as follows:

[[(Npub,Npriv),P]] = νã.([[P1]] | · · · | [[Pn]])

where Npriv = {ã} and P = {P1, . . . , Pn}. In particular, [[(Npub,Npriv),
P ]] = νã.0 when P = ∅. The encoding of configurations is unique modulo
�≡. More formally, [[(Npub,Npriv),P ]] is a set of processes, containing all
processes of the form νã.([[P1]] | · · · | [[Pn]]) with any ordering of ã and
any parallel composition of [[P1]], . . . , [[Pn]] modulo associativity and
commutativity. The results below hold for any element of [[C]].

The next proposition formally relates the two semantics. It is proved
in Appendix B, together with the other results of this chapter.

Proposition 4.1. If C →∗ C′, then [[C]]→�∗
�≡ [[C′]].

Conversely, if [[C]]→�∗ P ′, then C →∗ C′ and P ′
�≡ [[C′]] for some C′.

Next, we define observational equivalence in the applied pi calculus.
We write P ⇓�a when P can send a message on name a, that is, when
P →�∗

�≡ C[a〈M〉.Q] for some evaluation context C[_] that does not
bind a.

Definition 4.1. An observational bisimulation is a symmetric relation
R between closed processes such that P R Q implies:

1. if P ⇓�a, then Q⇓�a;

2. if P →�∗ P ′ and P ′ is closed, then Q →�∗ Q′ and P ′ R Q′ for
some Q′;



87

3. C[P ] R C[Q] for all closed evaluation contexts C[_].

Observational equivalence ( �≈) is the largest such relation.

As shown in §B.3, this definition is equivalent to (Abadi et al., 2016,
Definition 4.1) for plain processes.

On the ProVerif side, the definition of C ↓N needs to be adapted
in the presence of equations, because the channel N is modulo the
equational theory. We have (Npub,Npriv),P ↓N if and only if there
exists out(N ′,M);P ∈ P with N =E N ′ and fn(N) ⊆ Npub, for some
terms N ′, M and process P . We can then relate the equivalence used by
ProVerif (Definition 3.6) and the equivalence of the applied pi calculus
(Definition 4.1).

Proposition 4.2. Let C and C′ be valid configurations. If C ≈ C′, then
[[C]] �≈ [[C′]].

This proposition shows that, if ProVerif proves an equivalence be-
tween processes in the language subset corresponding to the applied
pi calculus, then the corresponding applied pi calculus processes are
observationally equivalent.

The converse is less important in practice, since ProVerif proves
diff-equivalence, which is stronger than ≈. Its proof requires encoding a
ProVerif context into the applied pi calculus. In the proof in appendix,
we provide this encoding for the core ProVerif language with equations
and enriched terms. Pattern-matching and tables can be defined as an
encoding in that subset of the ProVerif calculus, so the result extends to
them. Phases would be more difficult to encode, though intuitively they
do not give more power to the adversary when the considered protocol
does not use them. For simplicity, the next proposition considers a
ProVerif language without phases.

Proposition 4.3. Let C and C′ be valid configurations. If [[C]] �≈ [[C′]],
then C ≈ C′.



5
Applications

This chapter outlines a number of applications and extensions of
ProVerif.

5.1 Case studies

ProVerif can successfully prove secrecy and authentication properties
for many protocols of the literature (Blanchet, 2009): no false attack is
found in the 19 protocols tested in (Blanchet, 2009). It can also handle
more substantial case studies:

• Abadi and Blanchet, 2005b verify a certified email protocol (Abadi
et al., 2002). In this work, correspondence properties are used to
prove that the receiver receives the message if and only if the sender
has a receipt for the message, with simple manual arguments to
take into account that the reception of sent messages is guaranteed.
This protocol relies on a secure channel; one of the tested versions
includes the SSH transport layer protocol in order to establish
this channel.

• Abadi et al., 2007 study the JFK protocol (Just Fast Keying)
by Aiello et al., 2004, which was one of the candidates to replace

88



5.2. Extensions 89

IKE as the key exchange protocol in IPSec. This work combines
manual proofs and ProVerif to prove correspondences and equiva-
lences.

• Blanchet and Chaudhuri, 2008 study the secure filesystem Plu-
tus (Kallahalla et al., 2003), discovering and fixing weaknesses of
the initial system.

• ProVerif was also used for verifying a certified email web ser-
vice (Lux et al., 2005), a certified mailing-list protocol (Khu-
rana and Hahm, 2006), e-voting protocols (Kremer and Ryan,
2005; Backes et al., 2008a; Delaune et al., 2009; Cortier and
Wiedling, 2012), e-auction protocols (Dreier et al., 2013), the
ad-hoc routing protocol ARAN (Authenticated Routing for Adhoc
Networks) (Godskesen, 2006), zero-knowledge protocols (Backes
et al., 2008b; Backes et al., 2015), the Trusted Platform Module
(TPM) (Delaune et al., 2011), and the associated Direct Anony-
mous Attestation protocol (Backes et al., 2008b; Smyth et al.,
2015), for instance.

ProVerif can also be used for verifying protocols in the computational
model, via computational soundness results:

• Canetti and Herzog, 2006 show that, for a restricted class of
protocols that use only public-key encryption, a proof in the
Dolev-Yao model implies security in the computational model, in
the universal composability framework.

• Backes et al., 2014 prove computational soundness for the equiva-
lence properties shown by ProVerif. To achieve this result, they
take advantage that ProVerif relies on a trace property on bipro-
cesses in order to prove equivalence, so they can leverage compu-
tational soundness results for trace properties.

5.2 Extensions

Other authors also design and implement extensions of ProVerif:



90 Applications

• Küsters and Truderung, 2008; Küsters and Truderung, 2009 extend
ProVerif with support for exclusive or, and improve support for
Diffie-Hellman key agreements. In the same line, Pankova and
Laud, 2012 extend ProVerif with support for bilinear pairings (see
also §2.5.1).

• StatVerif (Arapinis et al., 2011) is an extension of ProVerif with
support for mutable state. It allows global mutable memory cells,
which are encoded into Horn clauses by adding their current
contents to the arguments of the predicates attacker and message.

• Mödersheim, 2010; Bruni et al., 2015 provide another extension of
ProVerif with support for state. They allow sets (such as databases
of keys or access rights) where revocation is possible, so that the
set of true facts does not increase monotonically. To achieve
this result, they rely on a new abstraction of sets into terms
in Horn clauses. This approach was first proposed at the Horn
clause level (Mödersheim, 2010), then extended by providing a
translation from an extension of the pi calculus (Bruni et al.,
2015).

• Chothia et al., 2015 provide an extension that avoids false attacks
in protocols that first commit to a value, then later reveal it.
This extension relies on the insertion of phase instructions, to
avoid that ProVerif considers the revealed value as available to
the adversary from the beginning of the protocol.

5.3 ProVerif as back-end

ProVerif is also used as a back-end for building other verification tools:

• Bhargavan et al., 2004 use it to build the Web services verification
tool TulaFale: Web services are protocols that send XML messages;
TulaFale translates them into the input format of ProVerif and
uses ProVerif to prove the desired security properties.

• Bhargavan et al., 2006 use ProVerif for verifying implementations
of protocols in F# (a functional language of the Microsoft .NET



5.3. ProVerif as back-end 91

environment): a subset of F# large enough for expressing security
protocols is translated into the input format of ProVerif. The TLS
protocol (Bhargavan et al., 2008) and the TPM (Mukhamedov
et al., 2013), in particular, were studied using this technique.

• The JavaSPI framework (Avalle et al., 2011) allows modeling
security protocols in a subset of Java with annotations. These
specifications can be verified with ProVerif via a Java-to-ProVerif
converter and compiled into Java protocol implementations.

• Aizatulin et al., 2011 use symbolic execution in order to extract
ProVerif models from pre-existing protocol implementations in C.
This technique currently analyzes a single execution path of the
protocol, so it is limited to protocols without branching. An ear-
lier related approach is that of Goubault-Larrecq and Parrennes,
2005: they also use the Horn clause method for analyzing imple-
mentations of protocols written in C. However, they translate
protocols into clauses of the H1 class and use the H1 prover by
Goubault-Larrecq, 2005 rather than ProVerif to prove secrecy
properties of the protocol.

• Bansal et al., 2012; Bansal et al., 2013 build the Web-spi library,
which allows them to model web security mechanisms and proto-
cols and verify them using ProVerif.



6
Conclusion

The protocol verifier ProVerif takes as input a description of the protocol
to verify in an extension of the pi calculus with cryptography, as well as
the security properties to prove. It may return three different answers:
the property is true, the property is false with an attack (execution
trace of the protocol), or “I do not know” with a derivation at the Horn
clause level which does not correspond to a trace of the protocol.

Its main strengths are: it is fully automatic; it supports an un-
bounded number of sessions of the protocol; it allows the specification of
many different cryptographic primitives by rewrite rules or by equations;
and it can prove a wide variety of security properties, namely, secrecy,
correspondences, and some equivalences.

It still has limitations: it may not terminate and it makes abstrac-
tions, which may lead to false attacks. These limitations are unavoidable
because the verification of security protocols with an unbounded num-
ber of sessions is undecidable. In practice, ProVerif is still efficient and
precise in many examples. A further limitation is the class of equational
theories that it supports; in particular, it does not support associativity.
The class of equivalences that it can prove is also limited. Some exten-
sions, outlined in §5.2, tackle these limitations, and other verifiers make

92



93

different trade-offs. For instance, Maude-NPA (Meadows, 1996; Escobar
et al., 2006) and Tamarin (Schmidt et al., 2012) support more equational
theories, at the cost of a more costly verification or by requiring user
intervention.

These limitations suggest areas for future work. For instance, we
might improve the precision of the analysis to avoid false attacks, by
adding more information into the clauses. We might support more
equational theories, by implementing unification and resolution modulo
associativity and commutativity. We might improve the support for
mutable state, possibly by integrating StatVerif (Arapinis et al., 2011)
and extending it. The proof of equivalences is also an area in which
further research could be done, perhaps by combining manual and
automatic proofs. For instance, a proof of observational equivalence
could be decomposed into a family of static equivalences (Abadi and
Fournet, 2001) (equivalences between messages), proved automatically
by ProVerif, and a manual bisimulation proof. On a more technical
side, the user interface of ProVerif could be improved, for instance
by displaying attacks graphically. The subsumption tests could be
parallelized to improve performance on machines with multiple cores.

Finally, ProVerif verifies specifications of protocols in the symbolic
model. One may go further in several directions. First, one may ver-
ify specifications of protocols in a more concrete model, such as the
computational model, used by cryptographers. Several tools exist for
verifying cryptographic primitives and protocols in this model, in par-
ticular, CertiCrypt (Barthe et al., 2009; Béguelin et al., 2009) and its
successor EasyCrypt (Barthe et al., 2011; Barthe et al., 2014b), and
CryptoVerif (Blanchet, 2008a). They are generally more delicate to
use than symbolic protocol verifiers. We plan to modify ProVerif and
CryptoVerif to make their input languages compatible, so that the same
input file can be used to verify a protocol in both tools, to find attacks or
obtain a symbolic proof in ProVerif, or obtain a computational proof in
CryptoVerif. Second, instead of verifying specifications, one may verify
runnable implementations of protocols. This verification is important
because new attacks may appear in the implementation. Some tools
for verifying implementations rely on ProVerif as a back-end (see §5.3).



94 Conclusion

There exist other approaches, by extracting models from implementa-
tions for other symbolic (O’Shea, 2008) or computational (Bhargavan
et al., 2007; Aizatulin et al., 2012) verifiers, by generating implemen-
tations from models by compilation (Song et al., 2001; Milicia, 2002;
Pozza et al., 2004; Pironti and Sisto, 2010; Almeida et al., 2013; Cadé
and Blanchet, 2013; Cadé and Blanchet, 2015), or by direct verification
of the implementation, for instance by typing (Bengtson et al., 2011;
Bhargavan et al., 2010; Swamy et al., 2011; Fournet and Kohlweiss, 2011;
Bhargavan et al., 2013), by model-checking (Chaki and Datta, 2009),
or by the general-purpose C verifier VCC (Dupressoir et al., 2011).
Going even further, one may wish to take into account side-channels
attacks, that is, physical attacks, which may rely for instance on timing,
power consumption, or fault injection, and are not considered in the
computational model. Taking such attacks into account in mechanized
verification tools is still at its beginning (Barthe et al., 2014a).



Acknowledgments

This survey borrows material from previous surveys (Blanchet, 2012b;
Blanchet, 2014) and from my habilitation thesis (Blanchet, 2008b).

Much research on ProVerif has been done with co-authors: in alpha-
betical order, Martín Abadi, Xavier Allamigeon, Vincent Cheval, Cédric
Fournet, Andreas Podelski, and Ben Smyth. I would like to thank them
for their contributions. I also thank Ben Smyth for helpful comments
on a draft of this survey.

95



Appendices



A
Proof of Theorem 3.5

Theorem 3.5. Let P0 be a closed biprocess and Npriv be a set of names.
If P0 satisfies diff-equivalence with private names Npriv, then P0 satisfies
observational equivalence with private names Npriv.

Proof. Let us define the relation R by C R C′ if and only if there exists
a configuration C′′ such that C = fst(C′′), C′ = snd(C′′), and for all
adversarial contexts C1[_], . . . , Ck[_], there exists no Cbad such that
C1[. . . Ck[C′′]]→∗ Cbad ↑. The relation R is symmetric and satisfies the
three conditions of Definition 3.6:

1. Suppose C = (Npub,Npriv),P ↓a and C R C′. For some term
M and process P , we have out(a,M);P ∈ P with a ∈ Npub.
Moreover, there exists a configuration C′′ such that C = fst(C′′),
C′ = snd(C′′), and for all adversarial contexts C1[_], . . . , Ck[_],
there exists no Cbad such that C1[. . . Ck[C′′]] →∗ Cbad ↑. Hence
C′′ = (Npub,Npriv),P0 with out(N0,M0);P0 ∈ P0 and fst(N0) = a.
Let C[_] = _ | in(a, x); 0. We have C[C′′] = (Npub,Npriv),P0 ∪
{in(a, x); 0} since a ∈ Npub. Since C R C′, C[C′′] does not di-
verge, so fst(N0) = fst(a) if and only if snd(N0) = snd(a). There-
fore, snd(N0) = a, so C′ = snd(C′′) = (Npub,Npriv), snd(P0) with
out(a, snd(M0)); snd(P0) ∈ snd(P0), so C′ ↓a.

97



98 Proof of Theorem 3.5

2. Suppose C R C′ and C → C1. Then there exists a configura-
tion C′′ such that C = fst(C′′), C′ = snd(C′′), and for all adver-
sarial contexts C1[_], . . . , Ck[_], there exists no Cbad such that
C1[. . . Ck[C′′]] →∗ Cbad ↑. Since C′′ does not diverge, we have
C′′ → C′′1 and fst(C′′1 ) = C1 for some C′′1 , by cases on the reduc-
tions. Then C′ = snd(C′′) → snd(C′′1 ). Let C′1 = snd(C′′1 ). We
have C′ → C′1 and C1 R C′1 because C1 = fst(C′′1 ), C′1 = snd(C′′1 ),
and for all adversarial contexts C1[_], . . . , Ck[_], there exists no
Cbad such that C1[. . . Ck[C′′1 ]] →∗ Cbad ↑, since that would imply
C1[. . . Ck[C′′]]→ C1[. . . Ck[C′′1 ]]→∗ Cbad ↑.

3. Let C[_] be an adversarial context. Suppose C R C′. There exists
a configuration C′′ such that C = fst(C′′), C′ = snd(C′′), and for all
adversarial contexts C1[_], . . . , Ck[_], there exists no Cbad such
that C1[. . . Ck[C′′]] →∗ Cbad ↑. Then C[C] = fst(C[C′′]), C[C′] =
snd(C[C′′]), and for all adversarial contexts C1[_], . . . , Ck[_], there
exists no Cbad such that C1[. . . Ck[C[C′′]]] →∗ Cbad ↑, so C[C] R
C[C′], using C[C′′] instead of C′′.

Therefore, R ⊆ ≈. Let C′′ = (Npub,Npriv), {P0}. To show that P0
satisfies observational equivalence with private names Npriv, it suffices
to show that fst(C′′) ≈ snd(C′′), so it suffices to show that fst(C′′) R
snd(C′′). To prove this property, we suppose that there exist adversarial
contexts C1[_], . . . , Ck[_] such that C1[. . . Ck[C′′]]→∗↑, and we derive a
contradiction. To reach this contradiction, we build an Npub-adversary
Q from the context C1[. . . Ck[_]], such that (Npub,Npriv), {P0, Q} →∗↑,
which contradicts the hypothesis of the theorem.

Let Ci[_] = new ñi; (_ | Qi) for all i ∈ {1, . . . , k}. We have Ck[C′′] =
((Npub ∪ fn(Qk)) \ {ñk}, αkNpriv ∪ {ñk}), αkP ∪ {Qk} where αk is a
bijective renaming of names in Npriv to names not in fn(Qk) that
leaves names in Npub unchanged. Let Npubk+1 = Npub and for all
i ∈ {1, . . . , k}, Npubi = (Npubi+1 ∪ fn(Qi)) \ {ñi}. So we have

C1[. . . Ck[C′′]] = (Npub1, α1(. . . (αkNpriv ∪ {ñk) . . . ) ∪ ñ1),
{α1 . . . αkP0, α1 . . . αk−1Qk, . . . , Q1}

= (Npub1, α1 . . . αkNpriv ∪
⋃k
i=1 α1 . . . αi−1ñi),



99

{α1 . . . αkP0} ∪ {α1 . . . αi−1Qi | i ∈ {1, . . . , k} } ,

where αi is a bijective renaming of the names in αi+1 . . . αkNpriv ∪⋃k
j=i+1 αi+1 . . . αj−1ñj to names not in fn(Qi) that leaves names in
Npubi+1 unchanged. So

(α1 . . . αk)−1C1[. . . Ck[C′′]] =
((α1 . . . αk)−1Npub1,Npriv ∪

⋃k
i=1(αi . . . αk)−1ñi),

{P0} ∪ {(αi . . . αk)−1Qi | i ∈ {1, . . . , k} } .

We write
∏k
i=1 Pi for P1 | . . . | Pk. Let Q′ =

∏k
i=1(αi . . . αk)−1Qi,

{ñ} = fn(Q′) \ Npub and Q = new ñ;Q′. The process Q is an Npub-
adversary. Moreover, let us show that {ñ} ∩ Npriv = ∅. Suppose that
a ∈ {ñ} ∩ Npriv. Since Npub ∩ Npriv = ∅, for some i ∈ {1, . . . , n}, a ∈
fn((αi . . . αk)−1Qi)∩Npriv, so αi . . . αka ∈ fn(Qi)∩αi . . . αkNpriv. Since
αi . . . αka ∈ fn(Qi), αi+1 . . . αka /∈ αi+1 . . . αkNpriv, since αi renames
names in αi+1 . . . αkNpriv to names not in fn(Qi). Therefore, αi . . . αka /∈
αi . . . αkNpriv. Contradiction. Hence we have proved {ñ} ∩ Npriv = ∅.

Moreover, we have the following property: if (Npub
′,N ′priv),P →∗↑,

then (Npub
′′,N ′′priv), αP →∗↑, where Npub

′′ ∩ N ′′priv = ∅, α is a bijec-
tive renaming, and fn(αP) ⊆ Npub

′′ ∪ N ′′priv. This property is easy to
prove by induction on the length of the trace. From this property and
C1[. . . Ck[C′′]]→∗↑, we derive

(α1 . . . αk)−1C1[. . . Ck[C′′]]→∗↑ ,

so

(Npub,Npriv), {P0, Q} →∗

(Npub,Npriv ∪ {ñ}), {P0} ∪ {(αi . . . αk)−1Qi | i ∈ {1, . . . , k} } →∗↑ .

This property contradicts the hypothesis of theorem. This contradiction
allows us to conclude the proof.



B
Proofs for Chapter 4

These proofs use the notations and definitions of (Abadi et al., 2016).
In particular, they use the notion of extended processes A (Abadi et
al., 2016, §2.1), with associated domain dom(A) (Abadi et al., 2016,
§2.1), structural equivalence ≡ and reduction relation → (Abadi et al.,
2016, §2.2); simple contexts (Abadi et al., 2016, §A); partial normal
forms, with associated structural equivalence ◦≡ and reduction relation
→◦ (Abadi et al., 2016, §B.2); and the labeled semantics α−→� of (Abadi
et al., 2016, §B.2).

B.1 Proof of Proposition 4.1

Lemma B.1. If E,P → E′,P ′, then [[E,P]] �≡ [[E′,P ′]] or [[E,P]] →�
[[E′,P ′]].

Proof. By cases on the applied reduction rule.

• Case (Red Nil). We have P = P ′ ∪ {0}. When P ′ 6= ∅, we have
[[E,P]] �≡ [[E′,P ′]] by Par-0. When P ′ = ∅, we have [[E,P]] =
[[E′,P ′]], so we also have [[E,P]] �≡ [[E′,P ′]].

• Case (Red Par). We have [[E,P ]] �≡ [[E′,P ′]] by Par-A and Par-C.

100



B.1. Proof of Proposition 4.1 101

• Case (Red Repl). We have [[E,P]] �≡ [[E′,P ′]] by Repl.

• Case (Red Res). We have [[E,P]] �≡ [[E′,P ′]] by New-Par.

• Case (Red I/O′′). Recall that the channels and output message
do not contain destructors, so we have

E,P = E,P0 ∪ { out(N,M);Q, in(N ′, x);P } →
E,P0 ∪ {Q,P{M/x} } = E′,P ′

where N =E N ′. By Rewrite, we can replace N ′ with N in
the input channel of the encoded process, so we have [[E,P]]→�
[[E′,P ′]] by Comm.

• Case (Red Cond 1′′). We have

E,P = E,P0 ∪ {if D then P else Q} → E,P0 ∪ {P} = E′,P ′

where D ⇓M ′ and M ′ =E true. Recall that all conditions are
of the form D = (M = N). Since D ⇓M ′ and M ′ =E true, we
have M =E N . By Rewrite, we can replace N with M in the
condition of the encoded process, so we have [[E,P]]→� [[E′,P ′]]
by Then.

• Case (Red Cond 2′′). We have

E,P = E,P0 ∪ {if D then P else Q} → E,P0 ∪ {Q} = E′,P ′

where D ⇓M and M 6=E true. Recall that all conditions are of
the form D = (M = N). Since D ⇓M ′ and M ′ 6=E true, we have
M 6=E N . The terms M and N are ground since configurations
contain closed processes, so we have [[E,P]]→� [[E′,P ′]] by Else.

All cases may use Par-A and Par-C to reorganize parallel compositions
and New-C to reorder restrictions.

We write
∏n
i=1 Pi for any parallel composition P1 | · · · | Pn modulo

associativity and commutativity. We define the property Prop(E,P,
Pred, P

′) by Prop(E,P,Pred, P
′) if and only if E = (Npub, {ã}), P =

{P1, . . . , Pn}, and



102 Proofs for Chapter 4

1. Pred = {Pi}, [[Pi]] →� P ′′ and P ′ ≡ νã.(P ′′ |
∏
j 6=i[[Pj ]]) for some

i ∈ {1, . . . , n} and P ′′, or

2. Pred = {Pi, Pj}, [[Pi]]
N(x)−−−→� P ′′, [[Pj ]]

νx.N〈x〉−−−−−→� A′′, and P ′ ≡
νã, x.((P ′′ |A′′) |

∏
k 6=i,j [[Pk]]) for some i, j ∈ {1, . . . , n}, P ′′, A′′, x,

and ground term N .

Intuitively, this property means that [[E,P]] →� P ′ by reducing the
processes in Pred.

Lemma B.2. If [[E,P]]→� P , then Prop(E,P,Pred, P ) for some Pred.

Proof. Let E = (Npub, {ã}) and P = {P1, . . . , Pn}. We have νã.([[P1]] |
· · · | [[Pn]]) →� P . By (Abadi et al., 2016, Lemma B.21(2)), [[P1]] | · · · |
[[Pn]]→� P ′ and P ≡ νã.P ′ for some P ′.

We show the following property by induction on the cardinal of I,
using (Abadi et al., 2016, Lemma B.18(1)):

P1. if
∏
i∈I Pi is closed, α is νx.N〈x〉 or N(M) for some ground N and∏

i∈I Pi
α−→� P ′, then there exist i ∈ I and P ′′ such that Pi

α−→� P ′′
and P ′ ≡ P ′′ |

∏
j∈I\{i} Pj

Next, we show the following property:

P2. if
∏
i∈I Pi is closed and

∏
i∈I Pi →� P ′, then either there exist i ∈ I

and P ′′ such that Pi →� P ′′ and P ′ ≡ P ′′ |
∏
j∈I\{i}[[Pj ]], or there

exist i, j ∈ I, P ′′, A′′, x and a ground term N such that Pi
N(x)−−−→�

P ′′, Pj
νx.N〈x〉−−−−−→� A′′, and P ′ ≡ νx.((P ′′ |A′′) |

∏
k∈I\{i,j} Pk).

by induction on the cardinal of I. If |I| = 1, then the first case obviously
holds. If |I| > 1, then

∏
i∈I Pi =

(∏
i∈I1 Pi

)
|
(∏

i∈I2 Pi
)
for two disjoint

non-empty sets I1 and I2 such that I = I1 ∪ I2. By (Abadi et al., 2016,
Lemma B.21(1)), one of the following four cases holds:

1.
∏
i∈I1 Pi →� P

′′ and P ′ ≡ P ′′ |
(∏

i∈I2 Pi
)
for some P ′′;

2.
∏
i∈I2 Pi →� P

′′ and P ′ ≡ P ′′ |
(∏

i∈I1 Pi
)
for some P ′′;

3.
∏
i∈I1 Pi

N(x)−−−→� P ′′,
∏
i∈I2 Pi

νx.N〈x〉−−−−−→� A′′, and P ′ ≡ νx.(P ′′ |A′′)
for some P ′′, A′′, x, and ground term N ;



B.1. Proof of Proposition 4.1 103

4.
∏
i∈I1 Pi

νx.N〈x〉−−−−−→� A′′,
∏
i∈I2 Pi

N(x)−−−→� P ′′, and P ′ ≡ νx.(P ′′ |A′′)
for some P ′′, A′′, x, and ground term N .

In the first two cases, we conclude by induction hypothesis. In the last
two cases, we conclude by P1.

By applying P2 to
∏n
i=1[[Pi]]→� P ′, either there exist i ∈ {1, . . . , n}

and P ′′ such that [[Pi]] →� P ′′ and P ′ ≡ P ′′ |
∏
j 6=i[[Pj ]], or there exist

i, j ∈ {1, . . . , n}, P ′′, A′′, x, and a ground term N such that [[Pi]]
N(x)−−−→�

P ′′, [[Pj ]]
νx.N〈x〉−−−−−→� A′′, and P ′ ≡ νx.((P ′′ |A′′) |

∏
k 6=i,j [[Pk]]). In the first

case, we obtain Prop(E,P,Pred, P ) with Pred = {Pi}, and in the second
case, we obtain Prop(E,P,Pred, P ) with Pred = {Pi, Pj}.

As in (Abadi et al., 2016), we define the size of processes by induction
on the syntax, such that size(!P ) = 1 + 2× size(P ) and, when P is not
a replication, size(P ) is one plus the size of the immediate subprocesses
of P . When P = {P1, . . . , Pn} is a multiset of processes, we define
size(P) = size(P1) + · · ·+ size(Pn).

Lemma B.3. If [[E,P]]→� P ′, then E,P →∗ E′,P ′ and P ′
�≡ [[E′,P ′]]

for some E′,P ′.

Proof. Let E = (Npub, {ã}) and P = {P1, . . . , Pn}. By Lemma B.2,
there exists Pred such that Prop(E,P,Pred, P

′). We proceed by induc-
tion on size(Pred).

• Case Pred = {Pi}, [[Pi]] →� P ′′, and P ′ ≡ νã.(P ′′ |
∏
j 6=i[[Pj ]]) for

some i ∈ {1, . . . , n} and P ′′. By (Abadi et al., 2016, Lemma B.21),
we have the following cases:

1. [[Pi]] = Q1 |Q2 for some Q1 and Q2, and one of the following
cases holds:

(a) Q1 →� Q′1 and P ′′ ≡ Q′1 |Q2 for some Q′1,

(b) Q1
N(x)−−−→� A, Q2

νx.N〈x〉−−−−−→� B, and P ′′ ≡ νx.(A | B) for
some A, B, x, and ground term N ,

and two symmetric cases obtained by swapping Q1 and Q2.



104 Proofs for Chapter 4

By definition of [[·]], we have Pi = Q′′1 | Q′′2, Q1 = [[Q′′1]], and
Q2 = [[Q′′2]] for some Q′′1 and Q′′2. By (Red Par), E,P → E,P ′
where P ′ = P\{Pi}∪{Q′′1, Q′′2}. We have Prop(E,P ′,P ′red, P

′)
with P ′red = {Q′′1} (case a), P ′red = {Q′′2} (symmetric of
case a), or P ′red = {Q′′1, Q′′2} (case b and its symmetric),
and size(P ′red) < size(Pred) in all cases, so we conclude by
induction hypothesis.

2. [[Pi]] = νn.Q, Q→� Q′, and P ′′ ≡ νn.Q′ for some n, Q, and
Q′.
We have Pi = new n;Q′′ and Q = [[Q′′]] for some Q′′. By
(Red Res), E,P → E′,P ′ where E′ = (Npub, {ã} ∪ {n′}),
P ′ = P \ {Pi} ∪

{
Q′′{n′/n}

}
, and n′ /∈ Npub ∪ {ã}. We

have [[Q′′{n′/n}]] = Q{n′/n} →� Q′{n
′
/n}. (We show by in-

duction on the derivation of Q →� Q′ that, if Q →� Q′,
then σQ →� σQ′ where σ is a bijective renaming.) So
we have Prop(E′,P ′,P ′red, P

′) with P ′red =
{
Q′′{n′/n}

}
and

size(P ′red) < size(Pred), so we conclude by induction hypoth-
esis.

3. [[Pi]] = !Q, Q | Q →� Q′, and P ′′ ≡ Q′ | !Q for some Q and
Q′.
We have Pi = !Q′′ and Q = [[Q′′]] for some Q′′. By (Red Repl)
twice, E,P →∗ E,P ′ where P ′ = P ∪ {Q′′, Q′′}. Since Q |
Q→� Q′, by (Abadi et al., 2016, Lemma B.21), one of the
following cases holds:
(a) Q→� Q′1 and Q′ ≡ Q′1 |Q for some Q′1,

(b) Q N(x)−−−→� A, Q
νx.N〈x〉−−−−−→� B, and Q′ ≡ νx.(A | B) for

some A, B, x, and ground term N ,
so we have Prop(E,P ′,P ′red, P

′) with P ′red = {Q′′} (case a)
or P ′red = {Q′′, Q′′} (case b), and size(P ′red) < size(Pred) in
all cases, so we conclude by induction hypothesis.

4. [[Pi]] = if M = N then Q1 else Q2 and either M =E N and
P ′′ ≡ Q1, or M 6=E N and P ′′ ≡ Q2, for some M , N , Q1,
and Q2.



B.1. Proof of Proposition 4.1 105

We have Pi = if M = N then Q′1 else Q′2, Q1 = [[Q′1]], and
Q2 = [[Q′2]] for some Q′1 and Q′2.
If M =E N , then by (Red Cond 1′′), E,P → E,P ′ where
P ′ = P \ {Pi} ∪ {Q′1}. We have [[E,P ′]] = new ã; ([[Q′1]] |∏
j 6=i[[Pj ]]) = new ã; (Q1 |

∏
j 6=i[[Pj ]]) and P ′ ≡ νã.(P ′′ |∏

j 6=i[[Pj ]]) ≡ [[E,P ′]].
If M 6=E N , then by (Red Cond 2′′), E,P → E,P ′ where
P ′ = P \ {Pi} ∪ {Q′2}. We have [[E,P ′]] = new ã; ([[Q′2]] |∏
j 6=i[[Pj ]]) = new ã; (Q2 |

∏
j 6=i[[Pj ]]) and P ′ ≡ νã.(P ′′ |∏

j 6=i[[Pj ]]) ≡ [[E,P ′]].

• Case Pred = {Pi, Pj}, [[Pi]]
N(x)−−−→� P ′′, [[Pj ]]

νx.N〈x〉−−−−−→� A′′, and
P ′ ≡ νã, x.((P ′′ |A′′) |

∏
k 6=i,j [[Pk]]) for some i, j ∈ {1, . . . , n}, P ′′,

A′′, x, and ground term N . By (Abadi et al., 2016, Lemma B.18)
applied to the transition [[Pi]]

N(x)−−−→� P ′′, we have the following
cases:

1. [[Pi]] = Q1 |Q2 and either Q1
N(x)−−−→� A′ and P ′′ ≡ A′ |Q2, or

Q2
N(x)−−−→� A′ and A ≡ Q1 |A′, for some Q1, Q2, and A′.

We have Pi = Q′1 | Q′2, Q1 = [[Q′1]], and Q2 = [[Q′2]] for some
Q′1 and Q′2. By (Red Par), E,P → E,P ′ where P ′ = P \
{Pi} ∪ {Q′1, Q′2}. We have Prop(E,P ′,P ′red, P

′) with P ′red =
{Q′1, Pj} or P ′red = {Q′2, Pj} and size(P ′red) < size(Pred), so
we conclude by induction hypothesis.

2. [[Pi]] = νn.Q, Q N(x)−−−→� A′, and P ′′ ≡ νn.A′ for some Q, A′,
and n that does not occur in N(x).
We have Pi = new n;Q′ and Q = [[Q′]] for some Q′. By
(Red Res), E,P → E′,P ′ where E′ = (Npub, {ã} ∪ {n′}),
P ′ = P \ {Pi} ∪

{
Q′{n′/n}

}
, and n′ /∈ Npub ∪ {ã}. We

have [[Q′{n′/n}]] = Q{n′/n}
N(x)−−−→� A′{n

′
/n}. (We show by

induction on the derivation of Q N(x)−−−→� A′ that, if Q
N(x)−−−→�

A′, then σQ σN(x)−−−−→� σA′ where σ is a bijective renaming.) So
we have Prop(E′,P ′,P ′red, P

′) with P ′red =
{
Q′{n′/n}, Pj

}



106 Proofs for Chapter 4

and size(P ′red) < size(Pred), so we conclude by induction
hypothesis.

3. [[Pi]] = !Q, Q N(x)−−−→� A′, and P ′′ ≡ A′ | !Q for some Q and A′.
We have Pi = !Q′ and Q = [[Q′]] for some Q′. By (Red Repl),
E,P → E,P ′ where P ′ = P ∪ {Q′}. We have Prop(E′,P ′,
P ′red, P

′) with P ′red = {Q′, Pj} and size(P ′red) < size(Pred),
so we conclude by induction hypothesis.

4. [[Pi]] = N ′(x′).Q1, N =E N ′, and P ′′ ≡ Q1{x/x′} for some
Q1, N ′, and x′.
By (Abadi et al., 2016, Lemma B.18) applied to the transition

[[Pj ]]
νx.N〈x〉−−−−−→� A′′, we distinguish cases on [[Pj ]]. The first

three cases are similar to those for [[Pi]]. The last case is
[[Pj ]] = N ′′〈M ′′〉.Q2, N =E N ′′, x /∈ fv([[Pj ]]), and A′′ ≡
Q2 | {M

′′
/x} for some N ′′, M ′′, and Q2.

We have Pi = in(N ′, x′);Q′1 and Q1 = [[Q′1]] for some Q′1. We
also have Pj = out(N ′′,M ′′);Q′2 and Q2 = [[Q′2]] for some
Q′2. By (Red I/O′′), E,P → E,P ′ where P ′ = P \{Pi, Pj}∪
{Q′1{M

′′
/x′}, Q′2} since N ′ =E N ′′. Therefore,

[[E,P ′]] = νã.([[Q′1{M
′′
/x′}]] | [[Q′2]] |

∏
k 6=i,j

[[Pk]])

= νã.(Q1{M
′′
/x′} | Q2 |

∏
k 6=i,j

[[Pk]]) .

Moreover,

P ′ ≡ νã, x.((P ′′ |A′′) |
∏
k 6=i,j

[[Pk]])

≡ νã, x.(Q1{x/x′} |Q2 | {M
′′
/x} |

∏
k 6=i,j

[[Pk]])

P ′ ≡ νã.(Q1{M
′′
/x′} |Q2 |

∏
k 6=i,j

[[Pk]])

since x does not occur free in Q2 and Pk for k 6= i, j since
these are closed processes. So P ′ ≡ [[E,P ′]].

Proposition 4.1. If C →∗ C′, then [[C]]→�∗
�≡ [[C′]].

Conversely, if [[C]]→�∗ P ′, then C →∗ C′ and P ′
�≡ [[C′]] for some C′.



B.2. Proof of Propositions 4.2 and 4.3 107

Proof. The first point is proved by induction on the number of steps of
C →∗ C′, using Lemma B.1. The second point is proved by induction on
the number of steps of [[C]]→�∗ P ′, using Lemma B.3.

B.2 Proof of Propositions 4.2 and 4.3

Let replication contexts C![_] be plain contexts generated by the follow-
ing grammar:

C![_] ::= replication contexts
_ hole
P | C![_] parallel composition
C![_] | P parallel composition
νa.C![_] restriction
!C![_] replication

We use replication contexts to characterize P ⇓�a without using structural
equivalence, by the following lemma:

Lemma B.4. We have P �≡ C[a〈M〉.Q] for some M , Q, and evaluation
context C[_] that does not bind a if and only if P = C ′! [N ′〈M ′〉.Q′]
and N ′ =E a for some N ′, M ′, Q′, and replication context C ′! [_] that
does not bind a.

Proof. The implication from left to right is an immediate consequence
of the following property: If P �≡ C![N〈M〉.Q] and N =E a for some
N , M , Q, and replication context C![_] that does not bind a, then
P = C ′! [N ′〈M ′〉.Q′] and N ′ =E a for some N ′, M ′, Q′, and replication
context C ′! [_] that does not bind a. This property is proved by induction
on the derivation of P �≡ C![a〈M〉.Q].

The converse is proved by unfolding replications in C ′! by Repl and
by replacing N ′ with a by Rewrite.

Lemma B.5. Let (Npub,Npriv),P be a valid configuration and a ∈ Npub.
If C![N〈M〉.Q] = [[P ]], and N =E a for some P ∈ P, N , M , Q, and
replication context C! that does not bind a, then (Npub,Npriv),P →∗
(Npub,N ′priv),P ′ with N ′〈M ′〉.Q′ = [[P ′]] and N ′ =E a for some N ′priv,
P ′, P ′ ∈ P ′, N ′, M ′, Q′.



108 Proofs for Chapter 4

Proof. This lemma is proved by reducing the context C! by (Red Par),
(Red Res), and (Red Repl). More formally, the proof proceeds by in-
duction on the size of the replication context C![_].

• If C![_] = _, the result is obvious.

• If C![_] = P ′ |C ′! [_], then P = P ′1 |P1 with [[P ′1]] = P ′ and [[P1]] =
C ′! [N〈M〉.Q]. We have (Npub,Npriv),P = (Npub,Npriv),P0∪{P ′1 |
P1} → (Npub,Npriv),P0 ∪{P ′1, P1} by (Red Par). We conclude by
induction hypothesis with P1 instead of P .

• The case C![_] = C ′! [_] | P ′ is similar.

• If C![_] = νb.C ′! [_], then P = new b;P1 with [[P1]] = C ′! [N〈M〉.Q].
We have

(Npub,Npriv),P =(Npub,Npriv),P0 ∪ {new b;P1}

→(Npub,Npriv ∪ {b′}),P0 ∪
{
P1{b

′
/b}
}

for some b′ /∈ Npub ∪ Npriv by (Red Res). We have [[P1{b
′
/b}]] =

C ′!{b
′
/b}[N{b′/b}〈M{b

′
/b}〉.Q{b

′
/b}] and N{b

′
/b} =E a since a 6= b

because C! does not bind a. We conclude by induction hypothesis
with P1{b

′
/b} instead of P .

• If C![_] = !C ′! [_], then P = !P1 with [[P1]] = C ′! [N〈M〉.Q]. We have
(Npub,Npriv),P = (Npub,Npriv),P0 ∪ {!P1} → (Npub,Npriv),P0 ∪
{!P1, P1} by (Red Repl). We conclude by induction hypothesis
with P1 instead of P .

Lemma B.6. Let E,P be a valid configuration. We have [[E,P]]⇓�a if
and only if E,P →∗ ↓a.

Proof. Suppose [[E,P]]⇓�a. We have [[E,P]]→�∗
�≡ C[a〈M〉.P ] for some

M , P and evaluation context C[_] that does not bind a. By Proposi-
tion 4.1, E,P →∗ E′,P ′ and [[E′,P ′]] �≡ C[a〈M〉.P ] for some E′,P ′. By
Lemma B.4, [[E′,P ′]] = C ′! [N ′〈M ′〉.P ′] and N ′ =E a for some N ′,M ′, P ′,
and replication context C ′! that does not bind a. Let E′ = (Npub, {ã})
and P ′ = {P1, . . . , Pn}. We have [[E′,P ′]] = νã.([[P1]] | · · · | [[Pn]]). Then
[[Pi]] = C ′′! [N ′〈M ′〉.P ′] for some replication context C ′′! that does not



B.2. Proof of Propositions 4.2 and 4.3 109

bind a and Pi ∈ P ′, and a /∈ ã. Since N ′ =E a, we have a ∈ fn(N ′).
(Otherwise, we would have N ′{N ′′/a} =E a{N

′′
/a} for all N ′′, since

equality is preserved by substitution of terms for names because the
equations do not contain names, so N ′ =E N ′′, which contradicts the
assumption that the equational theory is non trivial.) So a ∈ fn(Pi),
so a ∈ fn(P ′). Since fn(P ′) ⊆ Npub ∪ {ã} and a /∈ ã, we have a ∈ Npub.
By Lemma B.5, E′,P ′ →∗ E′′,P ′′, N ′′〈M ′′〉.P ′′ = [[Q]], and N ′′ =E a
for some E′′ = (Npub,N ′priv), P ′′, Q ∈ P ′′, N ′′, M ′′, and P ′′. Therefore
Q = out(N ′′,M ′′);Q′ ∈ P ′′ for some Q′, N ′′ =E a, and a ∈ Npub, so
E′′,P ′′ ↓a, so E,P →∗ ↓a.

Conversely, suppose E,P →∗ ↓a. We have E,P →∗ E′,P ′ and
E′,P ′ ↓a for some E′,P ′. So we have E′ = (Npub, {ã}), a ∈ Npub,
out(N,M);Q ∈ P ′, and N =E a for some Npub, ã, N , M , and Q.
We have [[E′,P ′]] = νã.([[P1]] | · · · | [[Pn]]) where P ′ = {P1, . . . , Pn},
and [[out(N,M);Q]] = N〈M〉.[[Q]], so [[E′,P ′]] = C[N〈M〉.[[Q]]] where
C[_] is an evaluation context that does not bind a, since a /∈ ã. So
[[E′,P ′]] �≡ C[a〈M〉.[[Q]]] by Rewrite. By Proposition 4.1, [[E,P ]]→�∗

�≡
[[E′,P ′]] �≡ C[a〈M〉.[[Q]]], so [[E,P]]⇓�a.

We define the encoding of contexts as the encoding of processes,
with additionally [[_]] = _.

Lemma B.7. Let C[_] be an adversarial context. We have [[C[C]]] �≡
[[C]][[[C]]].

Proof. Let C[_] = new ñ; (_ | Q) with fv(Q) = ∅ and C = (Npub,Npriv),
P . We rename the names in Npriv so that Npriv∩ fn(Q) = ∅. Let Npriv =
{ã} and P = {P1, . . . , Pn}. We have C[C] = ((Npub ∪ fn(Q)) \ {ñ},
Npriv ∪ {ñ}),P ∪ {Q}, so

[[C[C]]] = νã, ñ.([[P1]] | · · · | [[Pn]] | [[Q]])
�≡ νñ.(νã.([[P1]] | · · · | [[Pn]]) | [[Q]]) = [[C]][[[C]]] .

Proposition 4.2. Let C and C′ be valid configurations. If C ≈ C′, then
[[C]] �≈ [[C′]].



110 Proofs for Chapter 4

Proof. We define a relation R between closed processes by P R Q if and
only if P �≡ [[C]], Q �≡ [[C′]], and C ≈ C′ for some C and C′. The relation
R is symmetric. Let us show that it satisfies the three conditions of
Definition 4.1:

1. If P R Q and P ⇓�a, then P
�≡ [[C]], Q �≡ [[C′]], and C ≈ C′ for some

C and C′, so [[C]]⇓�a, so by Lemma B.6, C →∗ ↓a. Since C ≈ C′, we
have C′ →∗ ↓a, so by Lemma B.6, [[C′]]⇓�a, so Q⇓�a.

2. Suppose P R Q, P →�∗ P ′, and P ′ is closed. We have P �≡ [[C]],
Q
�≡ [[C′]], and C ≈ C′ for some C and C′. If P = P ′, then Q→�∗

Q′ and P ′ R Q′ with Q′ = Q. Otherwise, [[C]] →�∗ P ′, so by
Proposition 4.1, C →∗ C1 and P ′ �≡ [[C1]] for some C1. Hence C′ →∗
C′1 and C1 ≈ C′1 for some C′1. By Proposition 4.1, [[C′]]→�∗

�≡ [[C′1]].

If there is no reduction →� in this trace, we define Q′ = Q. We
have Q →�∗ Q′. Moreover, P ′ �≡ [[C1]], C1 ≈ C′1, and Q′ = Q

�≡
[[C′]] �≡ [[C′1]], so P ′ R Q′.

If there is at least one reduction →� in this trace, we define
Q′ = [[C′1]]. We have Q �≡ [[C′]] →�∗

�≡ [[C′1]] = Q′, so Q →�∗ Q′.
Moreover, P ′ �≡ [[C1]], C1 ≈ C′1 and Q′ = [[C′1]], so P ′ R Q′.

3. Let us finally show that, if P R Q and C[_] is a closed evaluation
context, then C[P ] R C[Q]. Up to structural equivalence �≡, the
context C[_] can be decomposed into several closed contexts of
the form νñ.(_ |Q), so it is enough to show the desired property
for such contexts. For such a context C[_], there exists an ad-
versarial context C ′[_] such that [[C ′[_]]] = C[_]. Since P R Q,
we have P �≡ [[C]], Q �≡ [[C′]], and C ≈ C′ for some C and C′. Then
C[P ] �≡ [[C ′]][[[C]]] �≡ [[C ′[C]]] and C[Q] �≡ [[C ′]][[[C′]]] �≡ [[C ′[C′]]] by
Lemma B.7. Moreover, C[C] ≈ C ′[C′], so C[P ] R C[Q].

Since �≈ is the largest such relation, we have R ⊆ �≈. If C ≈ C′, then
[[C]] R [[C′]], so [[C]] �≈ [[C′]].

Lemma B.8. If P and Q are closed processes and P
�≡ �≈ �≡ Q, then

P
�≈ Q.



B.2. Proof of Propositions 4.2 and 4.3 111

Proof. We define the relation R between closed processes by P R Q if
and only if P �≡ �≈ �≡ Q. The relation R is symmetric and satisfies the
three conditions of Definition 4.1, so R ⊆ �≈. This property proves the
lemma.

Proposition 4.3. Let C and C′ be valid configurations. If [[C]] �≈ [[C′]],
then C ≈ C′.

Proof. Since the contexts in Definition 3.6 may be any ProVerif adver-
sarial contexts, we need to encode all ProVerif constructs into the subset
already encoded by [[·]]. In this proof, we consider the core ProVerif
language with equations and enriched terms. Pattern-matching and
tables can be defined as an encoding into that subset, so the result
extends to them. We do not consider phases. We define this encoding
as follows: [P ]PV is the process obtained from P by performing the
following replacements:

• If fail occurs in D or D′ (in the output case), then replace
out(D,D′);P , in(D,x : T );P , and if D then P else Q with 0,
and replace let x : T = D in P else Q with Q.

• If D is not of the form D1 = D2, then replace if D then P else Q
with if D = true then P else Q.

• If P1 = P0{D1=D2/x}, P0 is out(D,D′);P , in(D, y : T );P , if D =
D′ then P else Q, or let y : T = D in P else Q, x occurs only in
D or D′ and exactly once, and fail does not occur in any of D,
D′, D1, D2, then replace P1 with if D1 = D2 then P0{true/x} else
P0{false/x}.

• Replace let x : T = M in P else Q with P{M/x}.

We define [C]PV similarly, and [E,P]PV = E, {[P ]PV | P ∈ P}.
We show that the encoding preserves observational equivalence. In

the next properties, C denotes any context (any process with a hole,
not only an adversarial context). We define gen(P, P ′) = {((E, {P1, . . . ,

Pn}), (E, {P ′1, . . . , P ′n})) | (E, {P1, . . . , Pn}) and (E, {P ′1, . . . , P ′n}) are
valid configurations, for all i ≤ n, Pi = Ci[σiP ] and P ′i = Ci[σiP ′] for



112 Proofs for Chapter 4

some context Ci and substitution σi, or Pi = P ′i}. If (C, C′) ∈ gen(P, P ′)
and C → C1 by a reduction that does not reduce processes Pi with an
empty context Ci, then for some C′1, C′ → C′1 by the same reduction
rule and (C1, C′1) ∈ gen(P, P ′). The symmetric property also holds, and
gen(P, P ′) is closed under application of adversarial contexts. Because
of these properties, gen(P, P ′) is a good starting point for building
relations used for proving observational equivalence.

We prove the following properties:
P1. If fail occurs in D, then D ⇓ fail. If fail does not occur in D,

then D ⇓M for some term M . These properties are proved by
induction on D. They come from the fact that equality is the only
considered destructor, and it evaluates to fail if and only if one of
its arguments evaluates to fail.

P2. If P0 is out(D,D′);P , in(D,x : T );P , or if D then P else Q and
fail occurs in D or D′, then E,P ∪{C[P0]} ≈ E,P ∪{C[0]}. This
property is proved by defining a relationR between valid configura-
tions by E,P∪{σ1P0, . . . , σnP0} R E,P ′ when ((E,P), (E,P ′)) ∈
gen(P0,0), and showing that R∪R−1 is symmetric and satisfies
the three conditions of Definition 3.6. The main argument is that
P0 never reduces.

P3. If fail occurs in D, then E,P ∪ {C[let x : T = D in P else Q]} ≈
E,P ∪ {C[Q]}. This property is proved by defining a relation
R = gen(let x : T = D in P else Q,Q), and showing that R∪R−1

is symmetric and satisfies the three conditions of Definition 3.6.
The main argument is that let x : T = D in P else Q reduces to
Q since D ⇓ fail by P1.

P4. We have E,P ∪ {C[if D then P else Q]} ≈ E,P ∪ {C[if D = true
then P else Q]}. This property is proved by defining a relationR =
gen(if D then P else Q, if D = true then P else Q), and showing
that R∪R−1 is symmetric and satisfies the three conditions of
Definition 3.6. The main argument is that if D then P else Q and
if D = true then P else Q either both reduce to P or both reduce
to Q, because D⇓M withM =E true if and only if (D = true)⇓M ′
with M ′ =E true.



B.2. Proof of Propositions 4.2 and 4.3 113

P5. If P0 is out(D,D′);P , in(D, y : T );P , if D = D′ then P else Q,
or let y : T = D in P else Q, x occurs only in D or D′ and
exactly once, and fail does not occur in any of D, D′, D1, D2, then
E,P∪{C[P0{D1=D2/x}]} ≈ E,P∪{C[if D1 = D2 then P0{true/x}
else P0{false/x}]}. This property is proved by defining a relation
R between valid configurations by E,P ∪ {σ1P0{D1=D2/x}, . . . ,
σnP0{D1=D2/x}} R E,P ′∪{σ1P0{M1/x}, . . . , σnP0{Mn/x}} when
((E,P), (E,P ′)) ∈ gen(P0{D1=D2/x}, if D1 = D2 then P0{true/x}
else P0{false/x}) and for all i ≤ n, σi(D1 = D2)⇓Mi, and showing
that R∪R−1 is symmetric and satisfies the three conditions of
Definition 3.6. The main argument is that σi(if D1 = D2 then
P0{true/x} else P0{false/x}) reduces to σiP0{Mi/x} when σi(D1 =
D2) ⇓Mi, and that this process behaves like σiP0{D1=D2/x}.

P6. We have E,P ∪ {C[let x : T = M in P else Q]} ≈ E,P ∪
{C[P{M/x}]}. This property is proved by defining a relation
R = gen(let x : T = M in P else Q,P{M/x}) and showing that
R∪R−1 is symmetric and satisfies the three conditions of Defi-
nition 3.6. The main argument is that let x : T = M in P else Q
reduces to P{M/x}.

P7. We have C ≈ [C]PV by P2-P6.

We define a relation R between valid configurations by C R C′ if and
only if C ≈ Ce, [[Ce]]

�≈ [[C′e]], and C′e ≈ C′ for some Ce and C′e. The relation
R is symmetric. Let us show that it satisfies the three conditions of
Definition 3.6:

1. If C R C′ and C ↓a, then Ce →∗ ↓a, so by Lemma B.6, [[Ce]]⇓�a, so
[[C′e]]⇓�a, so by Lemma B.6, C′e →∗ ↓a, so C′ →∗ ↓a.

2. If C R C′ and C → C1, then Ce →∗ C1e and C1 ≈ C1e for some C1e.
By Proposition 4.1, [[Ce]]→�∗

�≡ [[C1e]].

If no reduction →� is performed, then [[C1e]]
�≡ [[Ce]]

�≈ [[C′e]] so by
Lemma B.8, [[C1e]]

�≈ [[C′e]], so C1 R C′1 and C′ →∗ C′1 with C′1 = C′.

If at least one reduction →� is performed, then [[Ce]] →�∗ [[C1e]],
so [[C′e]] →�∗ Q′ and [[C1e]]

�≈ Q′ for some Q′. By Proposition 4.1,



114 Proofs for Chapter 4

C′e →∗ C′1e and Q′ �≡ [[C′1e]] for some C′1e, so by Lemma B.8, [[C1e]]
�≈

[[C′1e]]. Moreover, since C′e →∗ C′1e and C′e ≈ C′, we have C′ →∗ C′1
and C′1e ≈ C′1 for some C′1. So C1 R C′1.

3. If C R C′ and C is an adversarial context, then by P7, C[C] ≈
C[Ce] ≈ C ′[Ce] and C[C′] ≈ C[C′e] ≈ C ′[C′e], where C ′ = [C]PV.
By Lemma B.7 and since [[C ′]] is a closed evaluation context,
[[C ′[Ce]]]

�≡ [[C ′]][[[Ce]]]
�≈ [[C ′]][[[C′e]]]

�≡ [[C ′[C′e]]] so by Lemma B.8,
[[C ′[Ce]]]

�≈ [[C ′[C′e]]], so C[C] R C[C′].

Since ≈ is the largest such relation, we have R ⊆ ≈. If [[C]] �≈ [[C′]], then
C R C′, so C ≈ C′.

B.3 Relating definitions of observational equivalence

Let ≈π be observational equivalence as defined in (Abadi et al., 2016,
Definition 4.1). Let us show that, for plain processes, ≈π is equal to �≈,
defined in Definition 4.1.

Lemma B.9. If A ◦≡ B and dom(A) = ∅, then dom(B) = ∅ and A �≡ B.
If A→◦ B and dom(A) = ∅, then dom(B) = ∅ and A→� B.

Proof. When dom(σ) = ∅, that is, σ = 0, the rules of ◦≡ reduce to:

Plain′′ νñ.(0 | P ) ◦≡ νñ.(0 | P ′) when P �≡ P ′
New-C′′ νñ.(0 | P ) ◦≡ νñ′.(0 | P )

when ñ′ is a reordering of ñ
New-Par′′ νñ.(0 | νn′.P ) ◦≡ νñ, n′.(0 | P )
Rewrite′′ νñ.(0 | P ) ◦≡ νñ.(0 | P )

so in all cases, if A ◦≡ B and dom(A) = ∅, then dom(B) = ∅ and A �≡ B.
Hence we have the first property.

Suppose A →◦ B and dom(A) = ∅. We have A ◦≡ νñ.(σ | P ),
P →� P ′ and νñ.(σ | P ′) ◦≡ B. By the first property, σ = 0 and
A
�≡ νñ.(0 | P )→� νñ.(0 | P ′)

�≡ B, so A→� B.

Lemma B.10. Let P be a plain process. If P ≡ A, then pnf(A) is a
plain process and P �≡ pnf(A). If P → A, then pnf(A) is a plain process
and P →� pnf(A).



B.3. Relating definitions of observational equivalence 115

Proof. Suppose P ≡ A. By (Abadi et al., 2016, Lemma B.5), pnf(P ) ◦≡
pnf(A). We have pnf(P ) = 0 | P �≡ P and dom(pnf(P )) = ∅. By
Lemma B.9, we conclude that dom(pnf(A)) = ∅ and pnf(P ) �≡ pnf(A),
so pnf(A) is a plain process and P �≡ pnf(A).

Suppose P → A. By (Abadi et al., 2016, Lemma B.8), pnf(P )→◦
pnf(A). We have pnf(P ) = 0 | P �≡ P and dom(pnf(P )) = ∅. By
Lemma B.9, we conclude that dom(pnf(A)) = ∅ and pnf(P )→� pnf(A),
so pnf(A) is a plain process and P →� pnf(A).

Lemma B.11. Let P and Q be closed processes and σ be a bijective
renaming. If P �≡ Q, then σP �≡ σQ. If P →� Q, then σP →� σQ.

Proof. By induction on the derivations.

Lemma B.12. Let P and Q be closed processes and σ be a bijective
renaming. If P �≈ Q, then σP �≈ σQ.

Proof. We define a relation R by P R Q if and only if σ−1P
�≈ σ−1Q.

The relation R is symmetric. Let us show that it satisfies the three
properties of Definition 4.1:

1. If P R Q and P ⇓�a, then by Lemma B.11, σ−1P ⇓�σ−1a, so we have
σ−1Q⇓�σ−1a, so by Lemma B.11, Q⇓�a.

2. If P R Q, P →�∗ P ′, and P ′ is closed, then by Lemma B.11,
σ−1P →�∗ σ−1P ′ and σ−1P ′ is closed, so σ−1Q →�∗ Q1 and
σ−1P ′

�≈ Q1 for some Q1. Let Q′ = σQ1. By Lemma B.11, we have
Q→�∗ σQ1 = Q′ and since σ−1P ′

�≈ σ−1Q′, we have P ′ R Q′.

3. If P R Q and C[_] is a closed evaluation context, then σ−1P
�≈

σ−1Q so σ−1(C[P ]) = σ−1C[σ−1P ] �≈ σ−1C[σ−1Q] = σ−1(C[Q]),
so C[P ] R C[Q]. (The application of σ−1 to C[_] is defined by
renaming both free and bound names of C[_] by σ−1.)

Hence R ⊆ �≈. If P �≈ Q, then σP R σQ, so σP �≈ σQ.

Proposition B.1. Let P and Q be plain processes. We have P �≈ Q if
and only if P ≈π Q.



116 Proofs for Chapter 4

Proof. The relation ≈π restricted to closed plain processes is symmetric.
Let us show that it satisfies the three conditions of Definition 4.1:

1. If P ≈π Q and P ⇓�a, then by (Abadi et al., 2016, Lemmas B.9
and B.7), P ⇓a, so Q⇓a, that is, Q →∗≡ C[a〈M〉.Q′] for some
M , Q′, and evaluation context C[_] that does not bind a, so by
Lemma B.10, Q→�∗

�≡ pnf(C[a〈M〉.Q′]) = C ′[a〈M ′〉.Q′′] for some
M ′, Q′′, and plain evaluation context C ′[_] that does not bind a,
so Q⇓�a.

2. If P ≈π Q, P →�∗ P ′, and P ′ is closed, then by (Abadi et al., 2016,
Lemma B.9), P →∗ P ′, so Q→∗ B′ and P ′ ≈π B′ for some B′. By
Lemma B.10, pnf(B′) is a plain process and Q→�∗ pnf(B′). By
(Abadi et al., 2016, Lemma B.2), pnf(B′) ≡ B′, so P ′ ≈π pnf(B′).
So we have Q→�∗ Q′ and P ′ ≈π Q′ for Q′ = pnf(B′).

3. If P ≈π Q, then C[P ] ≈π C[Q] for all plain closed evaluation
contexts C[_], since these contexts are closing for P and Q.

Since �≈ is the largest such relation, we conclude that, if P ≈π Q, then
P
�≈ Q.
Let us define the relation R by A R B if and only if A ≡ νñ.(σ |P ),

B ≡ νñ.(σ |Q), and P �≈ Q, for some ñ, closed substitution σ, and closed
processes P and Q. The relation R is symmetric. Let us show that it
satisfies the three conditions of (Abadi et al., 2016, Definition 4.1):

1. If A R B and A⇓a, then νñ.(σ |P )→∗≡ C[a〈M〉.P ′] for some M ,
P ′, and evaluation context C[_] that does not bind a. By (Abadi
et al., 2016, Lemma B.8), νñ.(σ | P ) →◦∗≡ C[a〈M〉.P ′], and by
(Abadi et al., 2016, Lemma B.23), P →�∗ P1 and C[a〈M〉.P ′] ≡
νñ.(σ | P1) for some P1. Let dom(σ) = {x̃}. We have νñ.P1 ≡
νx̃, ñ.(σ | P1) ≡ νx̃.C[a〈M〉.P ′], so by Lemma B.10, νñ.P1

�≡
pnf(νx̃.C[a〈M〉.P ′]) = C ′[a〈M ′〉.P ′′] for some M ′, P ′′, and plain
evaluation context C ′[_] that does not bind a. We rename ñ
so that a /∈ {ñ}. By Lemma B.4, νñ.P1 = C![N ′′〈M ′′〉.P ′′′] and
N ′′ =E a for some N ′′,M ′′, P ′′′, and replication context C![_] that
does not bind a. So P1 = C ′! [N ′′〈M ′′〉.P ′′′] for some replication
context C ′! [_] that does not bind a, so P1

�≡ C ′′[a〈M ′′〉.P ′′′] for



B.3. Relating definitions of observational equivalence 117

some plain evaluation context C ′′[_] that does not bind a, by
Lemma B.4. Hence P ⇓�a. Since P

�≈ Q, we have Q⇓�a, that is,
Q →�∗

�≡ C1[a〈M1〉.Q1] for some M1, Q1, and plain evaluation
context C1[_] that does not bind a. Hence B ≡ νñ.(σ |Q)→∗≡
νñ.(σ|C1[a〈M1〉.Q1]). Since a /∈ {ñ}, νñ.(σ|C1[_]) is an evaluation
context that does not bind a, so B ⇓a.

2. If A R B, A→∗ A′, and A′ is closed, then νñ.(σ | P ) ≡→∗ A′. If
A′ = A, then we have A′ R B′ and B →∗ B′ for B′ = B. Other-
wise, νñ.(σ | P ) →+ A′, so by (Abadi et al., 2016, Lemma B.8),
νñ.(σ |P )→◦+ pnf(A′), and by (Abadi et al., 2016, Lemma B.23),
P →�+ P ′ and pnf(A′) ≡ νñ.(σ | P ′) for some P ′. Since P �≈ Q,
we have Q→�∗ Q′ and P ′

�≈ Q′ for some Q′. Let B′ = νñ.(σ |Q′).
We have B →∗ B′. Moreover, A′ ≡ pnf(A′) ≡ νñ.(σ | P ′),
B′ = νñ.(σ |Q′), and P ′ �≈ Q′, so A′ R B′.

3. Suppose A R B and C[_] is a closing evaluation context for A
and B. We want to show that C[A] R C[B]. We first rename the
free names and variables of C[_], so that the obtained context is
simple. By (Abadi et al., 2016, Lemma C.11), it is sufficient to
show C[A] R C[B] for the renamed context. By (Abadi et al., 2016,
Lemma A.1), there exists a context C ′[_] of the form νã, x̃.(_ |A′)
such that C[_] ≡ C ′[_] and all subcontexts of C ′[_] are simple
for A. Let pnf(A′) = νñ′.(σ′ | P ′). We have C[A] ≡ C ′[A] ≡
νã, x̃.(A |A′) ≡ νã, x̃.(νñ.(σ | P ) | νñ′.(σ′ | P ′)). We rename ñ and
ñ′ so that {ñ} ∩ {ñ′} = ∅, the names in ñ do not occur in σ′ and
P ′, and the names in ñ′ do not occur in σ and P . By Lemma B.12,
the property P

�≈ Q is preserved by the renaming of ñ. We
obtain C[A] ≡ νã, ñ, ñ′.((σ |σσ′)dom(σ)∪dom(σ′)\{x̃} |P |σP ′), where
(σ | σσ′)dom(σ)∪dom(σ′)\{x̃} and σP ′ are closed. (The substitution
σ′ does not affect σ nor P because they are closed.) Similarly,
C[B] ≡ νã, ñ, ñ′.((σ |σσ′)dom(σ)∪dom(σ′)\{x̃} |Q |σP ′). Since P

�≈ Q
and _|σP ′ is a closed evaluation context, we have P |σP ′ �≈ Q|σP ′.
Therefore, C[A] R C[B].

Since ≈π is the largest such relation, R ⊆ ≈π. In particular, if P �≈ Q,
then P R Q, so P ≈π Q.



References

Abadi, M. 1999. “Secrecy by Typing in Security Protocols”. Journal of
the ACM. 46(5): 749–786.

Abadi, M. and B. Blanchet. 2005a. “Analyzing Security Protocols with
Secrecy Types and Logic Programs”. Journal of the ACM. 52(1):
102–146.

Abadi, M. and B. Blanchet. 2005b. “Computer-Assisted Verification of
a Protocol for Certified Email”. Science of Computer Programming.
58(1–2): 3–27. Special issue SAS’03.

Abadi, M., B. Blanchet, and C. Fournet. 2007. “Just Fast Keying in
the Pi Calculus”. ACM Transactions on Information and System
Security (TISSEC). 10(3): 1–59.

Abadi, M., B. Blanchet, and C. Fournet. 2016. “The Applied Pi Cal-
culus: Mobile Values, New Names, and Secure Communication”.
Report arXiv:1609.03003v1. Available at http://arxiv.org/abs/1609.
03003v1.

Abadi, M. and V. Cortier. 2006. “Deciding Knowledge in Security
Protocols under Equational Theories”. Theoretical Computer Science.
367(1–2): 2–32.

Abadi, M. and C. Fournet. 2001. “Mobile Values, New Names, and
Secure Communication”. In: 28th ACM Symposium on Principles of
Programming Languages (POPL’01). London, UK: ACM. 104–115.

118

http://arxiv.org/abs/1609.03003v1
http://arxiv.org/abs/1609.03003v1


References 119

Abadi, M. and C. Fournet. 2004. “Private authentication”. Theoretical
Computer Science. 322(3): 427–476.

Abadi, M., N. Glew, B. Horne, and B. Pinkas. 2002. “Certified Email
with a Light On-line Trusted Third Party: Design and Implementa-
tion”. In: 11th International World Wide Web Conference. Honolulu,
Hawaii: ACM. 387–395.

Abadi, M. and A. D. Gordon. 1998. “A Bisimulation Method for Cryp-
tographic Protocols”. Nordic Journal of Computing. 5(4): 267–303.

Abadi, M. and A. D. Gordon. 1999. “A Calculus for Cryptographic Pro-
tocols: The Spi Calculus”. Information and Computation. 148(1): 1–
70. An extended version appeared as Digital Equipment Corporation
Systems Research Center report No. 149, January 1998.

Abadi, M. and R. Needham. 1996. “Prudent Engineering Practice for
Cryptographic Protocols”. IEEE Transactions on Software Engi-
neering. 22(1): 6–15.

Abadi, M. and P. Rogaway. 2002. “Reconciling Two Views of Cryp-
tography (The Computational Soundness of Formal Encryption)”.
Journal of Cryptology. 15(2): 103–127.

Abdalla, M., P.-A. Fouque, and D. Pointcheval. 2005. “Password-Based
Authenticated Key Exchange in the Three-Party Setting”. In: 2005
International Workshop on Practice and Theory in Public Key Cryp-
tography (PKC’05). Ed. by S. Vaudenay. Vol. 3386. Lecture Notes
in Computer Science. Les Diablerets, Switzerland: Springer. 65–84.

Adrian, D., K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B.
VanderSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann.
2015. “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Prac-
tice”. In: 22nd ACM Conference on Computer and Communications
Security.

Aiello, W., S. M. Bellovin, M. Blaze, R. Canetti, J. Ioannidis, K.
Keromytis, and O. Reingold. 2004. “Just Fast Keying: Key Agree-
ment in a Hostile Internet”. ACM Transactions on Information and
System Security. 7(2): 242–273.



120 References

Aizatulin, M., A. D. Gordon, and J. Jürjens. 2011. “Extracting and
Verifying Cryptographic Models from C Protocol Code by Symbolic
Execution”. In: 18th ACM Conference on Computer and Communi-
cations Security (CCS’11). Chicago, IL, USA: ACM. 331–340.

Aizatulin, M., A. D. Gordon, and J. Jürjens. 2012. “Computational Ver-
ification of C Protocol Implementations by Symbolic Execution”. In:
19th ACM Conference on Computer and Communications Security
(CCS’12). Raleigh, NC, USA: ACM. 712–723.

Allamigeon, X. and B. Blanchet. 2005. “Reconstruction of Attacks
against Cryptographic Protocols”. In: 18th IEEE Computer Security
Foundations Workshop (CSFW-18). Aix-en-Provence, France: IEEE.
140–154.

Almeida, J. B., M. Barbosa, G. Barthe, and F. Dupressoir. 2013. “Certi-
fied computer-aided cryptography: efficient provably secure machine
code from high-level implementations”. In: ACM Conference on
Computer and Communications Security (CCS’13). Berlin, Ger-
many: ACM. 1217–1230.

Arapinis, M. and M. Duflot. 2007. “Bounding Messages for Free in
Security Protocols”. In: 27th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’07). Ed. by
V. Arvind and S. Prasad. Vol. 4855. Lecture Notes in Computer
Science. New Delhi, India: Springer. 376–387.

Arapinis, M., J. Liu, E. Ritter, and M. Ryan. 2014. “Stateful Applied Pi
Calculus”. In: Principles of Security and Trust—Third International
Conference. Ed. by M. Abadi and S. Kremer. Vol. 8414. Lecture
Notes in Computer Science. Springer. 22–41.

Arapinis, M., E. Ritter, and M. D. Ryan. 2011. “StatVerif: Verifica-
tion of stateful processes”. In: 24th Computer Security Foundations
Symposium (CSF’11). IEEE. Cernay-la-Ville, France. 33–47.



References 121

Armando, A., D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J.
Cuellar, P. H. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Manto-
vani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago,
M. Turuani, L. Viganó, and L. Vigneron. 2005. “The AVISPA tool
for Automated Validation of Internet Security Protocols and Ap-
plications”. In: Computer Aided Verification, 17th International
Conference, CAV 2005. Ed. by K. Etessami and S. K. Rajamani.
Vol. 3576. Lecture Notes in Computer Science. Edinburgh, Scotland:
Springer. 281–285.

Armando, A., R. Carbone, and L. Compagna. 2014. “SATMC: a SAT-
based Model Checker for Security-critical Systems”. In: Tools and
Algorithms for the Construction and Analysis of Systems, 20th
International Conference, TACAS 2014. Ed. by E. Ábrahám and K.
Havelund. Vol. 8413. Lecture Notes in Computer Science. Grenoble,
France: Springer. 31–45. doi: 10.1007/978-3-642-54862-8_3.

Avalle, M., A. Pironti, R. Sisto, and D. Pozza. 2011. “The JavaSPI Frame-
work for Security Protocol Implementation”. In: International Con-
ference on Availability, Reliability and Security (ARES’11). IEEE.
746–751.

Bachmair, L. and H. Ganzinger. 2001. “Resolution Theorem Proving”.
In: Handbook of Automated Reasoning. Ed. by A. Robinson and
A. Voronkov. Vol. 1. North Holland. Chap. 2. 19–100.

Backes, M., F. Bendun, M. Maffei, E. Mohammadi, and K. Pecina.
2015. “Symbolic Malleable Zero-Knowledge Proofs”. In: 28th IEEE
Computer Security Foundations Symposium (CSF’15). Verona, Italy:
IEEE. 412–480.

Backes, M., C. Hritcu, and M. Maffei. 2008a. “Automated Verification
of Remote Electronic Voting Protocols in the Applied Pi-calculus”.
In: 21st IEEE Computer Security Foundations Symposium (CSF’08).
Pittsburgh, PA: IEEE Computer Society. 195–209.

Backes, M., M. Maffei, and D. Unruh. 2008b. “Zero-Knowledge in
the Applied Pi-calculus and Automated Verification of the Direct
Anonymous Attestation Protocol”. In: 29th IEEE Symposium on
Security and Privacy. Technical report version available at http:
//eprint.iacr.org/2007/289. IEEE. Oakland, CA. 202–215.

http://dx.doi.org/10.1007/978-3-642-54862-8_3
http://eprint.iacr.org/2007/289
http://eprint.iacr.org/2007/289


122 References

Backes, M., E. Mohammadi, and T. Ruffing. 2014. “Computational
Soundness Results for ProVerif: Bridging the Gap from Trace Proper-
ties to Uniformity”. In: Principles of Security and Trust (POST’14).
Ed. by M. Abadi and S. Kremer. Vol. 8414. Lecture Notes in Com-
puter Science. Grenoble, France: Springer. 42–62.

Bansal, C., K. Bhargavan, A. Delignat-Lavaud, and S. Maffeis. 2013.
“Keys to the Cloud: Formal Analysis and Concrete Attacks on En-
crypted Web Storage”. In: Principles of Security and Trust (POST
2013). Ed. by D. Basin and J. Mitchell. Vol. 7796. Lecture Notes in
Computer Science. Rome, Italy: Springer. 126–146.

Bansal, C., K. Bhargavan, and S. Maffeis. 2012. “Discovering Concrete
Attacks on Website Authorization by Formal Analysis”. In: 25th
IEEE Computer Security Foundations Symposium (CSF’12). IEEE.
Cambridge, MA, USA. 247–262.

Barthe, G., F. Dupressoir, P.-A. Fouque, B. Grégoire, M. Tibouchi, and
J.-C. Zapalowicz. 2014a. “Making RSA-PSS Provably Secure against
Non-random Faults”. In: Cryptographic Hardware and Embedded
Systems (CHES’14). Ed. by L. Batina and M. Robshaw. Vol. 8731.
Lecture Notes in Computer Science. Busan, South Korea: Springer.
206–222.

Barthe, G., F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P.-Y. Strub. 2014b. “EasyCrypt: A Tutorial”. In: Foundations of
Security Analysis and Design VII. Ed. by A. Aldini, J. Lopez, and F.
Martinelli. Vol. 8604. Lecture Notes in Computer Science. Springer.
146–166.

Barthe, G., B. Grégoire, S. Heraud, and S. Z. Béguelin. 2011. “Computer-
Aided Security Proofs for the Working Cryptographer”. In: Advances
in Cryptology – CRYPTO 2011. Ed. by P. Rogaway. Vol. 6841. Lec-
ture Notes in Computer Science. Santa Barbara, CA, USA: Springer.
71–90.

Barthe, G., B. Grégoire, and S. Zanella. 2009. “Formal Certification
of Code-Based Cryptographic Proofs”. In: 36th ACM SIGPLAN
- SIGACT Symposium on Principles of Programming Languages
(POPL’09). Savannah, Georgia: ACM. 90–101.



References 123

Basin, D., J. Dreier, and R. Casse. 2015. “Automated Symbolic Proofs of
Observational Equivalence”. In: 22nd ACM Conference on Computer
and Communications Security (CCS’15). Denver, CO: ACM. 1144–
1155.

Basin, D., S. Mödersheim, and L. Viganò. 2005. “OFMC: A symbolic
model checker for security protocols”. International Journal of In-
formation Security. 4(3): 181–208.

Baudet, M. 2007. “Sécurité des protocoles cryptographiques: aspects
logiques et calculatoires”. PhD thesis. Ecole Normale Supérieure de
Cachan.

Béguelin, S. Z., B. Grégoire, G. Barthe, and F. Olmedo. 2009. “Formally
Certifying the Security of Digital Signature Schemes”. In: 30th IEEE
Symposium on Security and Privacy, S&P 2009. Oakland, CA: IEEE.
237–250.

Bellovin, S. M. and M. Merritt. 1992. “Encrypted Key Exchange:
Password-Based Protocols Secure Against Dictionary Attacks”. In:
1992 IEEE Computer Society Symposium on Research in Security
and Privacy. 72–84.

Bellovin, S. M. and M. Merritt. 1993. “Augmented Encrypted Key
Exchange: a Password-Based Protocol Secure Against Dictionary
Attacks and Password File Compromise”. In: First ACM Conference
on Computer and Communications Security. 244–250.

Bengtson, J., K. Bhargavan, C. Fournet, A. Gordon, and S. Maffeis. 2011.
“Refinement Types for Secure Implementations”. ACM Transactions
on Programming Languages and Systems. 33(2).

Beurdouche, B., K. Bhargavan, A. Delignat-Lavaud, C. Fournet, M.
Kohlweiss, A. Pironti, P.-Y. Strub, and J. K. Zinzindohoue. 2015.
“A Messy State of the Union: Taming the Composite State Ma-
chines of TLS”. In: IEEE Symposium on Security & Privacy 2015
(Oakland’15). IEEE.

Bhargavan, K., R. Corin, and C. Fournet. 2007. “Crypto-Verifying
Protocol Implementations in ML”. http://doc.utwente.nl/64107/1/
fs2cv.pdf.

http://doc.utwente.nl/64107/1/fs2cv.pdf
http://doc.utwente.nl/64107/1/fs2cv.pdf


124 References

Bhargavan, K., R. Corin, C. Fournet, and E. Zălinescu. 2008. “Cryp-
tographically Verified Implementations for TLS”. In: 15th ACM
Conference on Computer and Communications Security (CCS’08).
ACM. 459–468.

Bhargavan, K., C. Fournet, and A. Gordon. 2004. “Verifying Policy-
Based Security for Web Services”. In: ACM Conference on Computer
and Communications Security (CCS’04). Washington DC: ACM.
268–277.

Bhargavan, K., C. Fournet, and A. Gordon. 2010. “Modular Verification
of Security Protocol Code by Typing”. In: ACM Symposium on
Principles of Programming Languages (POPL’10). Madrid, Spain:
ACM. 445–456.

Bhargavan, K., C. Fournet, A. Gordon, and S. Tse. 2006. “Verified
interoperable implementations of security protocols”. In: 19th IEEE
Computer Security Foundations Workshop (CSFW’06). Venice, Italy:
IEEE Computer Society. 139–152.

Bhargavan, K., C. Fournet, M. Kohlweiss, A. Pironti, and P.-Y. Strub.
2013. “Implementing TLS with Verified Cryptographic Security”.
In: IEEE Symposium on Security & Privacy. 445–462.

Blanchet, B. 2004. “Automatic Proof of Strong Secrecy for Security
Protocols”. In: IEEE Symposium on Security and Privacy. Oakland,
California. 86–100.

Blanchet, B. 2008a. “A Computationally Sound Mechanized Prover for
Security Protocols”. IEEE Transactions on Dependable and Secure
Computing. 5(4): 193–207.

Blanchet, B. 2008b. “Vérification automatique de protocoles cryp-
tographiques : modèle formel et modèle calculatoire”. Mémoire
d’habilitation à diriger des recherches. Université Paris-Dauphine.

Blanchet, B. 2009. “Automatic Verification of Correspondences for
Security Protocols”. Journal of Computer Security. 17(4): 363–434.

Blanchet, B. 2011. “Using Horn Clauses for Analyzing Security Pro-
tocols”. In: Formal Models and Techniques for Analyzing Security
Protocols. Ed. by V. Cortier and S. Kremer. Vol. 5. Cryptology and
Information Security Series. IOS Press. 86–111.



References 125

Blanchet, B. 2012a. “Mechanizing Game-Based Proofs of Security Pro-
tocols”. In: Software Safety and Security - Tools for Analysis and
Verification. Ed. by T. Nipkow, O. Grumberg, and B. Hauptmann.
Vol. 33. NATO Science for Peace and Security Series – D: Informa-
tion and Communication Security. Proceedings of the 2011 MOD
summer school. IOS Press. 1–25.

Blanchet, B. 2012b. “Security Protocol Verification: Symbolic and Com-
putational Models”. In: First Conference on Principles of Security
and Trust (POST’12). Ed. by P. Degano and J. Guttman. Vol. 7215.
Lecture Notes in Computer Science. Tallinn, Estonia: Springer. 3–29.

Blanchet, B. 2014. “Automatic Verification of Security Protocols in
the Symbolic Model: the Verifier ProVerif”. In: Foundations of
Security Analysis and Design VII, FOSAD Tutorial Lectures. Ed. by
A. Aldini, J. Lopez, and F. Martinelli. Vol. 8604. Lecture Notes in
Computer Science. Springer. 54–87.

Blanchet, B., M. Abadi, and C. Fournet. 2008. “Automated Verification
of Selected Equivalences for Security Protocols”. Journal of Logic
and Algebraic Programming. 75(1): 3–51.

Blanchet, B. and A. Chaudhuri. 2008. “Automated Formal Analysis of
a Protocol for Secure File Sharing on Untrusted Storage”. In: IEEE
Symposium on Security and Privacy. IEEE. Oakland, CA. 417–431.

Blanchet, B. and A. Podelski. 2005. “Verification of Cryptographic
Protocols: Tagging Enforces Termination”. Theoretical Computer
Science. 333(1-2): 67–90. Special issue FoSSaCS’03.

Blanchet, B. and B. Smyth. 2016. “Automated reasoning for equivalences
in the applied pi calculus with barriers”. In: 29th IEEE Computer
Security Foundations Symposium (CSF’16). Lisboa, Portugal: IEEE.
310–324.

Blanchet, B., B. Smyth, and V. Cheval. 2016. “ProVerif 1.94pl1: Auto-
matic Cryptographic Protocol Verifier, User Manual and Tutorial”.
Available at http://proverif.inria.fr/manual.pdf.

Boichut, Y., N. Kosmatov, and L. Vigneron. 2006. “Validation of Prouvé
protocols using the automatic tool TA4SP”. In: Third Taiwanese-
French Conference on Information Technology (TFIT 2006). Nancy,
France. 467–480.

http://proverif.inria.fr/manual.pdf


126 References

Bruni, A., S. Mödersheim, F. Nielson, and H. R. Nielson. 2015. “Set-Pi:
Set Membership Pi-Calculus”. In: 28th IEEE Computer Security
Foundations Symposium (CSF’15). Verona, Italy: IEEE. 185–198.

Cadé, D. and B. Blanchet. 2013. “From Computationally-Proved Pro-
tocol Specifications to Implementations and Application to SSH”.
Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JoWUA). 4(1): 4–31.

Cadé, D. and B. Blanchet. 2015. “Proved Generation of Implementations
from Computationally Secure Protocol Specifications”. Journal of
Computer Security. 23(3): 331–402.

Canetti, R. and J. Herzog. 2006. “Universally Composable Symbolic
Analysis of Mutual Authentication and Key Exchange Protocols”. In:
Proceedings, Theory of Cryptography Conference (TCC’06). Ed. by S.
Halevi and T. Rabin. Vol. 3876. Lecture Notes in Computer Science.
Extended version available at http://eprint.iacr.org/2004/334. New
York, NY: Springer. 380–403.

Chadha, R., S. Ciobâca, and S. Kremer. 2012. “Automated Verification
of Equivalence Properties of Cryptographic Protocols”. In: 21st Eu-
ropean Symposium on Programming (ESOP’12). Vol. 7211. Lecture
Notes in Computer Science. Springer. 108–127.

Chaki, S. and A. Datta. 2009. “ASPIER: An Automated Framework
for Verifying Security Protocol Implementations”. In: 22nd IEEE
Computer Security Foundations Symposium (CSF’09). Port Jefferson,
NY, USA. 172–185.

Cheval, V. and B. Blanchet. 2013. “Proving More Observational Equiv-
alences with ProVerif”. In: 2nd Conference on Principles of Security
and Trust (POST 2013). Ed. by D. Basin and J. Mitchell. Vol. 7796.
Lecture Notes in Computer Science. Rome, Italy: Springer. 226–246.

Cheval, V., H. Comon-Lundh, and S. Delaune. 2011. “Trace Equivalence
Decision: Negative Tests and Non-determinism”. In: Proceedings
of the 18th ACM Conference on Computer and Communications
Security (CCS’11). Chicago, Illinois, USA: ACM. 321–330.

http://eprint.iacr.org/2004/334


References 127

Chevalier, Y., R. Küsters, M. Rusinowitch, and M. Turuani. 2003. “De-
ciding the Security of Protocols with Diffie-Hellman Exponentiation
and Products in Exponents”. In: FST TCS 2003: Foundations of
Software Technology and Theoretical Computer Science, 23rd Con-
ference. Ed. by P. K. Pandya and J. Radhakrishnan. Vol. 2914.
Lecture Notes in Computer Science. Mumbai, India: Springer. 124–
135.

Chevalier, Y., R. Küsters, M. Rusinowitch, and M. Turuani. 2005. “An
NP decision procedure for protocol insecurity with XOR”. Theoreti-
cal Computer Science. 338(1–3): 247–274.

Chothia, T., B. Smyth, and C. Staite. 2015. “Automatically Checking
Commitment Protocols in ProVerif without False Attacks”. In: Prin-
ciples of Security and Trust, 4th International Conference, POST
2015. Ed. by R. Focardi and A. Myers. Vol. 9036. Lecture Notes in
Computer Science. London, UK: Springer. 137–155.

Chrétien, R., V. Cortier, and S. Delaune. 2015a. “Decidability of trace
equivalence for protocols with nonces”. In: 28th IEEE Computer
Security Foundations Symposium (CSF’15). Verona, Italy: IEEE
Computer Society. 170–184. doi: 10.1109/CSF.2015.19.

Chrétien, R., V. Cortier, and S. Delaune. 2015b. “From security protocols
to pushdown automata”. ACM Transactions on Computational Logic.
17(1:3). doi: 10.1145/2811262.

Ciobâcă, Ş. 2011. “Automated Verification of Security Protocols with
Applications to Electronic Voting”. PhD thesis. ENS Cachan.

Cohen, E. 2002. “Proving Protocols Safe from Guessing”. In: Founda-
tions of Computer Security. Copenhagen, Denmark.

Comon-Lundh, H. and V. Cortier. 2003. “New Decidability Results for
Fragments of First-Order Logic and Application to Cryptographic
Protocols”. In: 14th Int. Conf. Rewriting Techniques and Applica-
tions (RTA’2003). Ed. by R. Nieuwenhuis. Vol. 2706. Lecture Notes
in Computer Science. Valencia, Spain: Springer. 148–164.

http://dx.doi.org/10.1109/CSF.2015.19
http://dx.doi.org/10.1145/2811262


128 References

Comon-Lundh, H. and S. Delaune. 2005. “The finite variant property:
How to get rid of some algebraic properties”. In: Proceedings of
the 16th International Conference on Rewriting Techniques and
Applications (RTA’05). Ed. by J. Giesl. Vol. 3467. Lecture Notes in
Computer Science. Nara, Japan: Springer. 294–307.

Comon-Lundh, H. and V. Shmatikov. 2003. “Intruder deductions, con-
straint solving and insecurity decision in presence of exclusive or”.
In: Symposium on Logic in Computer Science (LICS’03). Ottawa,
Canada: IEEE Computer Society. 271–280.

Corin, R., J. M. Doumen, and S. Etalle. 2004. “Analysing Password
Protocol Security Against Off-line Dictionary Attacks”. In: 2nd Int.
Workshop on Security Issues with Petri Nets and other Computa-
tional Models (WISP). Electronic Notes in Theoretical Computer
Science.

Corin, R., S. Malladi, J. Alves-Foss, and S. Etalle. 2003. “Guess What?
Here is a New Tool that Finds some New Guessing Attacks”. In:
Workshop on Issues in the Theory of Security (WITS’03). Ed. by
R. Gorrieri. Warsaw, Poland.

Cortier, V., H. Hördegen, and B. Warinschi. 2006. “Explicit Random-
ness is not Necessary when Modeling Probabilistic Encryption”. In:
Workshop on Information and Computer Security (ICS 2006). Ed. by
C. Dima, M. Minea, and F. Tiplea. Vol. 186. Electronic Notes in
Theoretical Computer Science. Timisoara, Romania: Elsevier. 49–65.

Cortier, V., S. Kremer, and B. Warinschi. 2011. “A Survey of Symbolic
Methods in Computational Analysis of Cryptographic Systems”.
Journal of Automated Reasoning. 46(3-4): 225–259.

Cortier, V., M. Rusinowitch, and E. Zălinescu. 2007. “Relating two
standard notions of secrecy”. Logical Methods in Computer Science.
3(3).

Cortier, V. and C. Wiedling. 2012. “A formal analysis of the Norwegian
E-voting protocol”. In: Proceedings of the 1st International Con-
ference on Principles of Security and Trust (POST’12). Ed. by P.
Degano and J. D. Guttman. Vol. 7215. Lecture Notes in Computer
Science. Tallinn, Estonia: Springer. 109–128.



References 129

Cremers, C. J. 2008. “Unbounded verification, falsification, and charac-
terization of security protocols by pattern refinement”. In: 15th ACM
conference on Computer and Communications Security (CCS’08).
Alexandria, Virginia, USA: ACM. 119–128.

Delaune, S. and F. Jacquemard. 2004. “A Theory of Dictionary Attacks
and its Complexity”. In: 17th IEEE Computer Security Foundations
Workshop. Pacific Grove, CA: IEEE. 2–15.

Delaune, S., S. Kremer, and M. D. Ryan. 2009. “Verifying Privacy-type
Properties of Electronic Voting Protocols”. Journal of Computer
Security. 17(4): 435–487.

Delaune, S., S. Kremer, M. D. Ryan, and G. Steel. 2011. “Formal analysis
of protocols based on TPM state registers”. In: Proceedings of the
24th IEEE Computer Security Foundations Symposium (CSF’11).
Cernay-la-Ville, France: IEEE Computer Society. 66–82.

Delaune, S., M. Ryan, and B. Smyth. 2008. “Automatic verification
of privacy properties in the applied pi calculus”. In: Second Joint
iTrust and PST Conferences on Privacy, Trust Management and Se-
curity (IFIPTM’08). Ed. by Y. Karabulut, J. Mitchell, P. Herrmann,
and C. D. Jensen. Vol. 263. IFIP Advances in Information and
Communication Technology. Trondheim, Norway: Springer. 263–278.

Denning, D. E. and G. M. Sacco. 1981. “Timestamps in Key Distribution
Protocols”. Communications of the ACM. 24(8): 533–536.

Diffie, W. and M. Hellman. 1976. “New Directions in Cryptography”.
IEEE Transactions on Information Theory. IT-22(6): 644–654.

Dolev, D. and A. C. Yao. 1983. “On the Security of Public Key Proto-
cols”. IEEE Transactions on Information Theory. IT-29(12): 198–
208.

Dreier, J., P. Lafourcade, and Y. Lakhnech. 2013. “Formal Verifica-
tion of e-Auction Protocols”. In: Principles of Security and Trust
(POST’13). Ed. by D. Basin and J. Mitchell. Vol. 7796. Lecture
Notes in Computer Science. Rome, Italy: Springer. 247–266.



130 References

Drielsma, P. H., S. Mödersheim, and L. Viganò. 2005. “A Formalization
of Off-line Guessing for Security Protocol Analysis”. In: Logic for
Programming, Artificial Intelligence, and Reasoning: 11th Interna-
tional Conference, LPAR 2004. Ed. by F. Baader and A. Voronkov.
Vol. 3452. Lecture Notes in Computer Science. Montevideo, Uruguay:
Springer. 363–379.

Dupressoir, F., A. D. Gordon, J. Jürjens, and D. A. Naumann. 2011.
“Guiding a General-Purpose C Verifier to Prove Cryptographic Proto-
cols”. In: 24th IEEE Symposium on Computer Security Foundations
(CSF’11). Paris, France: IEEE Computer Society. 3–17.

Durgin, N., P. Lincoln, J. C. Mitchell, and A. Scedrov. 2004. “Multiset
Rewriting and the Complexity of Bounded Security Protocols”.
Journal of Computer Security. 12(2): 247–311.

Escobar, S., J. Hendrix, C. Meadows, and J. Meseguer. 2007. “Diffie-
Hellman cryptographic reasoning in the Maude-NRL protocol an-
alyzer”. In: Proc. 2nd International Workshop on Security and
Rewriting Techniques (SecReT 2007).

Escobar, S., D. Kapur, C. Lynch, C. Meadows, J. Meseguer, P. Naren-
dran, and R. Sasse. 2011. “Protocol analysis in Maude-NPA using
unification modulo homomorphic encryption”. In: 13th international
ACM SIGPLAN symposium on Principles and practices of declara-
tive programming (PPDP’11). Odense, Denmark: ACM. 65–76.

Escobar, S., C. Meadows, and J. Meseguer. 2006. “A rewriting-based
inference system for the NRL Protocol Analyzer and its meta-logical
properties”. Theoretical Computer Science. 367(1-2): 162–202.

Fournet, C. and M. Kohlweiss. 2011. “Modular Cryptographic Verifica-
tion by Typing”. In: 7th Workshop on Formal and Computational
Cryptography (FCC’11). Paris, France.

Godskesen, J. C. 2006. “Formal Verification of the ARAN Protocol
Using the Applied Pi-calculus”. In: Sixth International IFIP WG 1.7
Workshop on Issues in the Theory of Security (WITS’06). Vienna,
Austria. 99–113.

Gordon, A. and A. Jeffrey. 2004. “Types and Effects for Asymmetric
Cryptographic Protocols”. Journal of Computer Security. 12(3/4):
435–484.



References 131

Goubault-Larrecq, J. 2005. “Deciding H1 by resolution”. Information
Processing Letters. 95(3): 401–408.

Goubault-Larrecq, J. and F. Parrennes. 2005. “Cryptographic Protocol
Analysis on Real C Code”. In: 6th International Conference on Ver-
ification, Model Checking and Abstract Interpretation (VMCAI’05).
Ed. by R. Cousot. Vol. 3385. Lecture Notes in Computer Science.
Paris, France: Springer. 363–379.

Heather, J., G. Lowe, and S. Schneider. 2000. “How to Prevent Type
Flaw Attacks on Security Protocols”. In: 13th IEEE Computer
Security Foundations Workshop (CSFW-13). Cambridge, England.
255–268.

Hüttel, H. 2003. “Deciding Framed Bisimilarity”. Electronic Notes in
Theoretical Computer Science. 68(6): 1–20. Special issue Infinity’02:
4th International Workshop on Verification of Infinite-State Systems.

Kallahalla, M., E. Riedel, R. Swaminathan, Q. Wang, and K. Fu. 2003.
“Plutus: Scalable secure file sharing on untrusted storage”. In: 2nd
Conference on File and Storage Technologies (FAST’03). San Fran-
cisco, CA: Usenix. 29–42.

Khurana, H. and H.-S. Hahm. 2006. “Certified Mailing Lists”. In: ACM
Symposium on Communication, Information, Computer and Com-
munication Security (ASIACCS’06). Taipei, Taiwan: ACM. 46–58.

Kowalski, R. 1974. “Predicate Logic as Programming Language”. In:
Proceedings IFIP Congress. Stockholm: North Holland. 569–574.

Kremer, S. and R. Künnemann. 2014. “Automated Analysis of Security
Protocols with Global State”. In: 35th IEEE Symposium on Security
and Privacy (S&P’14). San Jose, CA, USA: IEEE Computer Society.

Kremer, S. and M. D. Ryan. 2005. “Analysis of an Electronic Voting
Protocol in the Applied Pi Calculus”. In: Programming Languages
and Systems: 14th European Symposium on Programming, ESOP
2005. Ed. by M. Sagiv. Vol. 3444. Lecture Notes in Computer Science.
Edimbourg, UK: Springer. 186–200.

Küsters, R. and T. Truderung. 2008. “Reducing protocol analysis with
XOR to the XOR-free case in the Horn theory based approach”. In:
15th ACM conference on Computer and communications security
(CCS’08). Alexandria, Virginia, USA: ACM. 129–138.



132 References

Küsters, R. and T. Truderung. 2009. “Using ProVerif to Analyze Proto-
cols with Diffie-Hellman Exponentiation”. In: 22nd IEEE Computer
Security Foundations Symposium (CSF’09). Port Jefferson, New
York, USA: IEEE. 157–171.

Lowe, G. 1996. “Breaking and Fixing the Needham-Schroeder Public-
Key Protocol using FDR”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems. Vol. 1055. Lecture Notes in Computer
Science. Springer. 147–166.

Lowe, G. 1997. “A Hierarchy of Authentication Specifications”. In:
10th Computer Security Foundations Workshop (CSFW ’97). IEEE
Computer Society. Rockport, Massachusetts. 31–43.

Lowe, G. 2002. “Analyzing Protocols Subject to Guessing Attacks”. In:
Workshop on Issues in the Theory of Security (WITS’02). Portland,
Oregon.

Lux, K. D., M. J. May, N. L. Bhattad, and C. A. Gunter. 2005. “WSE-
mail: Secure Internet Messaging Based on Web Services”. In: Inter-
national Conference on Web Services (ICWS’05). Orlando, Florida:
IEEE Computer Society. 75–82.

Meadows, C. A. 1996. “The NRL Protocol Analyzer: An Overview”.
Journal of Logic Programming. 26(2): 113–131.

Meadows, C. and P. Narendran. 2002. “A Unification Algorithm for
the Group Diffie-Hellman Protocol”. In: Workshop on Issues in the
Theory of Security (WITS’02). Portland, Oregon.

Meier, S., C. Cremers, and D. Basin. 2010. “Strong Invariants for
the Efficient Construction of Machine-Checked Protocol Security
Proofs”. In: 23rd IEEE Computer Security Foundations Symposium
(CSF’10). Edinburgh, UK: IEEE. 231–245.

Milicia, G. 2002. “χ-Spaces: Programming Security Protocols”. In: 14th
Nordic Workshop on Programming Theory (NWPT’02). Tallinn,
Estonia.

Millen, J. 1999. “A Necessarily Parallel Attack”. In:Workshop on Formal
Methods and Security Protocols (FMSP’99). Trento, Italy.

Milner, R., J. Parrow, and D. Walker. 1992. “A Calculus of Mobile
Processes, parts I and II”. Information and Computation. 100(Sept.):
1–40 and 41–77.



References 133

Mödersheim, S. 2010. “Abstraction by Set-Membership: Verifying Se-
curity Protocols and Web Services with Databases”. In: 17th ACM
Conference on Computer and Communications Security (CCS 2010).
ACM. Chicago, IL, USA. 351–360.

Mödersheim, S. and L. Viganò. 2009. “The Open-source Fixed-point
Model Checker for Symbolic Analysis of Security Protocols”. In:
Foundations of Security Analysis and Design V, FOSAD 2007 /
2008 / 2009 Tutorial Lectures. Ed. by A. Aldini, G. Barthe, and
R. Gorrieri. Vol. 5705. Lecture Notes in Computer Science. Springer.
166–194.

Monniaux, D. 2003. “Abstracting Cryptographic Protocols with Tree
Automata”. Science of Computer Programming. 47(2–3): 177–202.

Mukhamedov, A., A. D. Gordon, and M. Ryan. 2013. “Towards a
Verified Reference Implementation of a Trusted Platform Module”.
In: Security Protocols XVII. Ed. by B. Christianson, J. A. Malcolm,
V. Matyáš, and M. Roe. Vol. 7028. Lecture Notes in Computer
Science. Springer. 69–81.

Needham, R. M. and M. D. Schroeder. 1978. “Using Encryption for
Authentication in Large Networks of Computers”. Communications
of the ACM. 21(12): 993–999.

O’Shea, N. 2008. “Using Elyjah to Analyse Java Implementations of
Cryptographic Protocols”. In: Joint Workshop on Foundations of
Computer Security, Automated Reasoning for Security Protocol Anal-
ysis and Issues in the Theory of Security (FCS-ARSPA-WITS’08).
Pittsburgh, PA, USA.

Pankova, A. and P. Laud. 2012. “Symbolic Analysis of Cryptographic
Protocols Containing Bilinear Pairings”. In: 25th IEEE Computer
Security Foundations Symposium (CSF’12). Cambridge, MA: IEEE.
63–77.

Paulson, L. C. 1998. “The Inductive Approach to Verifying Crypto-
graphic Protocols”. Journal of Computer Security. 6(1–2): 85–128.

Pironti, A. and R. Sisto. 2010. “Provably Correct Java Implementations
of Spi Calculus Security Protocols Specifications”. Computers and
Security. 29(3): 302–314.



134 References

Pottier, F. 2002. “A Simple View of Type-Secure Information Flow
in the π-Calculus”. In: 15th IEEE Computer Security Foundations
Workshop. Cape Breton, Nova Scotia. 320–330.

Pottier, F. and V. Simonet. 2002. “Information Flow Inference for ML”.
In: 29th ACM Symposium on Principles of Programming Languages
(POPL’02). Portland, Oregon. 319–330.

Pozza, D., R. Sisto, and L. Durante. 2004. “Spi2Java: Automatic cryp-
tographic protocol Java code generation from spi calculus”. In: 18th
International Conference on Advanced Information Networking and
Applications (AINA’04). Vol. 1. Fukuoka, Japan: IEEE Computer
Society. 400–405.

Ramanujam, R. and S. Suresh. 2003. “Tagging Makes Secrecy Decidable
with Unbounded Nonces as Well”. In: FST TCS 2003: Foundations
of Software Technology and Theoretical Computer Science. Ed. by P.
Pandya and J. Radhakrishnan. Vol. 2914. Lecture Notes in Computer
Science. Mumbai, India: Springer. 363–374.

Rusinowitch, M. and M. Turuani. 2003. “Protocol Insecurity with Finite
Number of Sessions is NP-complete”. Theoretical Computer Science.
299(1–3): 451–475.

Santiago, S., S. Escobar, C. Meadows, and J. Meseguer. 2014. “A Formal
Definition of Protocol Indistinguishability and Its Verification Using
Maude-NPA”. In: Security and Trust Management (STM’14). Ed. by
S. Mauw and C. D. Jensen. Vol. 8743. Lecture Notes in Computer
Science. Wroclaw, Poland: Springer. 162–177.

Schmidt, B., S. Meier, C. Cremers, and D. Basin. 2012. “Automated
Analysis of Diffie-Hellman Protocols and Advanced Security Prop-
erties”. In: 25th IEEE Computer Security Foundations Symposium
(CSF’12). Cambridge, MA, USA: IEEE Computer Society. 78–94.

Schmidt, B., R. Sasse, C. Cremers, and D. Basin. 2014. “Automated
Verification of Group Key Agreement Protocols”. In: 2014 IEEE
Symposium on Security and Privacy. San Jose, CA: IEEE. 179–194.

Smyth, B., M. D. Ryan, and L. Chen. 2015. “Formal analysis of privacy
in Direct Anonymous Attestation schemes”. Science of Computer
Programming. 111(2): 300–317.



References 135

Song, D., A. Perrig, and D. Phan. 2001. “AGVI—Automatic Genera-
tion, Verification, and Implementation of Security Protocols”. In:
Computer Aided Verification (CAV’01). Ed. by G. Berry, H. Comon,
and A. Finkel. Vol. 2102. Lecture Notes in Computer Science. Paris,
France: Springer. 241–245.

Swamy, N., J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J.
Yang. 2011. “Secure Distributed Programming with Value-dependent
Types”. In: 16th International Conference on Functional Program-
ming (ICFP 2011). Tokyo, Japan: ACM. 266–278.

Tiu, A. and J. Dawson. 2010. “Automating Open Bisimulation Checking
for the Spi Calculus”. In: 23rd IEEE Computer Security Foundations
Symposium (CSF’10). Edinburgh, UK: IEEE. 307–321.

Turuani, M. 2006. “The CL-Atse Protocol Analyser”. In: Term Rewriting
and Applications, 17th International Conference, RTA 2006. Ed. by
F. Pfenning. Vol. 4098. Lecture Notes in Computer Science. Seattle,
WA: Springer. 277–286.

Weidenbach, C. 1999. “Towards an Automatic Analysis of Security
Protocols in First-Order Logic”. In: 16th International Conference
on Automated Deduction (CADE-16). Ed. by H. Ganzinger. Vol. 1632.
Lecture Notes in Artificial Intelligence. Trento, Italy: Springer. 314–
328.

Woo, T. Y. C. and S. S. Lam. 1993. “A Semantic Model for Authen-
tication Protocols”. In: IEEE Symposium on Research in Security
and Privacy. Oakland, California. 178–194.


	Introduction
	Verifying security protocols
	Structure of ProVerif
	Comparison with previous surveys

	The Protocol Specification Language
	Core language: syntax and informal semantics
	An example of protocol
	Core language: type system
	Core language: formal semantics
	Extensions

	Verifying Security Properties
	Adversary
	Secrecy

	Link with the Applied Pi Calculus
	Applications
	Case studies

	Conclusion
	Acknowledgments
	Appendices
	Proof of Theorem 3.5
	Proofs for Chapter 4
	Proof of Proposition 4.1
	Proof of Propositions 4.2 and 4.3
	Relating definitions of observational equivalence

	References



