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Abstract

Let Sn denote the network of all RNA secondary structures of length n, in which
undirected edges exist between structures s, t such that t is obtained from s by the
addition, removal or shift of a single base pair. Using context-free grammars, generating
functions and complex analysis, we show that the asymptotic average degree is O(n)
and that the asymptotic clustering coefficient is O(1/n), from which it follows that the
family Sn, n = 1, 2, 3, . . . of secondary structure networks is not small-world.

1 Introduction

Small-world networks, first introduced in Watts and Strogatz (1998), satisfy two properties:
(1) the shortest path distance between any two nodes is “small” (intuitively, there are six
degrees of separation Guare (1990) between any two persons), and (2) the average clustering
coefficient is large (intuitively, friends of a person tend to be friends of each other). Small-
world networks appear to be ubiquitous in biology, sociology, and information technology;
indeed, examples include the neural network of Caenorhabditis elegans Watts and Strogatz
(1998), metabolic networks of 43 organisms representing all three domains of life Jeong et al.
(2000), the gene co-expression in S. cerevisiae Van Noort et al. (2004), protein folding net-
works, where nodes correspond to conformations (self-avoiding walks on a 2D lattice) and
edges exist between nodes that are connected by an elementary move Scala et al. (2001),
and Markov state models of protein folding networks inferred by the software MSMBuilder

Bowman et al. (2009) from molecular dynamics folding trajectories for the protein villin Bow-
man and Pande (2010), etc. Additionally, Wuchty (2003) showed by exhaustive enumeration
of low energy RNA secondary structures of E. coli phe-tRNA, that the corresponding net-
work architecture displays small-world properties. For additional examples, see the excellent
review of Albert and Barabási Albert and Barabási (2002).

∗Corresponding author: clote@bc.edu
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In this paper, we investigate asymptotic properties of degree and clustering coefficient
for the ensemble of all RNA secondary structures, by using methods from algebraic combi-
natorics. In particular, we rigorously prove that the network of RNA secondary structures
is asymptotically not small-world, although it displays strong differences from random net-
works.

2 Preliminaries

In this section, we define notions of RNA secondary structure, move sets MS1,MS2, and
small-world networks. An RNA secondary structure of length n, subsequently called length
n structure, is defined to be a set s of ordered pairs (i, j), with 1 ≤ i < j ≤ n, such that:
(1) There are no base triples; i.e. if (i, j), (k, `) ∈ s and {i, j} ∩ {k, `} 6= ∅, then i = k and
j = `. (2) There are no pseudoknots; i.e. if (i, j), (k, `) ∈ s, then it is not the case that
i < k < j < `. (3) There are at least θ = 3 unpaired bases in a hairpin loop; i.e. if (i, j) ∈ s,
then j − i > θ = 3. Note that base pairs are not required to be Watson-Crick or wobble
pairs, as is the case for RNA molecules, such as that depicted in Figure 1a. This definition,
sometime called homopolymer secondary structure, permits the combinatorial analysis we
employ to show that RNA networks are not small-world.

Let Sn denote the set of all length n structures. The move sets MS1 and MS2, defined
in Flamm et al. (2000) for RNA secondary folding kinetics, describe elementary moves that
transform a structure s into another structure t. Move set MS1 [resp. MS2] consists of
either removing or adding [resp. removing, adding or shifting] a single base pair, provided
the resulting set of base pairs constitutes a valid structure, where shift moves are depicted in
Figure 2. We overload the notation Sn to also denote the MS1 network [resp. MS2 network],
whose nodes are the length n structures, where an undirected edge between structures s, t
exists when t is obtained from s by a single move from MS1 [resp. MS2]. Figure 1b shows
the MS1 network (8 red edges) [resp. MS2 network (8 red and 8 blue edges)] for length 7
structures, where there are 8 nodes, MS1 degree 16

8
= 2 and MS2 degree 32

8
= 4. See Clote

(2015b) and Clote and Bayegan (2015) for dynamic programming algorithms that compute,
respectively, the MS1 and MS2 degree for the network of secondary structures of a given
RNA sequence.

Small-world networks satisfy two conditions: (1) on average, the minimum path length
between any two nodes is small, (2) neighbors of a node tend to be connected to each other.
The global clustering coefficient, defined in equation (77) of Newman et al. (2001), is given
by

Cg(G) =
3× number of triangles

number of connected triples
(1)

where a triangle is a set {x, y, z} of nodes, each of which is connected by an edge, and a
(connected) triple is a set {x, y, z} of nodes, such that there is an edge from x to y and
an edge from x to z. Following Cont and Tanimura (2008), the family {Sn, n = 1, 2, 3, . . .}
of RNA networks is small-world if the following conditions hold. (1) There is a constant
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c1 ≥ 0, such that the minimum path length between any two nodes of Sn is bounded above
by c1 lnn. (2) There is a constant c2 ≥ 0, such that the average network degree of Sn is
bounded above by c2 lnn. (3) The global clustering coefficient is bounded away from zero.
By Theorem 2, the network size of Sn is exponential in n. Since there are at most n/2 base
pairs in any length n structure, condition (1) is satisfied for both the MS1 and MS2 networks
of RNA structures. It is easy to see that the clustering coefficient of the MS1 network of
RNA structures is zero, so in the remainder of the paper, we concentrate on conditions (2)
and (3) for the MS2 RNA network.

Specific properties of RNA networks critically depend on the chosen definition of neigh-
borhood of a structure, leading to the investigation of various move sets in the RNA kinetics
literature. In addition to the move sets MS1 and MS2 Flamm et al. (2000), which latter also
models defect diffusion Pörschke (1974), other groups have considered more general move
sets that allow helix formation and disassociations Isambert and Siggia (2000).

The overall method used is as follows: (1) Give a context-free grammar that generates
the set of all secondary structures, possibly containing a specific motif. (2) Use Table 1
to derive and then solve a functional relation for the complex generating function S(z),
with the property that the nth Taylor coefficient of S(z), denoted [zn]S(z), is equal to
the number of length n structures, possibly containing a specific motif. (3) Determine the
dominant singularity and apply complex analysis Flajolet and Odlyzko (1990) to obtain the
asymptotic value of [zn]S(z). For step (3), we use the Flajolet-Odlyzko Theorem, stated as
Corollary 2, part (i) on page 224 of Flajolet and Odlyzko (1990). Before stating the theorem,
we define the dominant singularity of complex function f(z) to be the complex number ρ
having smallest absolute value (or modulus) at which f(z) is not differentiable.

Theorem 1 (Flajolet and Odlyzko) Assume that f(z) has a dominant singularity at z =
ρ > 0, is analytic for z 6= ρ satisfying |z| ≤ |ρ|, and that

lim
z→ρ

f(z) = K(1− z/ρ)α. (2)

Then, as n→∞, if α /∈ 0, 1, 2, ...,

fn = [zn]f(z) ∼ K

Γ(−α)
· n−α−1 · ρ−n

where ∼ denotes asymptotic equality and Γ denotes the Gamma function.

The plan of the paper is now as follows. In Section 3, we show that the average MS2 degree
of Sn is O(n). In Section 4.2 [resp. 4.2] we prove that the average number of triangles
[resp. triples] per structure is O(n) [resp. O(n2)], which implies that the asymptotic global
clustering coefficient is O(1/n), hence not bounded away from zero. It follows that the family
of RNA secondary structure networks is not small-world.

3 Expected network degree

Due to space constraints, details for the computation of the asymptotic number of secondary
structures as well as for MS1 expected degree for homopolymers cannot be given in this
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paper. Nevertheless, these computations can be found in Clote (2015a), from which we take
the following results. Recalling the notation ∼ for asymptotic equality, we have

Theorem 2 If S(z) is the generating function for the number of secondary structures for a
homopolymer, then

[zn]S(z) ∼ 0.713121 · n−3/2 · 2.28879n

If MS1degree(n) denotes the MS1 expected network degree for a homopolymer, then

MS1degree(n) ∼ 0.473475 · n

Define the grammar G to consist of the terminal symbols ( , •, ) , 〈 , ?, 〉 , nonterminal

symbols Ŝ, T̂ , S, R, θ, with start symbol Ŝ. Shift moves are represented in the grammar by
one of the three expressions: ? 〉 〉 , 〈 〈 ?, 〈 ? 〉 , as depicted in Figure 2. In particular, ? 〉 〉
represents the right shift depicted in Figure 2a (ignoring possible intervening structure),
where base pair (x, y) is transformed to (x, y′) for x < y′ < y; alternatively, the ? 〉 〉 can
represent the shift (x, y) to (x, y′) for x < y < y′, as depicted in Figure 2b. The expression
〈 〈 ? can represent the left shift depicted in Figure 2c, where base pair (x, y) is transformed
to (x′, y) for x < x′ < y; alternatively, 〈 〈 ? can represent the shift (x, y) to (x′, y) for
x′ < x < y, as depicted in Figure 2d. The expression 〈 ? 〉 can represent the right-to-left
shift depicted in Figure 2e, where base pair (x, y) is transformed to (y′, x) for y′ < x < y;
alternatively, 〈 ? 〉 can represent the shift (x, y) to (y, x′) for x < y < x′, as depicted in
Figure 2f. The grammar G allows us to count the number of secondary structures, that
additionally contain a unique occurrence of exactly one of the three expressions: ? 〉 〉 , 〈 〈 ?,
〈 ? 〉 . Since two shift moves correspond to each of the previous three expressions, it follows
that the total number of MS2 −MS1 (shift-only) moves, summed over all structures for a
homopolymer of length n with θ = 1, is equal to 2[zn]S†(z).

The production rules of grammar G are as follows:

Ŝ → Ŝ • | ( Ŝ ) |S ( Ŝ ) | Ŝ (R ) | T̂
T̂ → ?R 〉 〉 |S ? R 〉 〉 | ? R 〉S 〉 |S ? R 〉S 〉 |
〈 〈R ? |S 〈 〈R ? | 〈S 〈R ? |S 〈S 〈R ? |
〈R ? R 〉 |S 〈R ? R 〉

S → • |S • | (R ) |S (R )

R→ θ |R • | (R ) |S (R )

θ → • • • (3)

The nonterminal S is responsible for generating all secondary structures of length greater
than or equal to 1. In contrast, the nonterminal Ŝ is responsible for generating all well-
balanced expressions of length greater than or equal to 1, that involve exactly one of the
three expressions: ? 〉 〉 , 〈 〈 ?, 〈 ? 〉 . To that end, the nonterminal T̂ is responsible for
generating all such expressions, in which the rightmost symbol is either 〉 or ?, but not • or

4



) . By induction on length of sequence generated, one can show that G is an nonambiguous
context-free grammar that generates all secondary structures having a unique occurrence of
one of ? 〉 〉 , 〈 〈 ?, 〈 ? 〉 . As mentioned before, 2 times the number of such expressions of
length n is equal to the number of MS2−MS1 edges in the network of secondary structures.

As explained in Lorenz et al. (2008) and Flajolet and Sedgewick (2009), it is possible to
automatically transform the previous production rules into equations that relate the corre-
sponding generating functions, where we denote generating functions of Ŝ(z), T̂ , S(z), R(z)

by the same symbols used for the corresponding nonterminals Ŝ, T̂ , S, R. This technique is
known in the literature as DSV methodology Lorenz et al. (2008), or as the symbolic method
Flajolet and Sedgewick (2009) – see Table 1. In this fashion, we obtain the following:

Ŝ = zŜ + z2Ŝ + z2SŜ + z2RŜ + T̂

T̂ = 2z3R + 4z3RS + 2z3RS2 + z3R2 + z3SR2

S = z + zS + z2R + z2RS

R = θ + zR + z2R + z2RS

θ = z3

and by eliminating all variables except Ŝ and z, we use Mathematica to obtain the quadratic
equation in Ŝ having two solutions, for which the only solution analytic at 0 is the following:

Ŝ(z) = Ŝ =
A+B

√
P

C
(4)

where

P = 1− 2z − z2 + z4 + 3z6 + 2z7 + z8

A = 3− 15z + 23z2 − 9z3 − z4 − 9z5+

23z6 − 25z7 + 7z8 − z9 + 6z10−
8z11 + 2z12 + 2z13 + 2z14

B = −3 + 12z − 14z2 + 4z3 + 5z5 − 10z6+

8z7 − 2z10

C = 2(−z3 + 3z4 − z5 − z6 − z7 + z8−
3z9 + z10 + z11 + z12)

The dominant singularity ρ of Ŝ(z) in equation (4) is the complex number having smallest

absolute value (or modulus) at which Ŝ(z) is not differentiable. For the functions in this
paper, the dominant singularity will always be the (complex) root of polynomial P under
the radical, having smallest modulus – since the square root function is not differentiable
over the complex numbers at zero.

Letting F̂ (z) = B
√
P

C
and noting that the dominant singularity ρ = 0.436911, a calculation
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shows that

lim
z→ρ

F̂ (z) = lim
z→ρ

B ·
√
P ′ · (1− z/ρ)1/2

C ′ · (1− z/ρ)

P ′ =
P

1− z/ρ
= 1 + 0.288795z − 0.339007z2−

0.775919z3 − 0.775919z4 − 1.775919z5−
1.064714z6 − 0.436911z7

C ′ =
C

1− z/ρ
= −2z3 + 1.422410z4 + 1.255605z5+

0.873822z6 + 2z8 − 1.422410z9−
1.255605z10− 0.873822z11

and so

lim
z→ρ

F̂ (z) = 0.684877 · lim
z→ρ

(1− z/ρ)−1/2

= 0.684877 · lim
z→ρ

(1− z/0.436911)−1/2

Taking α = −1/2 in the Flajolet-Odlyzko Theorem Flajolet and Odlyzko (1990), we obtain:

[zn]F̂ (z) ∼ 0.684877

Γ(1/2)
· n−1/2 ·

(
1

ρ

)n
= 0.3864 · n−1/2 · 2.28879n

By Theorem 2 the asymptotic number of secondary structures for a homopolymer when
θ = 3 is 0.713121 · n−3/2 · 2.28879n, and so we have the following result.

Theorem 3 The asymptotic MS2 −MS1 degree of Sn is

2[zn]F̂ (z)

[zn]S(z)
∼ 0.772801 · n−1/2 · 2.28879n

0.713121 · n−3/2 · 2.28879n

= 1.083688 · n

Adding the asymptotic values from Theorem 2 and Theorem 3, we determine the MS2

degree.

Corollary 4 The asymptotic MS2 degree for the network Sn of RNA structures is 1.557164 ·
n.
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Using a Taylor series expansion at zero for the functions used to determine both the MS1

and MS2−MS1 degree, we have verified that the numerical results for Sn are identical with
those independently computed by the dynamic programming C-implementations described
in Clote (2015b) and Clote and Bayegan (2015). We also note that the current approach is
much simpler than the program in Clote and Bayegan (2015), although the latter is more
general, since it computes the MS2 degree for any user-specified RNA sequence. Using
well-known methods, these asymptotic results can be extended from homopolymers to RNA
sequences with Watson-Crick and wobble base pairs by using a “stickiness model”, which
stipulates the probability p that any two positions can form a base pair, defined by

p = 2 (pA pU + pG pU + pG pC) (5)

where pA, pC , pG, pU are user-specified nucleotide relative frequencies. Since we consider
shifts, we need an additional stickiness parameter q, which specifies the probability that a
shift can occur between three randomly selected positions in which one position is fixed,
defined by

q = pA p
2
U + pC p

2
G + pG

(
p2C + p2U + 2pC pU

)
+ pU

(
p2A + p2G + 2pA pG

)
(6)

By including stickiness parameters into our computations, we obtained values presented in
Table 2, which shows asymptotic MS1 and MS2 degrees for a number of classes of RNA.

4 Asymptotic MS2 clustering coefficient

Section 4.1 describes a grammar to count the number of triangles for Sn with respect to MS2

moves, while Section 4.2 describes a grammar to count two particular triples.

4.1 Counting triangles

LetG be the grammar with terminal symbols ( , ) , •, ?, nonterminal symbols S4, S1, . . . , S8, S, R,X, θ,
start symbol S4 and the following production rules:

S4 → S1 |S2 |S3 |S4 |S5 |S6 |S7 |S8

S → • |S • | (R ) |S (R )

R→ θ |R • | (R ) |S (R )

X → λ |R
θ → • • •

where λ denotes the empty word, and S1, . . . , S8 are specified in the following 8 exhaustive
and mutually exclusive cases. Note that S1, . . . , S3 generate structures containing type A
triangles, while S4, . . . , S8 generate structures containing type B triangles.
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Rule 1 〈 ? 〉

The following productions generate all secondary structures s, such that for x < y < z, it is
the case that s∪{(x, y)} and s∪{(y, z)} are also secondary structures, hence form a triangle:

S1 → S1 • | (S1 ) |S (S1 ) |S1 (R ) |X 〈R ? R 〉

with corresponding DSV equations

S1 = zS1 + z2S1 + z2SS1 + z2RS1 +Xz3R2

Rule 2 ? 〉 〉

The following productions generate all secondary structures s, such that for x < y < z, it is
the case that s∪{(x, y)} and s∪{(x, z)} are also secondary structures, hence form a triangle:

S2 → S2 • | (S2 ) |S (S2 ) |S2 (R ) |X ? R 〉X 〉

with corresponding DSV equations

S2 = zS2 + z2S2 + z2SS2 + z2RS2 +X2z3R

Rule 3 〈 〈 ?

The following productions generate all secondary structures s, such that for x < y < z, it is
the case that s∪{(x, z)} and s∪{(y, z)} are also secondary structures, hence form a triangle:

S3 → S3 • | (S3 ) |S (S3 ) |S3 (R ) |X 〈X 〈R?

with corresponding DSV equations

S3 = zS3 + z2S3 + z2SS3 + z2RS3 +X2z3R

Rule 4 ? 〉 〉 〉

The following productions generate all secondary structures s, such that for x < y < z, it is
the case that s ∪ {(x, y)}, s ∪ {(x, z)} and s ∪ {(x,w)} are also secondary structures, hence
the latter form a triangle:

S4 → S4 • | (S4 ) |S (S4 ) |S4 (R ) |X ? R 〉X 〉X 〉

with corresponding DSV equations

S4 = zS4 + z2S4 + z2SS4 + z2RS4 +X3Rz4
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Rule 5 〈 〈 〈 ?

For x < y < z < w, let s1 = (x,w), s2 = (y, w), s3 = (z, w). The following productions
generate all secondary structures s, such that for x < y < z, it is the case that s ∪ {(x,w)},
s ∪ {(y, w)} and s ∪ {(z, w)} are also secondary structures, hence the latter form a triangle:

S5 → S5 • | (S5 ) |S (S5 ) |S5 (R ) |X 〈X 〈X 〈R?

with corresponding DSV equations

S5 = zS5 + z2S5 + z2SS5 + z2RS5 +X3z4R

Rule 6 〈 ? 〉 〉

For x < y < z < w, the following productions generate all secondary structures s, such that
for x < y < z, it is the case that s∪{(x, y)}, s∪{(y, z)} and s∪{(y, w)} are also secondary
structures, hence the latter form a triangle:

S6 → S6 • | (S6 ) |S (S6 ) |S6 (R ) |X 〈X 〈R ? R 〉

with corresponding DSV equations

S6 = zS6 + z2S6 + z2SS6 + z2RS6 +X2z4R2

Rule 7 〈 〈 ? 〉

For x < y < z < w, the following productions generate all secondary structures s, such that
for x < y < z, it is the case that s∪{(x, z)}, s∪{(y, z)} and s∪{(z, w)} are also secondary
structures, hence the latter form a triangle:

S7 → S7 • | (S7 ) |S (S7 ) |S7 (R ) |X 〈R ? R 〉X 〉

with corresponding DSV equations

S7 = zS7 + z2S7 + z2SS7 + z2RS7 +X2z4R2

Rule 8 〈 ? 〉 bis

The following productions generate all secondary structures s, such that for x < y < z, it is
the case that s∪{(x, z)}, s∪{(x, y)} and s∪{(y, z)} are also secondary structures, hence the
latter form a triangle. This grammar is identical to that in rule 1 above, with the exception
that S1 is replaced by S8.

Let S4(z) denote the generating function for the number of structures containing a unique
triangle motif, where triA(z) [resp. triB(z)] is the generating function for the collection of
structures containing a unique occurrence of type A [type B] triangle, as treated in rules
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1-3 [resp. rules 4-8]. We obtain the following compact form for the DSV equations for the
grammar G that generates all structures containing a triangle:

S4 = triA+ triB

triA = triA · z +X · z · triA · z+

triA · z ·R · z +X · z ·R · z ·R · z+

X · z ·R · z ·X · z +X · z ·X · z ·R · z
triB = triB · z +X · z · triB · z+

triB · z ·R · z +X3z4R +X3z4R+

X2z4R2 +X2z4R2 +Xz3R2

Using Mathematica, we determine the following.

[zn]S4(z) = 0.870311 · 2.28879n · n−1/2

By Theorem 2, the asymptotic number of secondary structures is 0.713121 ·n−3/2 · 2.28879n,
and so we have the following result.

Theorem 5 The asymptotic average number of triangles per structure is

[zn]S4(z)

[zn]S(z)
∼ 0.870331 · n−1/2 · 2.28879n

0.713121 · n−3/2 · 2.28879n

∼ 1.220453 · n

4.2 Counting triples

In this section, we describe a grammar for two particular triples. Let G be the grammar
having terminal symbols •, ( , ) , [ , ] , nonterminal symbols S‡, S†, S, R, X, θ, start symbol
S‡, and productions given in equation (7) below together with the following:

S → • |S • |X (R )

R→ θ |R • |X (R )

X → λ |R
θ → • • •

Triple with motif [ ] [ ] or [ [ ] ]

The following grammar generates all secondary structures s that have two special base pairs
(i, j) and (x, y), designated by [ ] , which are either sequential or nested. For each structure
s, which contains a unique occurrence of the sequential motif [ ] [ ] or of the nested motif
[ [ ] ] , we must count four possible triples: (1) {s1, s2, s3}, where s1 = s − {(i, j), (x, y)},
s2 = s − {(i, j)}, s3 = s − {(x, y)}. (2) {s1, s2, s3}, where s1 = s, s2 = s − {(i, j)},
s3 = s − {(x, y)}. (3) {s1, s2, s3}, where s1 = s − {(i, j)}, s2 = s − {(i, j), (x, y)}, s3 = s.
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(4) {s1, s2, s3}, where s1 = s− {(x, y)}, s2 = s− {(i, j), (x, y)}, s3 = s. For this reason, we
multiply by 4 the asymptotic number of structures generated by the following grammar G.
The grammar G has terminal symbols •, ( , ) , [ , ] , nonterminal symbols S‡, S†, S, R, X,
θ, start symbol S‡, and the following production rules.

S‡ → S‡ • | (S‡ ) |S (S‡ ) |S‡ (R ) |
[S† ] |S [S† ] |S† [R ] |S† (S† )

S† → S† • | (S† ) |S (S† ) |S† (R ) |
[R ] |S [R ] (7)

When applying the Flajolet-Odlyzko Theorem in the current case, we have ρ = 0.436911
and α = −3/2. A computation shows that

lim
z→ρ

S‡(z) = 0.0177098 (1− z/ρ))−3/2

[zn]S‡(z) ∼ 0.0199834 · n1/2 · 2.28879n

[zn]S‡(z)

[zn]S(z)
∼ 0.0199834 · n1/2 · 2.28879n

0.713121 · n−3/2 · 2.28879n

∼ 0.0280225 · n2

As mentioned, the number of triples contributed in the current case is 4 times the last value.
Thus the expected number of triples involving a structure containing [ ] [ ] or [ [ ] ] is
4 · 0.0280224 · n2 = 0.1120896 · n2.

Theorem 6 The asymptotic average number of triples per structure, for the triples described
in this section, is

4[zn]S‡(z)

[zn]S(z)
∼ 0.11209 · n2

From Theorems 5 and 6, we obtain an upper bound for the global clustering coefficient,
defined in equation (1).

Theorem 7 (Bound on global clustering coefficient)

Cg(G) =
3× number of triangles

number of connected triples
= O

(
1

n

)
and hence the family Sn, n = 1, 2, 3, . . . of RNA secondary structures is not small-world.

5 Discussion

In this paper, we have used methods from algebraic combinatorics Flajolet and Sedgewick
(2009) to determine the asymptotic average degree and asymptotic clustering coefficient of
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the MS2 network Sn of RNA secondary structures. Since the clustering coefficient is not
bounded away from zero, it follows that the family Sn, n = 1, 2, 3, . . ., of networks is not
small-world. Our rigorous result differs from conclusions drawn from computer simulations
of Bowman and Pande (2010); Wuchty (2003), which suggest that molecular folding networks
are small-world. However, this paradoxical result is possible, since the notion of finite small-
world network is not precisely defined due to absence of an exact bound for both average
path length between any two nodes and for the clustering coefficient.
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Type of nonterminal Generating function
A→ B | C A(z) = B(z) + C(z)
A→ B C A(z) = B(z)C(z)
A→ t A(z) = z
A→ ε A(z) = 1

Table 1: Translation between context-free grammars and generating functions. Here, G =
(V,Σ, S, R) is a given context-free grammar, A,B,C are any nonterminal symbols in V , and
t is a terminal symbol in Σ. The generating functions for the languages L(A), L(B), L(C)
are respectively denoted by A(z), B(z), C(z).
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Move set θ hp wc wcw wc tRNA wcw tRNA

MS1 1 0.55279 0.42265 0.46158 0.42157 0.46021
MS1 3 0.47348 0.35130 0.38531 0.35038 0.38408

MS2 −MS1 1 1.44721 0.57735 0.84796 0.57985 0.85119
MS2 −MS1 3 1.08369 0.42908 0.31409 0.21550 0.63055

MS2 1 2.00000 1.00000 1.30954 1.00142 1.31140
MS2 3 1.55717 0.43527 0.32336 0.22162 0.63971

Table 2: The asymptotic expected degree of the network Sθ,pn of secondary structures for
move sets MS1 and MS2 for different values of threshold θ and base pair and triple stickiness
parameters p and q, defined in Equations (5) and (6) respectively. Five models are considered:
hp – homopolymer model with p = q = 1; wc – Watson-Crick pairing model with uniform
compositional frequency pA = pC = pG = pU = 1

4
, hence p = 1

4
, and q = 0.0625); wcw –

Watson-Crick and wobble pairing model with uniform compositional frequency, hence p = 3
8
,

and q = 0.15625; wc tRNA – Watson-Crick base pairing model based on the compositional
frequencies (pA = 1288

4534
, pU = 1029

4534
, pG = 1223

4534
, pU = 994

4534
) observed in family RF00005 of 4,534

tRNAs in the Rfam 12.0 database Nawrocki et al. (2014), hence p = 0.259427, q = 0.066394;
wcw tRNA – Watson-Crick and Wobble base pairing model using compositional frequency of
RF00005, so that p = 0.377699, q = 0.158476.
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(a) PLMVd

(.....)

.......

.(....)

..(...)(...)..

(....).

.(...).

((...))

(b) RNA network

Figure 1: (a) Consensus secondary structure of the type III hammerhead ribozyme from
Peach Latent Mosaic Viroid (PLMVd) AJ005312.1/282-335 (isolate LS35, variant ls16b),
taken from Rfam Gardner et al. (2011) family RF00008. (b) Network for size 7 homopolymer
with θ = 3, having 8 nodes and 8 red MS1 edges (base pair addition or removal), 8 blue
MS2 −MS1 edges (base pair shift), hence a total of 16 MS2 edges. It follows that MS1

degree is 16
8

= 2, while MS2 is 32
8

= 4.
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x y′ y
(a) (x, y)→ (x, y′)

x y′y
(b) (x, y)→ (x, y′)

x x′ y
(c) (x, y)→ (x′, y)

xx′ y
(d) (x, y)→ (x′, y)

xy′ y
(e) (x, y)→ (y′, x)

x x′y
(f) (x, y)→ (y, x′)

Figure 2: Illustration of possible shift moves, where each subcaption indicates the terminal
symbols involved in the corresponding production rule.
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(a) MS2 degree distribution
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(b) log-log plot

Figure 3: (a) MS2-degree distribution for the 106,633 secondary structures for a 20-nt ho-
mopolymer with θ = 3 (green shaded curve), with Poisson distribution of the same mean.
(b) MS2-degree distribution for the 32 nt selenocystein insertion (SECIS) element fruA with
sequence CCUCGAGGGG AACCCGAAAG GGACCCGAGA GG.
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A Supplement: Complete grammar

In this supplement, we list the complete grammar for all triangles and connected triples,
together with the corresponding functional equations. We do not provide any detailed ex-
planation for the complete listing of all possible triples or the complete grammar, since our
intent is to provide suggestive supplementary figures and a general orientation for the reader
wishing to work through the Mathematica code, available upon request, for our computation
of the asymptotic clustering coefficient value 20.7728/n.

A.1 Triangles and type A triples

Nonterminal S generates all non-empty secondary structures; R [resp. S2] generates all
secondary structures of length at least 3 [resp. 2]. The non-terminal S† [resp. S‡] generates
all secondary structures containing a unique occurrence of a motif that has exactly 1 [resp. 2]
extended connected components. Thus S‡ generates all structures having a unique occurrence
of motif 1 or 2 for type A triple, as shown in Figure 7.

S → • |S • |X (R )

R→ θ |R • |X (R )

S2→ • • |R
θ → • • •
X → λ |S
S† → S† • |X (S† ) |S† (R ) |X [R ]

S‡ → S‡ • |X (S‡ ) |S‡ (R ) |X [S† ] |S† [R ] |S† (S† ) (Note: ×4)

PK → PK • |X (PK ) |PK (R ) |X [ {S2 ] } |X [S2 { ]S2 } |
X [ {S2 ]S } |X [S {S2 ] } |X [S {S ]S }

ΛA → PK |S‡ (Type A triples)

∆A → ∆A • |X (∆A ) |∆A (R ) |X 〈RFR 〉 |XFR 〉X 〉 |X 〈X 〈RF (type A triangles)

∆B → ∆B • |X (∆B ) |∆B (R ) |XFR 〉X 〉X 〉 |X 〈X 〈X 〈RF |
X 〈X 〈RFR 〉 |X 〈RFR 〉X 〉 |XFRFRF (type B triangles)

∆→ ∆A |∆B (all triangles)

A.2 Type B triples

The nonterminal symbol ΛB generates all secondary structures containing a unique occur-
rence of one of the 12 type B triple motifs, as depicted in Figure 8. Nonterminals R1, . . . , R12

generate respectively the collection of secondary structures containing a unique occurrence
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of motif 1, . . . , 12. Note that S2 is not the same as R2 – the former nonterminal S2 simply
generates all secondary structures of length 2 or greater.

ΛB → ΛB • |X (ΛB ) |ΛB (R ) |R1 | · · · |R12 (type B triples)

R1 → XFRFR 〉X 〉
R2 → XFX 〈RFX 〉
R3 → XFRFS2 〉 〉 |XFRF 〉S2 |XFRFS 〉S 〉
R4 → XF 〈S2 〉F |XFS2 〈 〉S2F |XF 〈S2 〉SF |XFS 〈S2 〉F |XFS 〈S 〉SF
R5 → X 〈XFRFX 〉
R6 → X 〈XFR 〉XF

R7 → XFR 〉XFR 〉
R8 → XFR 〉X 〈RF
R9 → X 〈RFRFR 〉
R10 → X 〈X 〈RFRF

R11 → X 〈RFX 〈RF
R12 → X 〈S2 〈FRF |X 〈S 〈SFRF |X 〈 〈S2FRF

A.3 Type C and D triples

The nonterminal symbol triples generates all secondary structures containing a unique oc-
currence of one of the 25 type C or D triple motifs, as depicted in Figure 9. Nonterminals
ΛC1, ΛC2, ΛC367, ΛC4, ΛC5, ΛC8, ΛC9, ΛC10, ΛC11, ΛC12, ΛC13, ΛC14, ΛC15, ΛCdisc, ΛC20,
ΛC21, ΛC22, ΛC23 generate respectively the collection of secondary structures containing a
unique occurrence of motif 1, . . . , 25, whereby nonterminal ΛC367 is the same rule for motif
3,6 and 7, and nonterminal ΛCdisc is the same rule for all disconnected successive motifs –
i.e. the 6 type C and D triple motifs 16, 17, 18, 19, 24, 25 which have exactly 2 extended
connected components of successive form [ ] [ ] .
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ΛC → ΛC • |X (ΛC ) |ΛC (R ) |ΛC1 |ΛC2 |ΛC367 |
ΛC4 |ΛC5 |ΛC8 |ΛC9 |ΛC10 |ΛC11 |ΛC12 |
ΛC13 |ΛC14 |ΛC15 |ΛCdisc |ΛC20 |ΛC21 |ΛC22 |ΛC23

ΛC1 → XFS† 〉X 〉 (Note: ×4)

ΛC2 → XF 〈S2 〉 〉X 〉 |XFS2 〈 〉S2 〉X 〉 |XF 〈S2 〉S 〉X 〉 |
XFS 〈S2 〉 〉X 〉 |XFS 〈S 〉S 〉X 〉

ΛC367 → X [∆A ] (Note: ×4)

ΛC4 → X 〈XFR 〉X 〉X 〉
ΛC5 → XFR 〉S† 〉 (Note: ×4)

ΛC8 → X 〈RFS† 〉 (Note: ×4)

ΛC9 → X 〈 〈S2FR 〉X 〉 |X 〈S2 〈FR 〉X 〉 |X 〈S 〈SFR 〉X 〉
ΛC10 → X 〈X 〈X 〈RFX 〉
ΛC11 → X 〈X 〈S†F (Note: ×4)

ΛC12 → XFR 〉X 〈 〉S2 〉 |XFR 〉X 〈S2 〉 〉 |XFR 〉X 〈S 〉S 〉
ΛC13 → X 〈X 〈RF 〉S2 〉 |X 〈X 〈RFS2 〉 〉 |X 〈X 〈RFS 〉S 〉
ΛC14 → X 〈RF 〈S2 〉 〉 |X 〈RFS2 〈 〉S2 〉 |

X 〈RF 〈S2 〉S 〉 |X 〈RFS 〈S2 〉 〉 |X 〈RFS 〈S 〉S 〉
ΛC15 → X 〈X 〈 〈S2 〉F |X 〈X 〈S2 〈 〉S2FX 〈X 〈 〈S2 〉SF |

X 〈X 〈S 〈S2 〉F |X 〈X 〈S 〈S 〉SF
ΛCdisc → ∆A [R ] |∆A (S

† ) |S† 〈RFR 〉 |S† 〈X 〈RF |S†FR 〉X 〉 |
S† (X 〈RFR 〉X ) |S† (XFR 〉X 〉X ) |S† (X 〈X 〈RFX )

ΛC20 → X 〈S†FR 〉 (Note: ×4)

ΛC21 → X 〈S† 〈RF (Note: ×4)

ΛC22 → X 〈 〈S2 〉FR 〉 |X 〈S2 〈 〉S2FR 〉 |X 〈 〈S2 〉SFR 〉 |
X 〈S 〈S2 〉FR 〉 |X 〈S 〈S 〉SFR 〉

ΛC23 → X 〈S2 〈 〉X 〈RF |X 〈 〈S2 〉X 〈RF |X 〈S 〈S 〉X 〈RF

Finally, the collection of all secondary structures having a unique motif for a connected triple
(both non-triangular triples of types A,B,C,D or deriving from triangles) is generated by the
rule

Λ→ ΛA |ΛB |ΛC | triangles (Note: triangles must be multiplied by 3)

This gives rise to the following functional equations for all connected triples, both non-
triangular triples, as well as 3 triples associated with each triangle. Since rules R1, . . . , R12
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are written as R1, . . . , R12, we write S2 in place of R2, which latter had been defined by
R2→ • • |R.

S‡ = S‡ · z +X · z · S‡ · z + S‡ · z ·R · z +X · z · S† · z + S† · z ·R · z + S† · z · S† · z
S† = S† · z +X · z · S† · z + S† · z ·R · z +X · z ·R · z
S = z + S · z +X · z ·R · z
R = θ +R · z +X · z ·R · z
θ = z · z · z
X = 1 + S

S2 = z · z +R

PK = PK · z +X · z · PK · z + PK · z ·R · z +X · z4(S2 + S22 + 2SS2 + S3)

ΛA = PK + 4 · S‡

R1 = X2z4R2

R2 = X3z4R

R3 = Xz4R(2S2 + S2)

R4 = Xz4(S2 + S22 + 2SS2 + S3)

R5 = X3z4R

R6 = X3z4R

R7 = X2z4R2

R8 = X2z4R2

R9 = Xz4R3

R10 = X2z4R2

R11 = X2z4R2

R12 = Xz4(2S2 + S2)
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together with the following, where we write ΛC in place of ΛCD for reasons of brevity

ΛB = R1 +R2 +R3 +R4 +R5 +R6 +R7 +R8 +R9 +R10 +R11 +R12+

ΛBz +Xz2ΛB + ΛBz
2R

ΛC1 = XzS†zXz

ΛC2 = Xz5(S2 + S22 + 2SS2 + S3)

ΛC367 = Xz∆Az

ΛC4 = X4z5R

ΛC5 = XzRzS†z

ΛC8 = XzRzS†z

ΛC9 = X2z5(2S2 + S2)

ΛC10 = X4z5R

ΛC11 = X2z3S†

ΛC12 = X2z5R(2S2 + S2)

ΛC13 = X2z5R(2S2 + S2)

ΛC14 = Xz5R(S2 + S22 + 2SS2 + S3)

ΛC15 = X2z5(S2 + S22 + 2SS2 + S3)

ΛC disc = ∆AzRz + ∆AzS
†z + (S†zRzRz + S†zXzRz + S†zRzXz)(1 +X2z2)

ΛC20 = Xz3RS†

ΛC21 = Xz3RS†

ΛC22 = Xz5R(S2 + S22 + 2SS2 + S3)

ΛC23 = X2z5R(2S2 + S2)

ΛC = ΛC · z +X · z · ΛC · z + ΛC · z ·R · z + 4 · ΛC1+

ΛC2 + 4 · ΛC367 + ΛC4 + 4 · ΛC5 + 4 · ΛC8 + ΛC9+

ΛC10 + 4 · ΛC11 + ΛC12 + ΛC13 + ΛC14 + ΛC15+

ΛC disc + 4 · ΛC20 + 4 · ΛC21 + ΛC22 + ΛC23

∆A = ∆A · z +X · z ·∆A · z + ∆A · z ·R · z +X · z ·R · z ·R · z+

X · z ·R · z ·X · z +X · z ·X · z ·R · z
∆B = ∆B · z +X · z ·∆B · z + ∆B · z ·R · z +X3z4R +X3z4R+

X2z4R2 +X2z4R2 +Xz3R2

∆ = ∆A + ∆B

Λ = ΛA + 4 · ΛB + ΛC + 3 ·∆
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shift
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shift
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shift

Triangle B

1

2

add
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add

Triple A

1

2

shift

3

shift

Triple B

1

2

add

3

shift

Triple C

1

2

shift

3

remove

Triple D

Figure 4: Complete listing of all possible moves for triangles and non-triangular connected
triples with a designated first structure, up to equivalence. Consider, for instance, the
triangle T (not shown) in which s1 → s2 by a shift, s1 → s3 by base pair removal, and
s3 → s2 by a base pair addition. Then T is equivalent to a triangle of type A, where node 1
is occupied by s3, node 2 resp 3 is occupied by s1 resp. s2. Other instances of triangles the
reader may consider are analogously equivalent to a triangle of type A or B.

1

2

add

3

add

shift

Type A triangles Triangle rule 1 Triangle rule 2 Triangle rule 3

Figure 5: Type A triangles are constituted by structures s1, s2, s3, where s2, s3 are obtained
from s1 by adding a base pair with the property that there is a shift move from s2 to s3.
This type of triangle is described in rules 1,2,3 in Section 4.1. For instance, the motif for
triangle rule 1 indicates that there is a base pair (x, y) ∈ s2 that can be shifted to the base
pair (y, z) ∈ s3; similarly, the motif for rule 2 [resp. 3] indicates that there is a base pair
(x, y) ∈ s2 [resp. (x, z) ∈ s2] that can be shifted to the base pair (x, z) ∈ s3 [resp. (y, z) ∈ s3].
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1

2

shift

3

shift

shift

Type B triangles Triangle rule 4 Triangle rule 5

Triangle rule 6 Triangle rule 7 Triangle rule 8

Figure 6: Type B triangles are constituted by structures s1, s2, s3, where s2, s3 are obtained
from s1 by a shift with the property that there is a shift move from s2 to s3. This type
of triangle is described in rules 4-8 in Section 4.1. For instance, the motif in triangle rule
4 indicates that there is a base pair (x, y) ∈ s1 can be shifted to base pair (x, z) ∈ s2 and
(x,w) ∈ s3. The other panels have analogous meanings.
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1

2

add

3

add

Type A triples

emptyset (x,y)
a/r

(u,v)

a/r

(x,y),(u,v)

a/r

a/r

2-component motif

1 2 3

4 (non-
homopolymer)

Figure 7: Type A triples are constituted by structures s1, s2, s3, where s2, s3 are obtained
from s1 by a base pair addition with the property that there is a no MS2 move between s2
and s3. Type A triples are given in rules 1-3 in Section 4.2, are are represented in panels
1,2,3,4 of this figure. Panel 1 [resp. 2] indicates that structures s2, s3 can be obtained from
structure s1 by the addition of disjoint base pairs (u, v) (x, y) which are not nested, i.e.
( ) ( ) , [resp. which are nested, i.e. ( ( ) ) ]. Panel 3 indicates that structures s2, s3 can
be obtained from structure s1 by the addition of disjoint base pairs (u, v) (x, y) which would
form a pseudoknot if added simultaneously to s1, i.e. ( [ ) ] . Panel 4, which is identical
to panel 1 of Figure 5, represents a non-triangular connected triple only in the non-polymer
case. This panel indicates that structures s2, s3 can be obtained from structure s1 by the
addition of non-disjoint base pairs (u, v) (v, w) which share a base. To each triple motif
that has 2 extended connected components (see text) there corresponds a quadrilateral, as
shown in the panel with label 2-component motif, where edges are labeled by a/r for base
pair addition/removal. To each corner of the quadrilateral, there corresponds a unique triple
– thus, panels 1 and 2 actually each represent 4 triples. It follows that the average number
of triples per structure for type A(1) and type A(2) triples must be multiplied by 4. The
same remark holds for type C,D triples in in Figure 9, which have 2 extended connected
components.
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1

2

shift

3

shift

Type B triples

emptyset (x,u)
a/r

(y,z)

a/r

(x,y)

s

s

2-component motif

1 2 3

4 5 6

7 8 9

10 11 12

Figure 8: Type B triples are of the form s1, s2, s3, where s1, s2 are connected by a shift, as
are s1, s3, but s2, s3 are not connected by any MS2 move. Note that all motifs are connected.
To each type B triple motif, there corresponds a quadrilateral, shown in panel with label
2-component motif, where edges are labeled by a/r for base pair addition/removal or by s
for base pair shift. For each of these 12 motifs, there is a unique base pair that can shift
to the remaining two base pairs – for instance, in motif 1, the base pairs are (x, y), (y, z)
and (x, u), for x < y < z < u, where (x, y) can be shifted to each of (y, z) and (x, u). This
uniquely defined base pair should be located in the quadrilateral diagonally opposite the
corner labeled by emptyset. Since each corner of the quadrilateral corresponds to one of 4
triples associated with the motif, it follows that the average number of type B triples per
structure must be multiplied by 4.
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1
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Type C triples
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shift
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Type D triples

1 2 3 4

5 6 7 8

9 10 11 12
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25

Figure 9: Type C and D triples are of the form s1, s2, s3, where s1, s2 are connected by a
shift, and s3 is obtained from s1 by a base pair addition, but s2, s3 are not connected by any
MS2 move. Triples may have either one or two extended connected components (see text); in
the former case, the asymptotic expected number of triples is O(n), while in the latter case
the expected expected number of triples is O(n2), as is the case for the type A triple motifs in
panels 1 and 2 of Figure 7. The 10 motifs having 1 extended connected component are: 2, 4,
9, 10, 12, 13, 14, 15, 22, 23. The 15 motifs having 2 extended connected component are: 1, 3,
5, 6, 7, 8, 11, 16, 17, 18, 19, 20, 21, 24, 25. Of the latter, the six motifs 16,17,18,19,24,25 are
disconnected successive, and the nine motifs 1,3,5,6,7,8,11,20,21 are disconnected nested. To
each motif, which has 2 extended connected components, there actually correspond 4 triples,
as explained in the caption to Figure 7. For instance, to the motif 16, given by undirected
edges (1, 2), (3, 4), (3, 5), there correspond four structures s1, s2, s3, s4, where (3, 4) ∈ s1,
(3, 5) ∈ s2, (1, 2), (3, 4) ∈ s3, (1, 2), (3, 5) ∈ s4, with the following four triples: (1) s1 → s2,
s1 → s3 (type C triple); (2) s2 → s3, s2 → s1 (type C triple); (3) s3 → s4, s3 → s1 (type D
triple); (4) s4 → s3, s4 → s2 (type D triple). This is analogous to the situation summarized
in the panel in Figure 7 with label 2-component motif. Note that motifs 3,6,7 have a type A
triangle contained within an outer designated base pair [ ] .
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