A. Eriksson, O. Eriksson, and H. Berglund, Species Abundance Patterns of Plants in Swedish Semi, p.616

S. A. Cousins and O. Eriksson, The influence of management history and habitat on plant species richness in a 618 rural hemiboreal landscape, Sweden, Landscape Ecology, vol.17, issue.6, pp.517-529, 2002.
DOI : 10.1023/A:1021400513256

C. Gardi, M. Tomaselli, V. Parisi, A. Petraglia, and C. Santini, Soil quality indicators and biodiversity in northern Italian permanent grasslands, European Journal of Soil Biology, vol.38, issue.1, pp.103-110, 2002.
DOI : 10.1016/S1164-5563(01)01111-6

C. Critchley, M. Burke, and D. Stevens, Conservation of lowland semi-natural grasslands in the UK: a review of botanical monitoring results from agri-environment schemes, Biological Conservation, vol.115, issue.2, pp.263-278, 2004.
DOI : 10.1016/S0006-3207(03)00146-0

J. K. Wilson and D. A. Landis, Perennial grasslands enhance biodiversity and multiple ecosystem services in 626 bioenergy landscapes, Proceedings of the National Academy of Sciences 2014, pp.1652-1657

G. Austrheim and E. G. Olsson, How does continuity in grassland management after ploughing affect plant 628 community patterns? Plant Ecology, pp.59-74, 1999.

A. Norderhaug, M. Ihse, and O. Pedersen, Biotope patterns and abundance of meadow plant species in a 630 Norwegian rural landscape, Landscape Ecology, vol.15, issue.3, pp.201-218, 2000.
DOI : 10.1023/A:1008141400166

R. Waldhardt and A. Otte, Indicators of plant species and community diversity in grasslands, Agriculture, Ecosystems & Environment, vol.98, issue.1-3, p.632
DOI : 10.1016/S0167-8809(03)00094-X

M. Hansson and H. Fogelfors, Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden, Journal of Vegetation Science, vol.12, issue.1, pp.31-38, 2000.
DOI : 10.2307/3236772

D. Moog, P. Poschlod, S. Kahmen, and K. Schreiber, Comparison of species composition between different grassland management treatments after 25 years, Applied Vegetation Science, vol.5, issue.1, pp.99-106, 2002.
DOI : 10.1111/j.1654-109X.2002.tb00539.x

H. Zechmeister, I. Schmitzberger, B. Steurer, J. Peterseil, and T. Wrbka, The influence of land-use practices and economics on plant species richness in meadows, Biological Conservation, vol.114, issue.2, pp.165-177, 2003.
DOI : 10.1016/S0006-3207(03)00020-X

S. Plantureux, A. Peeters, and D. Mccracken, Biodiversity in intensive grasslands: Effect of management, 640 improvement and challenges, Agronomy Research, vol.3, pp.153-164, 2005.

S. Muller, Appropriate agricultural management practices required to ensure conservation and biodiversity 642 of environmentally sensitive grassland sites designated under Natura Agriculture, Ecosystems & 643 Environment, pp.261-266, 2000.

N. Pettorelli, Satellite remote sensing to monitor species diversity: potential and pitfalls. Remote Sensing in 646 Ecology and Conservation, pp.25-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01330160

N. Pettorelli, W. F. Laurance, T. G. O-'brien, M. Wegmann, H. Nagendra et al., Satellite remote sensing for applied ecologists: opportunities and challenges, Journal of Applied Ecology, vol.115, issue.4, pp.839-848, 2014.
DOI : 10.1111/1365-2664.12261

A. C. Newton, R. A. Hill, C. Echeverría, D. Golicher, J. M. Rey-benayas et al., Remote 650 sensing and the future of landscape ecology, pp.528-546, 2009.

Y. Gu, B. K. Wylie, and N. B. Bliss, Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA, Ecological Indicators, vol.24, pp.31-36, 2013.
DOI : 10.1016/j.ecolind.2012.05.024

Z. Li, T. Huffman, B. Mcconkey, and L. Townley-smith, Monitoring and modeling spatial and temporal 654 patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data, pp.232-244

Y. Gu and B. K. Wylie, Developing a 30-m grassland productivity estimation map for central Nebraska using 657 250-m MODIS and 30-m Landsat-8 observations. Remote Sensing of Environment, pp.291-298, 2015.

Y. He, X. Guo, and J. Wilmshurst, Reflectance measures of grassland biophysical structure, International Journal of Remote Sensing, vol.43, issue.10, pp.2509-2521, 2009.
DOI : 10.1016/S0034-4257(02)00102-5

URL : https://tspace.library.utoronto.ca/bitstream/1807/69355/1/Reflectance%20measures%20of%20grassland%20biophysical%20structure.pdf

S. Asam, H. Fabritius, D. Klein, C. Conrad, and S. Dech, Derivation of leaf area index for grassland 669 within alpine upland using multi-temporal RapidEye data, International Journal of Remote Sensing, vol.670, pp.34-8628, 2013.

S. Schmidtlein and J. Sassin, Mapping of continuous floristic gradients in grasslands using hyperspectral 672 imagery. Remote Sensing of Environment, pp.126-138, 2004.

J. Ishii, S. Lu, S. Funakoshi, Y. Shimizu, K. Omasa et al., Mapping potential habitats of threatened 674 plant species in a moist tall grassland using hyperspectral imagery, Biodiversity and Conservation, vol.675, pp.18-2521, 2009.

F. Fava, G. Parolo, R. Colombo, F. Gusmeroli, G. D. Marianna et al., Fine-scale 677 assessment of hay meadow productivity and plant diversity in the European Alps using field spectrometric 678 data Special section Harvested perennial 679 grasslands: Ecological models for farming's perennial future, Agriculture, Ecosystems & Environment, vol.676, issue.680, pp.151-157, 2010.

J. Oldeland, D. Wesuls, D. Rocchini, M. Schmidt, and N. Jürgens, Does using species abundance data improve 681 estimates of species diversity from remotely sensed spectral heterogeneity? Ecological Indicators, pp.10-390, 2010.

H. Feilhauer, U. Faude, and S. Schmidtlein, Combining Isomap ordination and imaging spectroscopy to map 684 continuous floristic gradients in a heterogeneous landscape. Remote Sensing of Environment, pp.2513-685, 2011.

M. C. Duniway, J. W. Karl, S. Schrader, N. Baquera, and J. Herrick, Rangeland and pasture monitoring: an 687 approach to interpretation of high-resolution imagery focused on observer calibration for repeatability. 688 Environmental Monitoring and Assessment, pp.3789-3804, 2012.

K. White and D. Gowing, Characterization of a Highly Biodiverse Floodplain Meadow Using Hyperspectral 691

T. Hilker, E. Natsagdorj, R. H. Waring, A. Lyapustin, and Y. Wang, Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing, Global Change Biology, vol.122, issue.6, pp.418-428, 2014.
DOI : 10.1111/gcb.12365

R. Cao, J. Chen, M. Shen, and Y. Tang, An improved logistic method for detecting spring vegetation phenology 695 in grasslands from MODIS EVI time-series data Agricultural and Forest Meteorology 2015, pp.9-20

O. Eriksson, S. A. Cousins, and H. H. Bruun, Land-use history and fragmentation of traditionally managed grasslands in Scandinavia, Journal of Vegetation Science, vol.15, issue.5, pp.743-748, 2002.
DOI : 10.1111/j.1654-1103.2002.tb02102.x

I. Ali, F. Cawkwell, E. Dwyer, B. Barrett, and S. Green, Satellite remote sensing of grasslands: from observation to management, Journal of Plant Ecology, vol.9, issue.6, pp.649-671
DOI : 10.1093/jpe/rtw005

H. Nagendra, Using remote sensing to assess biodiversity, International Journal of Remote Sensing, vol.22, issue.12, pp.2377-2400, 2001.
DOI : 10.1080/01431160117096

H. Werff, F. Van-coillie, and D. Tiede, Geographic Object-Based Image Analysis ? Towards a new paradigm, 707 ISPRS Journal of Photogrammetry and Remote Sensing 2014, pp.180-191

I. Poças, M. Cunha, and L. S. Pereira, Dynamics of mountain semi-natural grassland meadows inferred 709 from SPOT-VEGETATION and field spectroradiometer data, International Journal of Remote Sensing, vol.708, issue.39, pp.710-743, 2012.

A. Halabuk, M. Mojses, M. Halabuk, and S. David, Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series, Remote Sensing, vol.4, issue.5, pp.6107-713, 2015.
DOI : 10.1080/01431160902897858

R. Lucas, A. Rowlands, A. Brown, S. Keyworth, and P. Bunting, Rule-based classification of multi-temporal 714

H. Nagendra, R. Lucas, J. P. Honrado, R. H. Jongman, C. Tarantino et al., Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats, Ecological Indicators, vol.33, issue.722, pp.45-59, 2013.
DOI : 10.1016/j.ecolind.2012.09.014

K. P. Price, X. Guo, and J. M. Stiles, Optimal Landsat TM band combinations and vegetation indices for 723 discrimination of six grassland types in eastern Kansas, International Journal of Remote Sensing, vol.724, pp.23-5031, 2002.

J. A. Gamon, C. B. Field, D. A. Roberts, S. L. Ustin, and R. Valentini, Functional patterns in an annual grassland during an AVIRIS overflight, Remote Sensing of Environment, vol.44, issue.2-3, pp.239-727, 1993.
DOI : 10.1016/0034-4257(93)90019-T

S. Toon and F. Michael, Remote sensing for mapping natural habitats and their conservation status ? New 730 opportunities and challenges Special Issue on Earth observation for habitat mapping and biodiversity monitoring, International Journal of Applied Earth Observation and Geoinformation, vol.2015, issue.732, pp.7-16

M. A. Wulder, R. J. Hall, N. C. Coops, and S. E. Franklin, High Spatial Resolution Remotely Sensed Data for Ecosystem Characterization, BioScience, vol.54, issue.6, pp.511-521, 2004.
DOI : 10.1641/0006-3568(2004)054[0511:HSRRSD]2.0.CO;2

O. Buck, V. E. Millán, A. Klink, and K. Pakzad, Using information layers for mapping grassland habitat 735 distribution at local to regional scales Special Issue on Earth observation for habitat mapping and biodiversity monitoring, International Journal of Applied Earth Observation and Geoinformation, vol.736, issue.737, pp.83-89

J. Franke, V. Keuck, and F. Siegert, Assessment of grassland use intensity by remote sensing to support conservation schemes, Journal for Nature Conservation, vol.20, issue.3, pp.125-134, 2012.
DOI : 10.1016/j.jnc.2012.02.001

T. Schmidt, C. Schuster, B. Kleinschmit, and M. Forster, Evaluating an Intra-Annual Time Series for Grassland 740

P. Dusseux, F. Vertès, T. Corpetti, S. Corgne, and L. Hubert-moy, Agricultural practices in grasslands detected by spatial remote sensing, Environmental Monitoring and Assessment, vol.29, issue.8, pp.8249-8265, 2014.
DOI : 10.1007/s10661-014-4001-5

URL : https://hal.archives-ouvertes.fr/hal-01102955

C. Schuster, T. Schmidt, C. Conrad, B. Kleinschmit, and M. Förster, Grassland habitat mapping by 745 intra-annual time series analysis ? Comparison of RapidEye and TerraSAR-X satellite data, International, vol.746

A. Psomas, M. Kneubuhler, S. Huber, K. Itten, and N. E. Zimmermann, Hyperspectral remote sensing 748 for estimating aboveground biomassand for exploring species richness patterns of grassland habitats, International Journal of Remote Sensing, vol.32, pp.747-53, 2011.

M. J. Hill, Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis 751 with simulated SENTINEL-2 data for a North American transect. Remote Sensing of Environment, pp.137-94, 2013.

A. S. Laliberte, E. L. Fredrickson, and A. Rango, Combining decision trees with hierarchical object-oriented 758 image analysis for mapping arid rangelands Photogrammetric engineering & Remote sensing, pp.73-197, 2007.
DOI : 10.14358/pers.73.2.197

J. C. Brenner, Z. Christman, and J. Rogan, Segmentation of Landsat Thematic Mapper imagery improves 761 buffelgrass (Pennisetum ciliare) pasture mapping in the Sonoran Desert of Mexico, Applied Geography, vol.762, pp.34-569, 2012.

S. Stenzel, F. E. Fassnacht, B. Mack, and S. Schmidtlein, Identification of high nature value grassland with remote sensing and minimal field data, Ecological Indicators, vol.74, pp.28-38, 2017.
DOI : 10.1016/j.ecolind.2016.11.005

J. Evans and R. Geerken, Classifying rangeland vegetation type and coverage using a Fourier component 766 based similarity measure. Remote Sensing of Environment, pp.1-8, 2006.

T. Esch, A. Metz, M. Marconcini, and M. Keil, Combined use of multi-seasonal high and medium resolution 768 satellite imagery for parcel-related mapping of cropland and grassland, International Journal of Applied, vol.769, issue.28, pp.230-237

D. C. Duro, S. E. Franklin, and M. G. Dubé, A comparison of pixel-based and object-based image analysis with 771 selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG 772 imagery. Remote Sensing of Environment, pp.259-272, 2012.

Y. Ding, K. Zhao, X. Zheng, and T. Jiang, Temporal dynamics of spatial heterogeneity over cropland quantified 777 by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery, International Journal, p.778

Z. Pan, J. Huang, Q. Zhou, L. Wang, Y. Cheng et al., Mapping 780 crop phenology using NDVI time-series derived from HJ-1 A/B data, International Journal of Applied, vol.34, pp.188-197
DOI : 10.1016/j.jag.2014.08.011

A. M. Cingolani, D. Renison, M. R. Zak, and M. R. Cabido, Mapping vegetation in a heterogeneous mountain 783 rangeland using Landsat data: an alternative method to define and classify land-cover units, pp.84-97, 2004.

H. Müller, P. Rufin, P. Griffiths, A. J. Siqueira, and P. Hostert, Mining dense Landsat time series for 786 separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sensing of 787 Environment, pp.490-499, 2015.

T. M. Mitchell and D. L. Donoho, Machine Learning High-dimensional data analysis: The curses and blessings of dimensionality, AMS 790 Conference on math challenges of the 21st century, p.69, 1997.

M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, Advances in spectral-spatial 792 classification of hyperspectral images, Proceedings of the IEEE 2013, pp.652-675

O. Hagolle, M. Huc, D. Villa-pascual, and G. Dedieu, A multi-temporal method for cloud detection, applied 794 to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images. Remote Sensing of Environment, pp.114-1747, 2010.
DOI : 10.1016/j.rse.2010.03.002

URL : https://hal.archives-ouvertes.fr/hal-00489793/document

C. Atzberger and P. H. Eilers, A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America, International Journal of Digital Earth, vol.159, issue.5, pp.365-386, 2011.
DOI : 10.1029/2000JD000115

C. Atzberger and P. H. Eilers, Evaluating the effectiveness of smoothing algorithms in the absence of ground reference measurements, International Journal of Remote Sensing, vol.53, issue.13, pp.3689-3709, 2011.
DOI : 10.1029/2000JD000115

I. Nitze, B. Barrett, and F. Cawkwell, Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series, International Journal of Applied Earth Observation and Geoinformation, vol.34, pp.136-146
DOI : 10.1016/j.jag.2014.08.001

Y. Shao, R. S. Lunetta, B. Wheeler, J. S. Iiames, and J. B. Campbell, An evaluation of time-series smoothing 805 algorithms for land-cover classifications using MODIS-NDVI multi-temporal data. Remote Sensing of 806 Environment, pp.258-265, 2016.

S. Kullback, Letter to the Editor: The Kullback-Leibler distance. The American Statistician, pp.340-341, 1987.

J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction

N. A. Mehta and A. G. Gray, Generative and Latent Mean Map Kernels, p.79, 2010.

K. Muandet, K. Fukumizu, F. Dinuzzo, and B. Schölkopf, Learning from distributions via support measure 814 machines Advances in Neural Information Processing Systems 25, pp.10-18, 2012.

A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, p.816
DOI : 10.1137/1.9780898717921

P. Philadelphia, . Usa, S. Girard, and D. Sheeren, High dimensional Kullback-Leibler divergence for 818 grassland management practices classification from high resolution satellite image time series, 2005.

O. Ledoit and M. Wolf, A well-conditioned estimator for large-dimensional covariance matrices, Journal of Multivariate Analysis, vol.88, issue.2, p.821
DOI : 10.1016/S0047-259X(03)00096-4

URL : http://doi.org/10.1016/s0047-259x(03)00096-4

F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin, vol.1, issue.6, pp.80-83, 1945.
DOI : 10.2307/3001968

. Scikit-learn, Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.

T. Möckel, J. Dalmayne, H. C. Prentice, L. Eklundh, O. Purschke et al., Classification 827 of Grassland Successional Stages Using Airborne Hyperspectral Imagery. Remote Sensing, 7732. 828 c 2017 by the authors. Submitted to Remote Sens. for possible open access publication 829 under the terms and conditions of the Creative Commons Attribution (CC BY) license 830, 2014.