Simultaneous dimension reduction and multi-objective clustering using probabilistic factorial discriminant analysis

Vincent Vandewalle 1, 2
2 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille, Université de Lille 1, IUT’A
Abstract : In model based clustering of quantitative data it is often supposed that only one clustering variable explains the heterogeneity of all the others variables. However, when variables come from different sources, it is often unrealistic to suppose that the heterogeneity of the data can only be explained by one variable. If such an assumption is made, this could lead to a high number of clusters which could be difficult to interpret. A model based multi-objective clustering is proposed, is assumes the existence of several latent clustering variables, each one explaining the heterogeneity of the data on some clustering projection. In order to estimate the parameters of the model an EM algorithm is proposed, it mainly relies on a reinterpretation of the standard factorial discriminant analysis in a probabilistic way. The obtained results are projections of the data on some principal clustering components allowing some synthetic interpretation of the principal clusters raised by the data. The behavior of the model is illustrated on simulated and real data.
Type de document :
Documents associés à des manifestations scientifiques -- Hal-inria+
CMStatistics 2016, Dec 2016, Sevilla, Spain
Liste complète des métadonnées

https://hal.inria.fr/hal-01424965
Contributeur : Vincent Vandewalle <>
Soumis le : mardi 3 janvier 2017 - 10:58:18
Dernière modification le : jeudi 11 janvier 2018 - 06:23:18
Document(s) archivé(s) le : mardi 4 avril 2017 - 13:09:16

Fichier

slidesERCIM.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01424965, version 1

Collections

Citation

Vincent Vandewalle. Simultaneous dimension reduction and multi-objective clustering using probabilistic factorial discriminant analysis. CMStatistics 2016, Dec 2016, Sevilla, Spain. 〈hal-01424965〉

Partager

Métriques

Consultations de la notice

224

Téléchargements de fichiers

20