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Abstract. The elegant theory of the call-by-value lambda-calculus relies
on weak evaluation and closed terms, that are natural hypotheses in the
study of programming languages. To model proof assistants, however,
strong evaluation and open terms are required, and it is well known that
the operational semantics of call-by-value becomes problematic in this
case. Here we study the intermediate setting—that we call Open Call-by-
Value—of weak evaluation with open terms, on top of which Grégoire and
Leroy designed the abstract machine of Coq. Various calculi for Open
Call-by-Value already exist, each one with its pros and cons. This paper
presents a detailed comparative study of the operational semantics of
four of them, coming from different areas such as the study of abstract
machines, denotational semantics, linear logic proof nets, and sequent
calculus. We show that these calculi are all equivalent from a termination
point of view, justifying the slogan Open Call-by-Value.

1 Introduction

Plotkin’s call-by-value λ-calculus [26] is at the heart of programming languages
such as OCaml and proof assistants such as Coq. In the study of programming
languages, call-by-value (CBV) evaluation is usually weak, i.e. it does not reduce
under abstractions, and terms are assumed to be closed. These constraints give
rise to a beautiful theory—let us call it Closed CBV —having the following
harmony property, that relates rewriting and normal forms:

Closed normal forms are values (and values are normal forms)

where values are variables and abstractions. Harmony expresses a form of internal
completeness with respect to unconstrained β-reduction: the restriction to CBV
β-reduction (referred to as βv-reduction, according to which a β-redex can be
fired only when the argument is a value) has an impact on the order in which
redexes are evaluated, but evaluation never gets stuck, as every β-redex will
eventually become a βv-redex and be fired, unless evaluation diverges.

It often happens, however, that one needs to go beyond the perfect setting of
Closed CBV by considering Strong CBV, where reduction under abstractions is
allowed and terms may be open, or the intermediate setting of Open CBV, where
evaluation is weak but terms are not necessarily closed. The need arises, most
notably, when trying to describe the implementation model of Coq [13], but also
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from other motivations, as denotational semantics [25,28,4,8], monad and CPS
translations and the associated equational theories [21,29,30,12,16], bisimulations
[18], partial evaluation [17], linear logic proof nets [2], or cost models [1].

Näıve Open CBV. In call-by-name (CBN) turning to open terms or strong
evaluation is harmless because CBN does not impose any special form to the
arguments of β-redexes. On the contrary, turning to Open or Strong CBV is
delicate. If one simply considers Plotkin’s weak βv-reduction on open terms—let
us call it Näıve Open CBV —then harmony does no longer hold, as there are
open β-normal forms that are not values, e.g. xx, x(λy.y), x(yz) or xyz. As a
consequence, there are stuck β-redexes such as (λy.t)(xx), i.e. β-redexes that
will never be fired because their argument is normal, but it is not a value, nor
will it ever become one. Such stuck β-redexes are a disease typical of (Näıve)
Open CBV, but they spread to Strong CBV as well (also in the closed case),
because evaluating under abstraction forces to deal with locally open terms: e.g.
the variable x is locally open with respect to (λy.t)(xx) in s = λx.((λy.t)(xx)).

The real issue with stuck β-redexes is that they prevent the creation of other
redexes, and provide premature βv-normal forms. The issue is serious, as it can
affect termination, and thus impact on notions of observational equivalence. Let
δ := λx.(xx). The problem is exemplified by the terms t and u in Eq. (1) below.

t := ((λy.δ)(zz))δ u := δ((λy.δ)(zz)) (1)

In Näıve Open CBV, t and u are premature βv-normal forms because they both
have a stuck β-redex forbidding evaluation to keep going, while one would expect
them to behave like the divergent term Ω := δδ (see [25,28,4,2,8,15] and pp. 7-12).

Open CBV. In his seminal work, Plotkin already pointed out an asymmetry
between CBN and CBV: his CPS translation is sound and complete for CBN,
but only sound for CBV. This fact led to a number of studies about monad, CPS,
and logical translations [21,29,30,20,12,16] that introduced many proposals of
improved calculi for CBV. Starting with the seminal work of Paolini and Ronchi
Della Rocca [25,23,28], the dissonance between open terms and CBV has been
repeatedly pointed out and studied per se via various calculi [13,4,2,8,15,14,1]. A
further point of view on CBV comes from the computational interpretation of
sequent calculus due to Curien and Herbelin [9]. An important point is that the
focus of most of these works is on Strong CBV.

These solutions inevitably extend βv-reduction with some other rewriting
rule(s) or constructor (as let-expressions) to deal with stuck β-redexes, or even
go as far as changing the applicative structure of terms, as in the sequent calculus
approach. They arise from different perspectives and each one has its pros and
cons. By design, these calculi (when looked at in the context of Open CBV)
are never observationally equivalent to Näıve Open CBV, as they all manage
to (re)move stuck β-redexes and may diverge when Näıve Open CBV is instead
stuck. Each one of these calculi, however, has its own notion of evaluation and
normal form, and their mutual relationships are not evident.
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The aim of this paper is to draw the attention of the community on Open
CBV. We believe that it is somewhat deceiving that the mainstream operational
theory of CBV, however elegant, has to rely on closed terms, because it restricts
the modularity of the framework, and raises the suspicion that the true essence
of CBV has yet to be found. There is a real gap, indeed, between Closed and
Strong CBV, as Strong CBV cannot be seen as an iteration of Closed CBV
under abstractions because such an iteration has to deal with open terms. To
improve the implementation of Coq [13], Grégoire and Leroy see Strong CBV as
the iteration of the intermediate case of Open CBV, but they do not explore its
theory. Here we exalt their point of view, providing a thorough operational study
of Open CBV. We insist on Open CBV rather than Strong CBV because:

1. Stuck β-redexes and premature βv-normal forms already affect Open CBV;

2. Open CBV has a simpler rewriting theory than Strong CBV;

3. Our previous studies of Strong CBV in [4] and [8] naturally organized them-
selves as properties of Open CBV that were lifted to Strong CBV by a simple
iteration under abstractions.

Our contributions are along two axes:

1. Termination Equivalence of the Proposals: we show that the proposed gener-
alizations of Näıve Open CBV are all equivalent, in the sense that they have
exactly the same sets of normalizing and diverging terms. So, there is just
one notion of Open CBV, independently of its specific syntactic incarnation.

2. Quantitative Analyses and Cost Models: the termination results are comple-
mented with quantitative analyses establishing precise relationships between
the number of steps needed to evaluate a given term in the various calculi. In
particular, we relate the cost models of the various proposals.

The Fab Four. We focus on four proposals for Open CBV, as other solutions,
e.g. Moggi’s [21] or Herbelin and Zimmerman’s [16], are already known to be
equivalent to these ones (see the end of Sect. 2):

1. The Fireball Calculus λfire, that extends values to fireballs by adding so-called
inert terms in order to restore harmony—it was introduced without a name
by Paolini and Ronchi Della Rocca [25,28], then rediscovered independently
first by Leroy and Grégoire [13] to improve the implementation of Coq, and
then by Accattoli and Sacerdoti Coen [1] to study cost models;

2. The Value Substitution Calculus λvsub, coming from the linear logic interpre-
tation of CBV and using explicit substitutions and contextual rewriting rules
to circumvent stuck β-redexes—it was introduced by Accattoli and Paolini [4]
and it is a graph-free presentation of proof nets for the CBV λ-calculus [2];

3. The Shuffling Calculus λshuf , that has rules to shuffle constructors, similar to
Regnier’s σ-rules for CBN [27], as an alternative to explicit substitutions—it
was introduced by Carraro and Guerrieri [8] (and further analyzed in [15,14])
to study the adequacy of Open/Strong CBV with respect to denotational
semantics related to linear logic.

4. The Value Sequent Calculus λvseq, i.e. the intuitionistic fragment of Curien and
Herbelin’s λ̄µ̃-calculus [9], that is a CBV calculus for classical logic providing a
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computational interpretation of sequent calculus rather than natural deduction
(in turn a fragment of the λµµ̃-calculus [9], further studied in e.g. [6,10]).

A Robust Cost Model for Open CBV. The number of βv-steps is the canonical
time cost model of Closed CBV, as first proved by Blelloch and Greiner [7,31,11].
In [1], Accattoli and Sacerdoti Coen generalized this result: the number of steps
in λfire is a reasonable cost model for Open CBV. Here we show that the number
of steps in λvsub and λvseq are linearly related to the steps in λfire, thus providing
reasonable cost models for these incarnations of Open CBV. As a consequence,
complexity analyses can now be smoothly transferred between λfire, λvsub, and
λvseq. Said differently, our results guarantee that the number of steps is a robust
cost model for Open CBV, in the sense that it does not depend on the chosen
incarnation. For λshuf we obtain a similar but strictly weaker result, due to some
structural difficulties suggesting that λshuf is less apt to complexity analyses.

On the Value of The Paper. While the equivalences showed here are new, they
might not be terribly surprising. Nonetheless, we think they are interesting, for
the following reasons:

1. Quantitative Relationships: λ-calculi are usually related only qualitatively,
while our relationships are quantitative and thus stronger: not only we show
simulations, but we also relate the number of steps.

2. Uniform View : we provide a new uniform view on a known problem, that will
hopefully avoid further proliferations of CBV calculi for open/strong settings.

3. Expected but Non-Trivial : while the equivalences are more or less expected,
establishing them is informative, because it forces to reformulate and connect
concepts among the different settings, and often tricky.

4. Simple Rewriting Theory : the relationships between the systems are developed
using basic rewriting concepts. The technical development is simple, according
to the best tradition of the CBV λ-calculus, and yet it provides a sharp and
detailed decomposition of Open CBV evaluation.

5. Connecting Different Worlds : while λfire is related to Coq and implementations,
λvsub and λshuf have a linear logic background, and λvseq is rooted in sequent
calculus. With respect to linear logic, λvsub has been used for syntactical
studies while λshuf for semantical ones. Our results therefore establish bridges
between these different (sub)communities.

Finally, an essential contribution of this work is the recognition of Open CBV
as a simple and yet rich framework in between Closed and Strong CBV.

Road Map. Sect. 2 provides an overview of the different presentations of Open
CBV. Sect. 3 proves the termination equivalences for λvsub, λfire and λshuf , en-
riched with quantitative information. Sect. 4 proves the quantitative termination
equivalence of λvsub and λvseq, via an intermediate calculus λvsubk .

A longer version of this paper is available on Arxiv [3]. It contains two
Appendices, one with a glossary of rewriting theory and one with omitted proofs.
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Terms t, u, s, r ::= v | tu
Values v, v′ ::= x | λx.t

Evaluation Contexts E ::= 〈·〉 | tE | Et

Rule at Top Level Contextual closure
(λx.t)λy.u 7→βλ t{x�λy.u} E〈t〉 →βλ E〈u〉 if t 7→βλ u

(λx.t)y 7→βy t{x�y} E〈t〉 →βy E〈u〉 if t 7→βy u

Reduction →βv :=→βλ ∪ →βy

Fig. 1. Näıve Open CBV λPlot

2 Incarnations of Open Call-by-Value

Here we recall Näıve Open CBV, noted λPlot, and introduce the four forms of
Open CBV that will be compared (λfire, λvsub, λshuf , and λvseq) together with a
semantic notion (potential valuability) reducing Open CBV to Closed CBV. In
this paper terms are always possibly open. Moreover, we focus on Open CBV
and avoid on purpose to study Strong CBV (we hint at how to define it, though).

Näıve Open CBV: Plotkin’s calculus λPlot [26]. Näıve Open CBV is Plotkin’s weak
CBV λ-calculus λPlot on possibly open terms, defined in Fig. 1. Our presentation
of the rewriting is unorthodox because we split βv-reduction into two rules,
according to the kind of value (abstraction or variable). The set of terms is
denoted by Λ. Terms (in Λ) are always identified up to α-equivalence and the
set of the free variables of a term t is denoted by fv(t). We use t{x�u} for the
term obtained by the capture-avoiding substitution of u for each free occurrence
of x in t. Evaluation →βv is weak and non-deterministic, since in the case of an
application there is no fixed order in the evaluation of the left and right subterms.
As it is well-known, non-determinism is only apparent: the system is strongly
confluent (see the appendix in [3] for a glossary of rewriting theory).

Proposition 1. →βy , →βλ and →βv are strongly confluent.

Strong confluence is a remarkable property, much stronger than plain con-
fluence. It implies that, given a term, all derivations to its normal form (if any)
have the same length, and that normalization and strong normalization coincide,
i.e. if there is a normalizing derivation then there are no diverging derivations.
Strong confluence will also hold for λfire, λvsub and λvseq, not for λshuf .

Let us come back to the splitting of →βv . In Closed CBV it is well-known
that →βy is superfluous, at least as long as small-step evaluation is considered,
see [5]. For Open CBV, →βy is instead necessary, but—as we explained in the
introduction—it is not enough, which is why we shall consider extensions of λPlot.
The main problem of Näıve Open CBV is that there are stuck β-redexes breaking
the harmony of the system. There are three kinds of solution: those restoring a
form of harmony (λfire), to be thought as more semantical approaches; those re-
moving stuck β-redexes (λvsub and λshuf), that are more syntactical in nature; those
changing the applicative structure of terms (λvseq), inspired by sequent calculus.
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Terms and Values As in Plotkin’s Open CBV (Fig. 1)
Fireballs f, f ′, f ′′ ::= λx.t | i

Inert Terms i, i′, i′′ ::= xf1 . . . fn n ≥ 0
Evaluation Contexts E ::= 〈·〉 | tE | Et

Rule at Top Level Contextual closure
(λx.t)(λy.u) 7→βλ t{x�λy.u} E〈t〉 →βλ E〈u〉 if t 7→βλ u

(λx.t)i 7→βi t{x�i} E〈t〉 →βi E〈u〉 if t 7→βi u

Reduction →βf :=→βλ ∪ →βi

Fig. 2. The Fireball Calculus λfire

2.1 Open Call-by-Value 1: The Fireball Calculus λfire

The Fireball Calculus λfire, defined in Fig. 2, was introduced without a name by
Paolini and Ronchi Della Rocca in [25] and [28, Def. 3.1.4, p. 36] where its basic
properties are also proved. We give here a presentation inspired by Accattoli
and Sacerdoti Coen’s [1], departing from it only for inessential, cosmetic details.
Terms, values and evaluation contexts are the same as in λPlot.

The idea is to restore harmony by generalizing→βy to fire when the argument
is a more general inert term—the new rule is noted →βi . The generalization of
values as to include inert terms is called fireballs. Actually fireballs and inert
terms are defined by mutual induction (in Fig. 2). For instance, λx.y is a fireball
as an abstraction, while x, y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs
as inert terms. Note that ii′ is an inert term for all inert terms i and i′. Inert
terms can be equivalently defined as i ::= x | if . The main feature of an inert
term is that it is open, normal and that when plugged in a context it cannot
create a redex, hence the name (it is not a so-called neutral term because it might
have redexes under abstractions). In Grégoire and Leroy’s presentation [13], inert
terms are called accumulators and fireballs are simply called values.

Evaluation is given by the fireball rule→βf , that is the union of→βλ and→βi .
For instance, consider t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz)) as in Eq. (1),
p. 2: t and u are βv-normal but they diverge when evaluated in λfire, as desired:
t→βi δδ →βλ δδ →βλ . . . and u→βi δδ →βλ δδ →βλ . . . .

The distinguished, key property of λfire is (for any t ∈ Λ):

Proposition 2 (Open Harmony). t is βf -normal iff t is a fireball.

The advantage of λfire is its simple notion of normal form, i.e. fireballs, that
have a clean syntactic description akin to that for call-by-name. The other calculi
will lack a nice, natural notion of normal form. The drawback of the fireball
calculus—and probably the reason why its importance did not emerge before—is
the fact that as a strong calculus it is not confluent: this is due to the fact that
fireballs are not closed by substitution (see [28, p. 37]). Indeed, if evaluation is
strong, the following critical pair cannot be joined, where t := (λy.I)(δδ) and
I := λz.z is the identity combinator:

I βλ← (λx.I)δ βi← (λx.(λy.I)(xx))δ →βλ t→βλ t→βλ. . . (2)
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On the other hand, as long as evaluation is weak (that is the case we consider)
everything works fine—the strong case can then be caught by repeatedly iterating
the weak one under abstraction, once a weak normal form has been obtained (thus
forbidding the left part of (2)). In fact, the weak evaluation of λfire has a simple
rewriting theory, as next proposition shows. In particular it is strongly confluent.

Proposition 3 (Basic Properties of λfire).

1. →βi is strongly normalizing and strongly confluent.

2. →βλ and →βi strongly commute.

3. →βf is strongly confluent, and all βf -normalizing derivations d from t ∈ Λ
(if any) have the same length |d|βf , the same number |d|βλ of βλ-steps, and
the same number |d|βi of βi-steps.

2.2 Open Call-by-Value 2: The Value Substitution Calculus λvsub

Rewriting Preamble: Creations of Type 1 and 4. The problem with stuck β-
redexes can be easily understood at the rewriting level as an issue about creations.
According to Lévy [19], in the ordinary CBN λ-calculus redexes can be created
in 3 ways. Creations of type 1 take the following form

((λx.λy.t)r)s→β (λy.t{x�r})s

where the redex involving λy and s has been created by the β-step. In Näıve Open
CBV if r is a normal form and not a value then the creation cannot take place,
blocking evaluation. This is the problem concerning the term t in Eq. (1), p. 2.
In CBV there is another form of creation—of type 4 —not considered by Lévy:

(λx.t)((λy.v)v′)→βv (λx.t)(v{y�v′})

i.e. a reduction in the argument turns the argument itself into a value, creating
a βv-redex. As before, in an open setting v′ may be replaced by a normal form
that is not a value, blocking the creation of type 4. This is exactly the problem
concerning the term u in Eq. (1), p. 2.

The proposals of this and the next sections introduce some way to enable
creations of type 1 and 4, without substituting stuck β-redexes nor inert terms.

The value substitution calculus λvsub of Accattoli and Paolini [4,2] was in-
troduced as a calculus for Strong CBV inspired by linear logic proof nets. In
Fig. 3 we present its adaptation to Open CBV, obtained by simply removing
abstractions from evaluation contexts. It extends the syntax of terms with the
constructor [x�u], called explicit substitution (shortened ES, to not be confused
with the meta-level substitution {x�u}). A vsub-term t[x�u] represents the
delayed substitution of u for x in t, i.e. stands for let x = u in t. So, t[x�u]
binds the free occurrences of x in t. The set of vsub-terms—identified up to
α-equivalence—is denoted by Λvsub (clearly Λ ( Λvsub).

ES are used to remove stuck β-redexes: the idea is that β-redexes can be
fired whenever—even if the argument is not a (vsub-)value—by means of the
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vsub-Terms t, u, s ::= v | tu | t[x�u]
vsub-Values v ::= x | λx.t

Evaluation Contexts E ::= 〈·〉 | tE | Et | E[x�u] | t[x�E]
Substitution Contexts L ::= 〈·〉 | L[x�u]

Rule at Top Level Contextual closure
L〈λx.t〉u 7→m L〈t[x�u]〉 E〈t〉 →m E〈u〉 if t 7→m u

t[x�L〈λy.u〉] 7→eλ L〈t{x�λy.u}〉 E〈t〉 →eλ E〈u〉 if t 7→eλ u
t[x�L〈y〉] 7→ey L〈t{x�y}〉 E〈t〉 →ey E〈u〉 if t 7→ey u

Reductions →e :=→eλ ∪ →ey , →vsub :=→m∪ →e

Fig. 3. The Value Substitution Calculus λvsub

multiplicative rule →m; however the argument is not substituted but placed in a
ES. The actual substitution is done only when the content of the ES is a vsub-
value, by means of the exponential rule →e. These two rules are sometimes noted
→dB (β at a distance) and →vs (substitution by value)—the names we use here
are due to the interpretation of the calculus into linear logic proof-nets, see [2].
A characteristic feature coming from such an interpretation is that the rewriting
rules are contextual, or at a distance: they are generalized as to act up to a list
of substitutions (noted L, from List). Essentially, stuck β-redexes are turned into
ES and then ignored by the rewriting rules—this is how creations of type 1 and
4 are enabled. For instance, the terms t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz))
(as in Eq. (1), p. 2) are e-normal but t →m δ[y�zz]δ →m (xx)[x�δ][y�zz] →e

(δδ)[y�zz]→m (xx)[x�δ][y�zz]→e (δδ)[y�zz]→m . . . and similarly for u.
The drawback of λvsub is that it requires explicit substitutions. The advantage

of λvsub is its simple and well-behaved rewriting theory, even simpler than the
rewriting for λfire, since every rule terminates separately (while βλ does not)—in
particular strong confluence holds. Moreover, the theory has a sort of flexible
second level given by a notion of structural equivalence, coming up next.

Proposition 4 (Basic Properties of λvsub, [4]).

1. →m and →e are strongly normalizing and strongly confluent (separately).

2. →m and →e strongly commute.

3. →vsub is strongly confluent, and all vsub-normalizing derivations d from
t∈Λvsub (if any) have the same length |d|vsub, the same number |d|e of e-steps,
and the same number |d|m of m-steps

4. Let t∈Λ. For any vsub-derivation d from t, |d|e ≤ |d|m.

Structural Equivalence. The theory of λvsub comes with a notion of structural
equivalence ≡, that equates vsub-terms that differ only for the position of ES.
The basic idea is that the action of an ES via the exponential rule depends on
the position of the ES itself only for inessential details (as long as the scope
of binders is respected), namely the position of other ES, and thus can be
abstracted away. A strong justification for the equivalence comes from the linear
logic interpretation of λvsub, in which structurally equivalent vsub-terms translate
to the same (recursively typed) proof net, see [2].
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Structural equivalence ≡ is defined as the least equivalence relation on Λvsub

closed by evaluation contexts (see Fig. 3) and generated by the following axioms:

t[y�s][x�u] ≡com t[x�u][y�s] if y /∈ fv(u) and x /∈ fv(s)

t s[x�u] ≡@r (ts)[x�u] if x 6∈ fv(t)

t[x�u]s ≡@l (ts)[x�u] if x 6∈ fv(s)

t[x�u[y�s]] ≡[·] t[x�u][y�s] if y 6∈ fv(t)

We set→vsub≡ :=≡→vsub≡ (i.e. for all t, r ∈ Λvsub: t→vsub≡ r iff t ≡ u→vsub s ≡ r
for some u, s ∈ Λvsub). The notation→+

vsub≡
keeps its usual meaning, while→∗vsub≡

stands for ≡ ∪ →+
vsub≡

, i.e. a vsub≡-derivation of length zero can apply ≡ and is
not just the identity. As ≡ is reflexive, →vsub (→vsub≡.

The rewriting theory of λvsub enriched with structural equivalence ≡ is re-
markably simple, as next lemma shows. In fact, ≡ commutes with evaluation, and
can thus be postponed. Additionally, the commutation is strong, as it preserves
the number and kind of steps—one says that it is a strong bisimulation (with
respect to →vsub). In particular, the equivalence is not needed to compute and it
does not break, or make more complex, any property of λvsub. On the contrary,
it enhances the flexibility of the system: it will be essential to establish simple
and clean relationships with the other calculi for Open CBV.

Lemma 5 (Basic Properties of Structural Equivalence ≡, [4]). Let t, u ∈
Λvsub and x ∈ {m, eλ, ey, e, vsub}.
1. Strong Bisimulation of ≡ wrt →vsub: if t ≡ u and t →x t

′ then there exists
u′ ∈ Λvsub such that u→x u

′ and t′ ≡ u′.
2. Postponement of ≡ wrt →vsub: if d : t →∗vsub≡

u then there are s ≡ u and
e : t→∗vsub s such that |d| = |e|, |d|eλ = |e|eλ , |d|ey = |e|ey and |d|m = |e|m.

3. Normal Forms: if t ≡ u then t is x-normal iff u is x-normal.

4. Strong confluence: →vsub≡ is strongly confluent.

2.3 Open Call-by-Value 3: The Shuffling Calculus λshuf

The calculus introduced by Carraro and Guerrieri in [8], and here deemed
Shuffling Calculus, has the same syntax of terms as Plotkin’s calculus. Two
additional commutation rules help →βv to deal with stuck β-redexes, by shuffling
constructors so as to enable creations of type 1 and 4. As for λvsub, λshuf was
actually introduced, and then used in [8,14,15], to study Strong CBV. In Fig. 4
we present its adaptation to Open CBV, based on balanced contexts, a special
notion of evaluation contexts. The reductions→σ[ and→β[v

are non-deterministic
and—because of balanced contexts—can reduce under abstractions, but they are
morally weak: they reduce under a λ only when the λ is applied to an argument.
Note that the condition x /∈ fv(s) (resp. x /∈ fv(v)) in the definition of the
shuffling rule 7→σ1

(resp. 7→σ3
) can always be fulfilled by α-conversion.

The rewriting (shuffling) rules →σ[1
and →σ[3

unblock stuck β-redexes. For

instance, consider the terms t := ((λy.δ)(zz))δ and u := δ((λy.δ)(zz)) where
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Terms and Values As in Plotkin’s Open CBV (Fig. 1)
Balanced Contexts B ::= 〈·〉 | tB | Bt | (λx.B)t

Rule at Top Level Contextual closure
((λx.t)u)s 7→σ1 (λx.ts)u, x /∈fv(s) B〈t〉 →σ[1

B〈u〉 if t 7→σ1 u

v((λx.s)u) 7→σ3 (λx.vs)u, x /∈fv(v) B〈t〉 →σ[3
B〈u〉 if t 7→σ3 u

(λx.t)v 7→βv t{x�v} B〈t〉 →β[v
B〈u〉 if t 7→βv u

Reductions →σ[ :=→σ[1
∪ →σ[3

, →shuf :=→β[v
∪ →σ[

Fig. 4. The Shuffling Calculus λshuf

δ := λx.xx (as in Eq. (1), p. 2): t and u are β[v-normal but t→σ[1
(λy.δδ)(zz)→β[v

(λy.δδ)(zz)→β[v
. . . and u→σ[3

(λy.δδ)(zz)→β[v
(λx.δδ)(zz)→β[v

. . . .

The similar shuffling rules in CBN, better known as Regnier’s σ-rules [27], are
contained in CBN β-equivalence, while in Open (and Strong) CBV they are more
interesting because they are not contained into (i.e. they enrich) βv-equivalence.

The advantage of λshuf is with respect to denotational investigations. In [8],
λshuf is indeed used to prove various semantical results in connection to linear
logic, resource calculi, and the notion of Taylor expansion due to Ehrhard. In
particular, in [8] it has been proved the adequacy of λshuf with respect to the
relational model induced by linear logic: a by-product of our paper is the extension
of this adequacy result to all incarnations of Open CBV. The drawback of λshuf

is its technical rewriting theory. We summarize some properties of λshuf :

Proposition 6 (Basic Properties of λshuf , [8]).

1. Let t, u, s ∈ Λ. If t→β[v
u and t→σ[ s then u 6= s.

2. →σ[ is strongly normalizing and (not strongly) confluent.

3. →shuf is (not strongly) confluent.

4. Let t ∈ Λ: t is strongly shuf-normalizable iff t is shuf-normalizable.

In contrast to λfire and λvsub, λshuf is not strongly confluent and not all shuf-
normalizing derivations (if any) from a given term have the same length (consider,
for instance, all shuf-normalizing derivations from (λy.z)(δ(zz))δ). Nonetheless,
normalization and strong normalization still coincide in λshuf (Prop. 6.4), and
Cor. 18 in Sect. 3 will show that the discrepancy is encapsulated inside the
additional shuffling rules, since all shuf-normalizing derivations (if any) from a
given term have the same number of β[v-steps.

2.4 Open Call-by-Value 4: The Value Sequent Calculus λvseq

A more radical approach to the removal of stuck β-redexes is provided by what
is here called the Value Sequent Calculus λvseq, defined in Fig. 5. In λvseq, it is
the applicative structure of terms that is altered, by replacing the application
constructor with more constructs, namely commands c and environments e.
Morally, λvseq looks at a sequence of applications from the head, that is the value
on the left of a command 〈v |e〉 rather than from the tail as in natural deduction.
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Commands c, c′ ::= 〈v |e〉
Values v, v′ ::= x | λx.c

Environments e, e′ ::= ε | µ̃x.c | v ·e
Command Evaluation Contexts C ::= 〈·〉 | D〈µ̃x.C〉

Environment Evaluation Contexts D ::= 〈v | 〈·〉〉 | D〈v ·〈·〉〉

Rule at Top Level Contextual closure
〈λx.c |v ·e〉 7→λ̄ 〈v |(µ̃x.c)@e〉 C〈c〉 →λ̄ C〈c′〉 if c 7→λ̄ c

′

〈v | µ̃x.c〉 7→µ̃ c{x�v} C〈c〉 →µ̃ C〈c′〉 if c 7→µ̃ c
′

Reduction →vseq :=→λ̄∪ →µ̃

Fig. 5. The Value Sequent Calculus λvseq

In fact, λvseq is a handy presentation of the intuitionistic fragment of λ̄µ̃, that
in turn is the CBV fragment of λµµ̃, a calculus obtained as the computational
interpretation of a sequent calculus for classical logic. Both λ̄µ̃ and λµµ̃ are due to
Curien and Herbelin [9], see [6,10] for further investigations about these systems.

A peculiar trait of the sequent calculus approach is the environment construc-
tor µ̃x.c, that is a binder for the free occurrences of x in c. It is often said that it
is a sort of explicit substitution—we will see exactly in which sense, in Sect. 4.

The change of the intuitionistic variant λvseq with respect to λ̄µ̃ is that λvseq

does not need the syntactic category of co-variables α, as there can be only one of
them, denoted here by ε. From a logical viewpoint, this is due to the fact that in in-
tuitionistic sequent calculus the right-hand-side of ` has exactly one formula, that
is neither contraction nor weakening are allowed on the right. Consequently, the
binary abstraction λ(x, α).c of λ̄µ̃ is replaced by a more traditional unary one λx.c,
and substitution on co-variables is replaced by a notion of appending of environ-
ments, defined by mutual induction on commands and environments as follows:

〈v |e′〉@e := 〈v |e′@e〉 ε@e := e

(v ·e′)@e := v ·(e′@e) (µ̃x.c)@e := µ̃y.(c{x�y}@e) with y /∈ fv(c) ∪ fv(e)

Essentially, c@e is a capture-avoiding substitution of e for the only occurrence of
ε in c that is out of all abstractions, standing for the output of the term. The
append operation is used in the rewrite rule →λ̄ of λvseq (Fig. 5). Strong CBV
can be obtained by simply extending the grammar of evaluation contexts to
commands under abstractions.

We will provide a translation from λvsub to λvseq that, beyond termination
equivalence, will show that switching to a sequent calculus representation is
equivalent to a transformation in administrative normal form [29].

The advantage of λvseq is that it avoids both rules at a distance and shuffling
rules. The drawback of λvseq is that, syntactically, it requires to step out of
the λ-calculus. We will show in Sect. 4 how to reformulate it as a fragment of
λvsub, i.e. in natural deduction. However, it will still be necessary to restrict the
application constructor, thus preventing the natural way of writing terms.

The rewriting of λvseq is very well-behaved, in particular it is strongly confluent
and every rewriting rule terminates separately.
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Proposition 7 (Basic properties of λvseq).

1. →λ̄ and →µ̃ are strongly normalizing and strongly confluent (separately).

2. →λ̄ and →µ̃ strongly commute.

3. →vseq is strongly confluent, and all vseq-normalizing derivations d from a
command c (if any) have the same length |d|, the same number |d|µ̃ of µ̃-steps,
and the same number |d|λ̄ of λ̄-steps.

2.5 Variations on a Theme

Reducing Open to Closed Call-by-Value: Potential Valuability. Potential valu-
ability relates Näıve Open CBV to Closed CBV via a meta-level substitution
closing open terms: a (possibly open) term t is potentially valuable if there is a
substitution of (closed) values for its free variables, for which it βv-evaluates to
a (closed) value.3 In Näıve Open CBV, potentially valuable terms do not coincide
with normalizable terms because of premature βv-normal forms—such as t and u
in Eq. (1) at p. 2— which are not potentially valuable.

Paolini, Ronchi Della Rocca and, later, Pimentel [25,23,28,24,22] gave several
operational, logical, and semantical characterizations of potentially valuable
terms in Näıve Open CBV. In particular, in [25,28] it is proved that a term is
potentially valuable in Plotkin’s Näıve Open CBV iff its normalizable in λfire.

Potentially valuable terms can be defined for every incarnation of Open CBV:
it is enough to update the notions of evaluation and values in the above definition
to the considered calculus. This has been done for λshuf in [8], and for λvsub in
[4]. For both calculi it has been proved that, in the weak setting, potentially
valuable terms coincides with normalizable terms. In [15], it has been proved
that Plotkin’s potentially valuable terms coincide with shuf-potentially valuable
terms (which coincide in turn with shuf-normalizable terms). Our paper makes a
further step: proving that termination coincides for λfire, λvsub, λshuf , and λvseq it
implies that all their notions of potential valuability coincide with Plotkin’s, i.e.
there is just one notion of potential valuability for Open (and Strong) CBV.

Open CBV 5, 6, 7, . . . The literature contains many other calculi for CBV,
usually presented for Strong CBV and easily adaptable to Open CBV. Some of
them have let-expressions (avatars of ES) and all of them have rules permuting
constructors, therefore they lie somewhere in between λvsub and λshuf . Often, they
have been developed for other purposes, usually to investigate the relationship
with monad or CPS translations. Moggi’s equational theory [21] is a classic
standard of reference, known to coincide with that of Sabry and Felleisen [29],
Sabry and Wadler [30], Dychoff and Lengrand [12], Herbelin and Zimmerman [16]
and Maraist et al’s λlet in [20]. In [4], λvsub modulo ≡ is shown to be termination
equivalent to Herbelin and Zimmerman’s calculus, and to strictly contain its
equational theory, and thus Moggi’s. At the level of rewriting these presentations
of Open CBV are all more involved than those that we consider here. Their
equivalence to our calculi can be shown along the lines of that of λshuf with λvsub.

3 Potential valuability for Plotkin’s CBV λ-calculus can be equivalently defined using
weak or strong βv-reduction: it is the same notion for Näıve Open and Strong CBV.
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3 Quantitative Equivalence of λfire, λvsub, and λshuf

Here we show the equivalence with respect to termination of λfire, λvsub, and λshuf ,
enriched with quantitative information on the number of steps.

On the Proof Technique. We show that termination in λvsub implies termination
in λfire and λshuf by studying simulations of λfire and λshuf into λvsub. To prove the
converse implications we do not use inverse simulations. Alternatively, we show
that βf - and shuf-normal forms are essentially projected into vsub-normal forms,
so that if evaluation terminates in λfire or λshuf then it also terminates on λvsub.

Such a simple technique works because in the systems under study normaliza-
tion and strong normalization coincide: if there is a normalizing derivation from
a given term t then there are no diverging derivations from t (for λvsub and λfire it
follows from strong confluence, for λshuf is given by Prop. 6.4). This fact is also the
reason why the statements of our equivalences (forthcoming Cor. 13 and Cor. 17)
address a single derivation from t rather than considering all derivations from t.
Moreover, for any calculus, all normalizing derivations from t have the same num-
ber of steps (in λshuf it holds for β[v-steps, see Cor. 18), hence also the quantitative
claims of Cor. 13 and Cor. 17 hold actually for all normalizing derivations from t.

In both simulations, the structural equivalence ≡ of λvsub plays a role.

3.1 Equivalence of λfire and λvsub

A single βv-step (λx.t)v →βv t{x�v} is simulated in λvsub by two steps: (λx.t)v
→m t[x�v]→e t{x�v}, i.e. a m-step that creates a ES, and a e-step that turns
the ES into the meta-level substitution performed by the βv-step. The simulation
of an inert step of λfire is instead trickier, because in λvsub there is no rule to
substitute an inert term, if it is not a variable. The idea is that an inert step
(λx.t)i →βi t{x�i} is simulated only by (λx.t)i →m t[x�i], i.e. only by the
m-step that creates the ES, and such a ES will never be fired—so the simulation
is up to the unfolding of substitutions containing inert terms (defined right next).
Everything works because of the key property of inert terms: they are normal
and their substitution cannot create redexes, so it is useless to substitute them.

The unfolding of a vsub-term t is the term t

→

obtained from t by turning ES
into meta-level substitutions; it is defined by:

x

→

:= x (tu)

→

:= t

→

u

→

(λx.t)

→

:= λx.t

→

(t[x�u])

→

:= t

→

{x�u

→

}

For all t, u ∈ Λvsub, t ≡ u implies t

→

= u

→

. Also, t

→

= t iff t ∈ Λ.
In the simulation we are going to show, structural equivalence ≡ plays a role.

It is used to clean the vsub-terms (with ES) obtained by simulation, putting
them in a canonical form where ES do not appear among other constructors.

A vsub-term is clean if it has the form u[x1�i1] . . . [xn�in] (with n ∈ N),
u ∈ Λ is called the body, and i1, . . . , in ∈ Λ are inert terms. Clearly, any term (as
it is without ES) is clean. We first show how to simulate a single fireball step.

Lemma 8 (Simulation of a βf -Step in λvsub). Let t, u ∈ Λ.
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1. If t→βλ u then t→m→eλ u.

2. If t→βi u then t→m≡ s, with s∈Λvsub clean and s

→

= u.

We cannot simulate derivations by iterating Lemma 8, because the starting
term t has no ES but the simulation of inert steps introduces ES. Hence, we
have to generalize Lemma 8 up to the unfolding of ES. In general, unfolding ES
is a dangerous operation with respect to (non-)termination, as it may erase a
diverging subterm (e.g. t := x[y�δδ] is vsub-divergent and t

→
= x is normal). In

our case, however, the simulation produces clean vsub-terms, so the unfolding is
safe since it can erase only inert terms and cannot create, erase, nor carry redexes.

By means of a technical lemma (see the appendix in [3]) we obtain:

Lemma 9 (Projection of a βf -Step on →vsub via Unfolding). Let t be a
clean vsub-term and u be a term.

1. If t

→

→βλ u then t→m→eλ s, with s∈Λvsub clean and s

→

= u.

2. If t

→

→βi u then t→m≡ s, with s∈Λvsub clean and s

→

= u.

Via Lemma 9 we can now simulate whole derivations (in forthcoming Thm. 12).

Simulation and Normal Forms. The next step towards the equivalence is to
relate normal forms in λfire (aka fireballs) to those in λvsub. The relationship is not
perfect, since the simulation does not directly map the former to the latter—we
have to work a little bit more. First of all, let us characterize the terms in λvsub

obtained by projecting normalizing derivations (that always produce a fireball).

Lemma 10. Let t be a clean vsub-term. If t

→

is a fireball, then t is {m, eλ}-normal
and its body is a fireball.

Now, a {m, eλ}-normal form t morally is vsub-normal, as →ey terminates
(Prop. 4.1) and it cannot create {m, eλ}-redexes. The part about creations is
better expressed as a postponement property.

Lemma 11 (Linear Postponement of →ey). Let t, u ∈ Λvsub. If d : t→∗vsub u
then e : t→∗m,eλ→

∗
ey u with |e|vsub = |d|vsub, |e|m = |d|m, |e|e = |d|e and |e|eλ≥ |d|eλ .

The next theorem puts all the pieces together.

Theorem 12 (Quantitative Simulation of λfire in λvsub). Let t, u ∈ Λ. If
d : t→∗βf u then there are s, r∈Λvsub and e : t→∗vsub r such that

1. Qualitative Relationship: r ≡ s, u = s

→

= r

→

and s is clean;

2. Quantitative Relationship:

1. Multiplicative Steps: |d|βf = |e|m;

2. Exponential (Abstraction) Steps: |d|βλ = |e|eλ = |e|e.

3. Normal Forms: if u is βf -normal then there exists g : r →∗ey q such that q is a
vsub-normal form and |g|ey ≤ |e|m − |e|eλ .

Corollary 13 (Linear Termination Equivalence of λvsub and λfire). Let
t ∈ Λ. There is a βf -normalizing derivation d from t iff there is a vsub-normalizing
derivation e from t. Moreover, |d|βf ≤ |e|vsub ≤ 2|d|βf , i.e. they are linearly related.
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The number of βf -steps in λfire is a reasonable cost model for Open CBV [1].
Our result implies that also the number of m-steps in λvsub is a reasonable cost
model, since the number of m-steps is exactly the number of βf -steps . This fact is
quite surprising: in λfire arguments of βf -redexes are required to be fireballs, while
for m-redexes there are no restrictions on arguments, and yet in any normalizing
derivation their number coincide. Note, moreover, that e-steps are linear in
m-steps, but only because the initial term has no ES: in general, this is not true.

3.2 Equivalence of λshuf and λvsub

A derivation d : t→∗shuf u in λshuf is simulated via a projection on multiplicative
normal forms in λvsub, i.e. as a derivation m(t) →∗vsub≡

m(u) (for any vsub-term
t, its multiplicative and exponential normal forms, denoted by m(t) and e(t)
respectively, exist and are unique by Prop. 4). Indeed, a β[v-step of λshuf is
simulated in λvsub by a e-step followed by some m-steps to reach the m-normal
form. Shuffling rules →σ[ of λshuf are simulated by structural equivalence ≡ in
λvsub: applying m(·) to ((λx.t)u)s→σ[1

(λx.(ts))u we obtain exactly an instance

of the axiom ≡@l defining ≡: m(t)[x�m(u)]m(s) ≡@l (m(t)m(s))[x�m(u)] (with
the side conditions matching exactly). Similarly, →σ[3

projects to ≡@r or ≡[·]
(depending on whether v in →σ[3

is a variable or an abstraction). Therefore,

Lemma 14 (Projecting a shuf-Step on →vsub≡ via m-NF). Let t, u∈Λ.

1. If t→σ[ u then m(t) ≡ m(u).

2. If t→β[v
u then m(t)→e→∗m m(u).

In contrast to the simulation of λfire in λvsub, here the projection of a single
step can be extended to derivations without problems, obtaining that the number
of β[v-steps in λshuf matches exactly the number of e-steps in λvsub. Additionally,
we apply the postponement of ≡ (Lemma 5.2), factoring out the use of ≡ (i.e. of
shuffling rules) without affecting the number of e-steps.

To obtain the termination equivalence we also need to study normal forms.
Luckily, the case of λshuf is simpler than that of λfire, as next lemma shows.

Lemma 15 (Projection Preserves Normal Forms). Let t ∈ Λ. If t is shuf-
normal then m(t) is vsub-normal.

The next theorem puts all the pieces together (for any shuf-derivation d, |d|β[v
is the number of β[v-steps in d: this notion is well defined by Prop. 6.1).

Theorem 16 (Quantitative Simulation of λshuf in λvsub). Let t, u ∈ Λ. If
d : t→∗shuf u then there are s ∈ Λvsub and e : t→∗vsub s such that

1. Qualitative Relationship: s ≡ m(u);

2. Quantitative Relationship (Exponential Steps): |d|β[v = |e|e;

3. Normal Form: if u is shuf-normal then s and m(u) are vsub-normal.

Corollary 17 (Termination Equivalence of λvsub and λshuf). Let t ∈ Λ.
There is a shuf-normalizing derivation d from t iff there is a vsub-normalizing
derivation e from t. Moreover, |d|β[v = |e|e.
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The obtained quantitative equivalence has an interesting corollary that shows
some light on why λshuf is not strongly confluent. Our simulation maps β[v-steps
in λshuf to exponential steps in λvsub, that are strongly confluent, and thus in
equal number in all normalizing derivations (if any) from a given term. Therefore,

Corollary 18 (Number of β[v-Steps is Invariant). All shuf-normalizing
derivations from t ∈ Λ (if any) have the same number of β[v-steps.

Said differently, in λshuf normalizing derivations may have different lengths
but the difference is encapsulated inside the shuffling rules →σ[1

and →σ[3
.

Concerning the cost model, things are subtler for λshuf . Note that the rela-
tionship between λshuf and λvsub uses the number of e-steps, while the cost model
(inherited from λfire) is the number of m-steps. Do e-steps provide a reasonable
cost model? Probably not, because there is a family of terms that evaluate in
exponentially more m-steps than e-steps. Details are left to a longer version.

4 Quantitative Equivalence of λvsub and λvseq, via λvsubk

The quantitative termination equivalence of λvsub and λvseq is shown in two steps:
first, we identify a sub-calculus λvsubk of λvsub equivalent to the whole of λvsub,
and then show that λvsubk and λvseq are equivalent (actually isomorphic). Both
steps reuse the technique of Sect. 3, i.e. simulation plus study of normal forms.

4.1 Equivalence of λvsubk and λvsub

The kernel λvsubk of λvsub is the sublanguage of λvsub obtained by replacing the
application constructor tu with the restricted form tv where the right subterm
can only be a value v—i.e., λvsubk is the language of so-called administrative
normal forms [29] of λvsub. The rewriting rules are the same of λvsub. It is easy to
see that λvsubk is stable by vsub-reduction. For lack of space, more details about
λvsubk are in the appendix of [3].

The translation (·)+ of λvsub into λvsubk , which simply places the argument of
an application into an ES, is defined by (note that fv(t) = fv(t+) for all t∈Λvsub):

x+ := x (tu)+ := (t+x)[x�u+] where x is fresh

(λx.t)+ := λx.t+ t[x�u]+ := t+[x�u+]

Lemma 19 (Simulation). Let t, u ∈ Λvsub.

1. Multiplicative: if t→m u then t+ →m→ey≡ u+;

2. Exponential: if t→eλ u then t+ →eλ u
+, and if t→ey u then t+ →ey u

+.

3. Structural Equivalence: t ≡ u implies t+ ≡ u+.

The translation of a vsub-normal form is not vsubk-normal (e.g. (xy)+ =
(xz)[z�y]) but a further exponential normalization provides a vsubk-normal form.

Theorem 20 (Quantitative Simulation of λvsub in λvsubk). Let t, u ∈ Λvsub.
If d : t→∗vsub u then there are s ∈ Λvsubk and e : t+ →∗vsubk

s such that
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1. Qualitative Relationship: s ≡ u+;

2. Quantitative Relationship:
1. Multiplicative Steps: |e|m = |d|m;

2. Exponential Steps: |e|eλ = |d|eλ and |e|ey = |d|ey + |d|m;
3. Normal Form: if u is vsub-normal then s is m-normal and e(s) is vsubk-normal.

Unfortunately, the length of the exponential normalization in Thm. 20.3
cannot be easily bounded, forbidding a precise quantitative equivalence. Note
however that turning from λvsub to its kernel λvsubk does not change the number
of multiplicative steps: the transformation preserves the cost model.

Corollary 21 (Termination and Cost Equivalence of λvsub and λvsubk).
Let t ∈ Λvsub. There exists a vsub-normalizing derivation d from t iff there exists
a vsubk-normalizing derivation e from t+. Moreover, |d|m = |e|m.

4.2 Equivalence of λvsubk and λvseq

The translation · of λvsubk into λvseq relies on an auxiliary translation (·)• of
values and it is defined as follows:

x• := x (λx.t)• := λx.t
v := 〈v |ε〉 tv := t@(v• ·ε) t[x�u] := u@µ̃x.t

Note the subtle mapping of ES to µ̃: ES correspond to appendings of µ̃ to the
output of the term u to be substituted, and not of the term t where to substitute.

It is not hard to see that λvsubk and λvseq are actually isomorphic, where
the converse translation (·)�, that maps values and commands to terms, and
environments to evaluation contexts, is given by:

x� := x ε� := 〈·〉 〈v |e〉� := e�〈v�〉
(λx.c)� := λx.c� (v ·e)� := e�〈〈·〉v�〉 (µ̃x.c)� := c�[x�〈·〉]

For the sake of uniformity, we follow the same structure of the other weaker
equivalences (i.e. simulation plus mapping of normal forms, here working smoothly)
rather than proving the isomorphism formally. The simulation maps multiplicative
steps to λ̄ steps, whose number, then, is a reasonable cost model for λvseq.

Lemma 22 (Simulation of →vsubk by →vseq). Let t and u be vsubk-terms.

1. Multiplicative: if t→m u then t→λ̄ u.

2. Exponential: if t→e u then t→µ̃ u.

Theorem 23 (Quantitative Simulation of λvsubk in λvseq). Let t and u be
vsubk-terms. If d : t→∗vsubk

u then there is e : t→∗vseq u such that

1. Multiplicative Steps: |d|m = |e|λ̄ (the number λ̄-steps in e);

2. Exponential Steps: |d|e = |e|µ̃ (the number µ̃-steps in e), so |d|vsubk = |e|vseq;

3. Normal Form: if u is vsubk-normal then u is vseq-normal.

Corollary 24 (Linear Termination Equivalence of λvsubk and λvseq). Let
t be a vsubk-term. There is a vsubk-normalizing derivation d from t iff there is a
vseq-normalizing derivation e from t. Moreover, |d|vsubk = |e|vseq, |d|e = |e|µ̃ and
|d|m = |e|λ̄.
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Structural Equivalence for λvseq. The equivalence of λvsub and λvsubk relies on the
structural equivalence ≡ of λvsub, so it is natural to wonder how does ≡ look on
λvseq. The structural equivalence l of λvseq is defined as the closure by evaluation
contexts of the following axiom

D〈µ̃x.D′〈µ̃y.c〉〉 lµ̃µ̃ D′〈µ̃y.D〈µ̃x.c〉〉 where x /∈ fv(D′) and y /∈ fv(D).

As expected, l has, with respect to λvseq, all the properties of ≡ (see Lemma 5).
They are formally stated in the appendix of [3], for lack of space.

5 Conclusions and Future Work

This paper proposes Open CBV as a setting halfway between Closed CBV, the
simple framework used to model programming languages such as OCaml, and
Strong CBV, the less simple setting underling proof assistants such as Coq. Open
CBV is a good balance: its rewriting theory is simple—in particular it is strongly
confluent, as the one of Closed CBV—and it can be iterated under abstractions
to recover Strong CBV, which is not possible with Closed CBV.

We compared four representative calculi for Open CBV, developed with
different motivations, and showed that they share the same qualitative (termina-
tion/divergence) and quantitative (number of steps) properties with respect to
termination. Therefore, they can be considered as different incarnations of the
same immaterial setting, justifying the slogan Open CBV.

The qualitative equivalences carry semantical consequences: the adequacy
of relational semantics for the shuffling calculus proved in [8] actually gives
a semantic (and type-theoretical, since the relational model can be seen as a
non-idempotent intersection type system) characterization of normalizable terms
for Open CBV, i.e. it extends to the other three calculi. Similarly, the notion of
potential valuability for Plotkin’s CBV λ-calculus, well-studied in [25,23,28,24,22]
and recalled at the end of Sect. 2, becomes a robust notion characterizing the
same terms in Open (and Strong) CBV.

Quantitatively, we showed that in three out of four calculi for Open CBV,
namely λfire, λvsub and λvseq, evaluation takes exactly the same number of βf -steps,
m-steps and λ̄-steps, respectively. Since such a number is known to be a reasonable
time cost model for λfire [1], the cost model lifts to λvsub and λvseq, showing that
the cost model is robust, i.e. incarnation-independent. For the shuffling calculus
λshuf we obtain a weaker quantitative relationship that does not allow to transfer
the cost model. The β[v-steps in λshuf , indeed, match e-steps in λvsub, but not m-
steps. Unfortunately, the two quantities are not necessarily polynomially related,
since there is a family of terms that evaluate in exponentially more m-steps than
e-steps (details are left to a longer version). Consequently, λshuf is an incarnation
more apt to semantical investigations rather than complexity analyses.

Future Work. This paper is just the first step towards a new, finer understanding
of CBV. We plan to purse at the least the following research directions:
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1. Equational Theories. The four incarnations are termination equivalent but
their rewriting rules do not induce the same equational theory. In particular,
λfire equates more than the others, and probably too much because its theory
is not a congruence, i.e. it is not stable by context closure. The goal is to
establish the relationships between the theories and understand how to smooth
the calculi as to make them both equational and termination equivalent.

2. Abstract Machines. Accattoli and Sacerdoti Coen introduce in [1] reasonable
abstract machines for Open CBV, that is, implementation schemas whose
overhead is proven to be polynomial, and even linear. Such machines are
quite complex, especially the linear one. Starting from a fine analysis of the
overhead, we are currently working on a simpler approach providing cost
equivalent but much simpler abstract machines.

3. From Open CBV to Strong CBV. We repeatedly said that Strong CBV can
be seen as an iteration of Open CBV under abstractions. This is strictly
true for λvsub, λshuf , and λvseq, for which the simulations studied here lift to
the strong setting. On the contrary, the definition of a good strong λfire is a
subtle open issue. The natural candidate, indeed, is not confluent (but enjoys
uniqueness of normal forms) and normalizes more terms than the other calculi
for Strong CBV. Another delicate point is the design and the analysis of
abstract machines for Strong CBV, of which there are no examples in the
literature (both Grégoire and Leroy’s [13] and Accattoli and Sacerdoti Coen’s
[1] study machines for Open CBV only).

4. Open Bisimulations. In [18] Lassen studies open (or normal form) bisimulations
for CBV. He points out that his bisimilarity is not fully abstract with respect
to contextual equivalence, and his counterexamples are all based on stuck
β-redexes in Näıve Open CBV. An interesting research direction is to recast
his study in Open CBV and see whether full abstraction holds or not.
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19. Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. Thése d’Etat,
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