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Abstract—This paper studies the interactive visualization and
post-mortem analysis of execution traces generated by task-
parallel programs. We focus on the detection of performance
anomalies inaccessible to state-of-the-art performance analysis
techniques, including anomalies deriving from the interaction of
multiple levels of software abstractions, anomalies associated with
the hardware, and anomalies resulting from interferences between
optimizations in the application and run-time system. Building
on our practical experience with the performance debugging of
representative task-parallel applications and run-time systems
for dynamic dependent task graphs, we designed a new tool
called Aftermath. This tool enables the visualization of intricate
anomalies involving multiple layers and components in the system.
It also supports filtering, aggregation and joint visualization of key
metrics and performance indicators, such as task duration, run-
time state, hardware performance counters and data transfers.
The tool also relates this information to the machine’s topology.
While not specifically designed for non-uniform memory access
(NUMA) architectures, Aftermath takes advantage of the explicit
memory regions and dependence information in dependent task
models to precisely capture long-distance and inter-core effects.
Aftermath supports traces of up to several gigabytes, with fast and
intuitive navigation and the on-line configuration of new derived
metrics. As it has proven invaluable to optimize both run-time
environments and applications, we illustrate Aftermath on genuine
cases encountered in the OpenStream project.

I. INTRODUCTION

Programming models based on dependent tasks are increas-
ingly presented as one of the most successful approaches to
unleashing the processing power of massively parallel general-
purpose computing architectures [9], [16], [14], [18], [17],
[7]. While these models provide means to expose parallelism,
efficient exploitation of the hardware is particularly challenging
as the performance of task-parallel programs depends on many
aspects, ranging from static code optimizations by the com-
piler or manual data-layout transformations by the programmer
to dynamic optimizations regarding the structure of the task
graph, the order of task creation and interactions with the
run-time system and the underlying hardware architecture.
Identifying performance anomalies and finding their cause
requires a detailed understanding of all of these aspects in
general and the complex interactions between the software and

hardware components involved in the execution in particular.
For example, performance bottlenecks arise from the limited
parallelism exposed in the application (i.e., inappropriate parti-
tioning, granularity, or sequential parts), from improper load
balancing across the machine’s cores or from poor locality
inducing a drop of sequential task performance. Since main
memory in modern parallel systems is usually distributed over
multiple memory controllers with non-uniform memory access
(NUMA), interactions involving the memory subsystem are of
particular interest during performance debugging.

Due to the dynamic behavior of task-parallel applications,
very few performance bottlenecks can be practically detected
through static analysis. Trace-based analysis, i.e., post-mortem
analysis of a trace file with all relevant dynamic events recorded
at execution time, is a common technique to overcome these
limitations for performance debugging [15], [13], [1]. A visual
representation of events and their relationships combined with
static information (e.g., the system topology) provides the
necessary insight for an accurate analysis, sorting causes and
effects and distinguishing application-specific anomalies from
inefficiencies of the run-time system. A major difficulty in
this process is to correlate low-level information with high-
level concepts of the programming and resource model. Many
tools for trace-based analysis target distributed applications
executing on systems communicating through message passing;
as a result, they do not natively support performance analysis
of task-parallel applications and run-time systems. In addition,
most tools do not reflect NUMA in their resource models.

We present Aftermath, a tool for interactive, off-line visu-
alization, filtering and analysis of execution traces of task-
parallel applications and run-time systems with explicit support
for NUMA. Aftermath has been used extensively within the
OpenStream project [17], a task-parallel, data-flow program-
ming model implemented as an extension to OpenMP, adding
syntax to express task-level data-flow dependences. Arbitrary
dependence patterns can be used to exploit task, pipeline and
data parallelism. Aftermath has provided deep insight into
interactions between the application, the run-time, the operating



system and the hardware. Its large set of performance analysis
views and tools can be applied to a wide variety of parallel
applications and run-time systems and is therefore not limited to
a specific framework such as OpenStream. Multiple metrics and
indicators can be displayed jointly, accelerating the discovery
of significant correlations. For more complex relationships,
Aftermath offers powerful filtering mechanisms and is able to
match relevant information with the topology of the machine.
Its graphical user interface is optimized for responsiveness,
enabling rapid exploration of traces and fine-grained control
of the degree of detail needed for the analysis.

Our contributions are threefold.
1) Aftermath is the first performance engineering tool en-

abling the fine-grained analysis of memory transfers
between dependent tasks.

2) Aftermath provides native support for NUMA systems, in
particular allowing for the analysis and visualization of
the locality of task-level memory accesses.

3) Aftermath allows the user to immediately identify corre-
lations between program execution characteristics (e.g.,
slow execution phases, computational load imbalance,
insufficient parallelism) and any type of run-time or hard-
ware event (e.g., NUMA locality, performance counter,
synchronization, communication, load balancing events).

The paper follows the a use-case driven structure, engaging
into concrete performance debugging scenarios and describing
how Aftermath’s tools and views support these. The perfor-
mance anomalies, their visualization and characterization have
been selected to illustrate the original problems that can be
tackled with Aftermath. Section II provides an overview of
the main features of Aftermath. The presentation of After-
math’s capabilities for performance debugging of task-parallel
applications based on cases encountered in the OpenStream
project is divided into three sections with increasing complexity.
Section III presents performance anomalies related to the inter-
action of software layers, i.e., between the application, the run-
time system and the operating system. Section IV focuses on
inefficiencies related to NUMA. The discovery of correlations
between performance indicators is illustrated in Section V. In
Section VI, we provide details about the implementation of
Aftermath, including the trace format and optimizations for
rendering. Related work is discussed in Section VII, before
we conclude in Section VIII.

II. AFTERMATH IN A NUTSHELL

Before presenting concrete use cases of performance analysis
and debugging, we start with an overview of Aftermath’s main
features and graphical user interface.

A. Organization of the user interface
Figure 1 shows the main window of Aftermath during analysis
of a trace file with its five primary interface groups.

1. The timeline shows the activity of each processor over
time. The default mode displays the different states (e.g.,
executing a task, synchronizing, load balancing) of the worker
thread on each core. Additional modes visualize different

aspects of program execution and interaction with the hardware,
such as memory locality or task duration. The timeline can
be overlaid with supplemental information on the evolution of
performance counters and specific discrete events (e.g., task
creation, communication between workers).

2. A group of statistical views presents aggregate quantitative
information for a user-selected interval from the timeline (e.g., a
histogram showing the distribution of task durations, a text field
indicating the average parallelism, a communication matrix
indicating which cores and nodes communicate).

3. A set of filters allows the user to control the contents of the
timeline and the statistical views (e.g., only tasks of a specific
type, tasks whose execution duration is in a certain range or
tasks that write to certain NUMA nodes).

4. Detailed textual information for a selected state and its
enclosing task execution (e.g., task and state type, duration,
the sources/destinations of data read/written by the task).

5. A menu for customizing generators of metrics derived
from high-level events or metrics that combine existing sta-
tistical counters (e.g., average task duration, number of bytes
exchanged between specific NUMA nodes, ratio of hardware
counters, etc.), overlaid on the timeline.

B. Timeline modes
Located in the center of the user interface, the timeline com-
ponent can be specialized to highlight specific aspects of the
trace by selecting one of the five main modes:

1. The default state mode shows which states each worker
thread traverses over time. These states correspond to the main
activities performed by the workers, to execute the application
or in the run-time, thus showing how much time is spent in each
activity. Common states include task execution, task creation,
broadcasts, synchronization or computational load balancing.

2. In heatmap mode, the timeline shows only task executions
and encodes the relative duration of tasks with different shades
of red (darker for longer tasks). For short, we refer to this visual
representation as a heatmap. The duration of tasks is considered
relative either to a user-defined interval or to the shortest and
longest task execution currently displayed in the timeline. The
tasks displayed can be filtered, e.g., to show only instances of
a given task type; shades are configurable.

3. The timeline in task type mode, also called typemap, asso-
ciates a different color to every task type (i.e., the work function
executed by the task), thus visualizing which type of task each
worker executes over time. For example, an application with
three work functions, used respectively for tasks performing
matrix multiplication, initialization and termination, has three
task types, which might be rendered in blue, green and yellow.

4. When in NUMA mode, the timeline associates a color to
each NUMA node and shows which nodes are targeted by mem-
ory accesses performed by the tasks executed by each worker
over time. This information is derived from the addresses of
memory accesses and information on data placement present
in the trace. The graphical representations generated in NUMA
mode are called NUMA read map or NUMA write map for the
respective type of memory accesses.
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Fig. 1: Main window: timeline (1), filters (2), statistics (3), selected task/event
information (4), derived metrics menu (5).
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5. The NUMA heatmap mode combines both NUMA modes
(read and write accesses) with information about the topology
of the machine. The result is a view that indicates the average
fraction of remote memory accesses per interval with different
shades from blue (mostly local accesses) to pink (mostly
remote). This view is especially important when the NUMA
read and write maps do not show clear trends or relationships
between the accessing and the targeted nodes.

III. OPTIMIZING PARALLELISM

To illustrate how Aftermath accelerates performance analysis
and debugging, we present real use cases encountered while
developing applications written in OpenStream. We analyze two
applications: seidel, which implements a 2-dimensional stencil
over a matrix of double precision floating point elements, and
k-means, a data mining application. The test system for seidel
is an SGI UV2000, composed of Xeon E5-4640 processors,
with a total of 192 cores and 756GiB RAM, distributed over
24 NUMA nodes connected through a Numalink 6 interconnect.
The analyses of k-means have been conducted on a quad-
socket AMD Opteron 6282 SE with a total of 64 cores and
64GiB RAM, distributed over 8 NUMA nodes connected with
HyperTransport 3.0 links.

We first analyze idle phases and the amount of available
parallelism in seidel. We then illustrate the detection of execu-
tion phases and the distribution of long and short running tasks
in the same benchmark. The impact of the parametrization on
parallelism and run-time overhead is studied for k-means.

A. Detecting idle phases and tracking their origins
Figure 2 shows the timeline for seidel in state mode, indicating
which states each worker traverses over time. Dark blue is
associated with task execution and light blue is associated to
the idle state, in which a worker engages in work-stealing.
As dark blue dominates the graph, the majority of the time
is spent on task execution. However, the are two distinct light
blue vertical bands, one in the first quarter of the execution
and the other at the end, indicating phases where a significant
number of workers are idling. This hypothesis, based on a
visual inspection of the timeline, is confirmed by analyzing the
number of workers simultaneously in the idle state. Aftermath is
able to generate a derived counter indicating the evolution of the

number of workers that are simultaneously in any given state.
By selecting the idle state for this counter, it is thus possible to
obtain accurate information on the number of idle workers. To
generate the samples for this counter, Aftermath first divides
the execution into a user-defined number of intervals. For each
interval it then determines for each worker how much time was
spent in the specified state. Finally, it calculates the sum for all
workers and divides the result by the duration of the interval.
Figure 3 shows the average number of workers in the idle state
for the trace. The peaks in these plots exceed half the number of
cores and thus confirm the presence of the idle phases identified
on the timeline.

Idle phases in task-parallel programs are either the result of
poor computational load balancing by the scheduler or originate
from insufficient available parallelism in the application. We
postulate that the work-stealing load balancing strategy is
sound, and focus instead on the latter possible cause, which
can be validated by analyzing the application’s task graph.

We define the task graph as a directed, acyclic graph where
nodes represent tasks and edges represent inter-task data depen-
dences. Figure 4 shows an example of task graph. The number
of tasks at a given depth in the graph can serve as a metric to
estimate the amount of parallelism available during execution
in terms of tasks that are ready for execution. The depth of a
task t is defined as the number of edges on the longest path
from a task without any input dependence to t. In Figure 4, the
longest path from t00 or t10 to t22 has two edges, so the depth of
t22 is two. There are two tasks at depth zero (t00 and t10) and at
depth one (t01 and t11), three at depth two (t02, t12, and t22) and one
task at depth 3 (t03), corresponding to the available parallelism
at each step of the computation.

As tasks can have different durations and might be cre-
ated recursively and dynamically, the parallelism effectively
available during execution can be lower than what the above
metric indicates. The metric thus provides an upper bound for
parallelism and is useful to detect bottlenecks that arise from
inter-task dependences.

Due to the high number of tasks created in most applica-
tions, manual analysis of the task graph is usually infeasible.
Therefore, Aftermath is able to reconstruct the task graph from
the information present in the trace file and offers tools for
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automated analysis of the generated graph. Reconstruction is
based on data dependences between tasks that can be derived
from read and write accesses to memory regions shared by the
tasks. For example, to reconstruct the task graph in Figure 4,
the trace file must contain the write accesses by t00 to memory
regions read by t10 and t11, the write accesses of t01 to the
region read by t02 and so on. Once the task graph has been
reconstructed, Aftermath can be used to determine the depth
of each task and to generate a graph showing the available
parallelism as a function of the depth.

Figure 5 shows this graph for seidel using a 214×214 matrix,
processed in blocks of 28 × 28 elements. Four phases can
be identified: (1) high parallelism with more than 5000 tasks
during startup, (2) a sudden drop of parallelism to a single
task, (3) increasing parallelism, and (4) declining parallelism.
To illustrate the origins of these phases, Figure 6 shows a subset
of the task graph of a one-dimensional version of seidel, similar
to the actual task graph. The initialization tasks i0 to in are
ready for execution upon creation and belong to phase (1).
The sudden drop in phase (2) results from the direct and
transitive dependences of every task in the graph to b00, except
the initialization tasks. With the execution of b00, a diagonal
wave front is formed. Its size increases until it reaches the
maximum at about a depth of 120, corresponding to phase (3).
Phase (4) starts with the next step following the tasks on the
wave front at its maximum size.

For a detailed analysis of particular tasks, Aftermath is also
capable of exporting a subset of the task graph to a file in the
DOT format [4]. The contents of this file can be visualized
using the GRAPHVIZ package [8].

B. Detecting slow initialization
Following this analysis of the fundamental properties of the
implementation of seidel, we now illustrate the analysis of
anomalies related to dynamic events at execution time of the
same benchmark, starting with a consideration of the task
duration. A quick method to get an overview on this metric is
to use the timeline in heatmap mode, in which different shades
of red are used to visualize the task duration.

Figure 7 shows the heatmap for seidel with ten shades
and the minimum and maximum durations set to 0 cycles and
50Mcycles, respectively. Four distinct phases can be identified.
The first phase in dark red, at the beginning of the execution, is
composed of very long running tasks whose duration is close
to or exceeding the configured maximum for the heatmap. The
second phase corresponds to the phase with low parallelism

identified in the previous section. As no task is executed during
idle times, neither shade is used and the black and gray colors
of the timeline’s background become visible. The largest part of
the figure is occupied by the third phase with few long running
tasks and a majority of short running tasks rendered in white. In
the fourth and final phase towards the end, available parallelism
drops and the background becomes visible again.

These qualitative observations based on the heatmap can be
confirmed by analyzing the derived counter indicating average
task duration, shown in Figure 8. The peak of this plot coincides
with the first phase with very long running tasks and the large
plateau-like part occupies the interval associated to the third
phase. Phases with low available parallelism do not appear in
the graph: as the number of executing tasks never reaches zero
for any interval, nor does the average duration.

The most relevant part for performance is the first phase
with very long running tasks. To track the origin of the high
average task duration in this phase, we first correlate this part
of the trace with the task types by setting the timeline to
typemap mode, shown in Figure 9. Pink color in this figure
is associated to initialization tasks, while main computation
tasks are rendered in ocher. The distinct pattern of pink and
ocher indicates that the first phase is dominated by initialization
tasks and that the majority of the tasks in the plateau phase are
computation tasks. We conclude that the long running tasks
identified earlier belong to the initialization.

Initialization tasks in the seidel benchmark are the first tasks
that write to the memory regions used for data exchanges
between tasks and thus trigger physical allocation of the asso-
ciated pages. As these tasks do not perform any computations,
it is thus likely that memory allocation is the cause for low
performance. To confirm this assumption it is necessary to (1)
verify that physical allocation takes place during initialization
and (2) that this process has a significant impact on perfor-
mance. Figure 10 shows the discrete derivative (difference
quotient) of the aggregated system time as well as the discrete
derivative for the application’s resident size. This information
has been collected in a separate trace, with statistics from
the getrusage function with GNU extension, allowing per-
worker measurements. A derived, aggregating counter created
with Aftermath converts per-worker data into global statistics.
The main reason for collecting getrusage statistics in a
separate trace is our observation that concurrent calls to this
function generate significant overhead. This also influences the
termination of the initialization phase, which occurs earlier in
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Figure 10 than in the earlier graphs. However, the figure shows
that the memory footprint and the time spent in the operating
system increase almost exclusively during initialization. This
finally confirms our hypothesis about interactions between
initialization tasks and the operating system.

C. Adjusting task granularity
The inefficiencies detected in the analyses of seidel result
from characteristics of its implementation. In the following
analysis, we focus on the impact of parameters chosen at
execution time on available parallelism and run-time overhead
for k-means, a data-mining benchmark that partitions a set
of n multidimensional points into k clusters using a naive
implementation of the K-means clustering algorithm.

Figure 11 shows a subset of the application’s task graph
for two iterations of the algorithm with. The set of points to
be clustered is first divided into m blocks (8 blocks in the
example). The size of these blocks as well as the number of
blocks remains constant and does not depend on the relationship
between points and clusters. In each iteration i, each block
j is treated by a task kji that calculates the distance of each
point to the k cluster centers and associates the point to
the nearest cluster center. At the end of each iteration, the
application updates the cluster centers by calculating their
barycenters based on the set of associated points. This is done
by a reduction in a tree-like fashion by the tasks rsi,q . The
root r0i,q of this tree finally detects whether the algorithm has
terminated, i.e., whether the number of points that have been
associated to a new cluster is below a user-defined threshold. If
the algorithm has not terminated, another iteration is necessary
and the updated cluster centers are propagated to the tasks kji+1

of the next iteration by the tree of tasks formed by psi,q .
As the block size determines the number of tasks, the amount

of work per task and the memory footprint of each task, it
must be chosen carefully. For huge block sizes, the available
parallelism is low and only a subset of the cores can contribute
to the computation, while tiny block sizes generate significant
task management overhead. In the following experiments with
k-means, we use a set of 4096 ·104 points, with 10 dimensions,
to be grouped in 11 clusters.

Figure 12 shows the wall clock execution time as a function
of the block size, ranging from 2500 points to 1.28 million

points per block. Each bar represents the average for 50 execu-
tions and error bars indicate standard deviation. As expected,
execution time is higher for very large or small blocks, with a
minimum for a block size of 104 points.

The actual cause for this behavior can be verified by analyz-
ing the activity of the workers executing the tasks. Figure 13
shows Aftermath’s timeline in state mode for each block size.
For a block size of 1.28 million points, the number of blocks is
32, which is far below the number of cores. This causes most
of the workers to idle, showing a pattern with predominant
light blue parts on the timeline. Decreasing the block size to
640 thousand points, as shown in Figure 13b, increases the
number of blocks to 64, which provides enough tasks to keep
each core busy during each iteration. However, differences in
the tasks’ execution time cause some workers to finish earlier
than others. This leads to a characteristic alternating pattern of
task execution and idle phases. Although this anomaly persists
when further reducing the block size, its impact on execution
time becomes lower. For block sizes smaller than 20000 points
the pattern becomes imperceptible and the impact becomes
negligible. However, excessive reduction of the block size to
less than 5000 points leads to high task management overhead
towards the end of the execution, resulting in idle phases at
termination as shown in Figure 13j.

IV. OPTIMIZING MEMORY ACCESSES

Let us now turn to NUMA-related performance anomalies. We
investigate two traces of seidel obtained with two different
configurations of the OpenStream run-time. The non-optimized
configuration uses random work-stealing for computational load
balancing and does take NUMA into account, neither for
scheduling nor data placement. The optimized configuration
exploits NUMA-specific information within the scheduler and
memory allocator.

Aftermath offers three timeline modes for NUMA, shown
in Figure 14, to intuitively visualize the locality of memory
accesses with respect to NUMA. The first mode, in Figures 14a
and 14b, shows the origin of the predominant amount of data
read by a task. Every NUMA node is automatically assigned a
different color and every task is represented on the timeline
using the color corresponding to the NUMA node which
contains the largest fraction of the data read by the task. Note
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that the time scales for both traces have been normalized to
the execution time: 7.91Gcycles for the non-optimized and
2.59Gcycles (3× speedup) for the optimized version. Due to
the normalization, and a higher optimization impact on main
computation tasks than on initialization tasks, the fraction of
the execution time dedicated to initialization is visibly greater
for the optimized version.

Figure 14a shows the timeline for the non-optimized execu-
tion of the application; the absence of any apparent pattern of
colors in the timeline is characteristic of poor locality since
tasks executing on a given node read data from all remote

NUMA nodes. In contrast, Figure 14b shows the timeline of
the optimized execution, where a distinctive pattern can be
observed: nearly all tasks executing on a same NUMA node
(adjacent cores on the timeline) have the same color. This
band pattern means that a single NUMA node contains most
of the data read by all of the tasks executed on a given node.
Similarly, Figures 14c and 14d show the locality of write
memory accesses, with the same intuitive visual confirmation
of poor (14c) and good (14d) locality.

Finally, Figures 14e and 14f show the NUMA heatmap,
an aggregated timeline mode where tasks are displayed with
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Fig. 15: Communication incidence matrix for Seidel. Non-Optimized execution (left) and optimized execution (right).

shades ranging from blue (good locality) to pink (poor locality).
Once again, this visualization allows to instantly identify the
non-optimized (14e), and optimized (14f) executions.

An application-wide summary of memory locality and com-
munication is provided as an incidence matrix, shown in
Figure 15. This matrix represents the overall proportion of
communication between each pair of NUMA nodes as shades of
red (deeper for higher). Figure 15a shows this matrix for a non-
optimized execution: deep red across the matrix means that each
node communicates with every node in similar proportions,
generating a high amount of memory traffic. The optimized
execution, in Figure 15b, shows a very sharp diagonal which
can be immediately interpreted as indicative of near-optimal
locality. Indeed, there is no discernable red color present outside
of the diagonal, which means that most of the data is accessed
locally, within each node.

Aftermath also provides means to analyze data locality with
respect to caches. Qualitative analysis is possible by visualizing
hardware performance counter data for cache misses of each
CPU on top of the time line. By letting Aftermath attribute
counter data to tasks (e.g., calculate the number of cache
misses for each task), it is possible to analyze cache locality
quantitatively in built-in histograms or by exporting these
values to a file for statistical analysis with external tools.

V. CORRELATING PERFORMANCE INDICATORS

The previous sections described new analyses of performance
anomalies enabled by Aftermath by means of specific trace
information and original views examining a single metric at
a time. However, other performance anomalies can only be
discovered by correlating multiple metrics. In this section, we
detail the analysis of such an anomaly: an inefficiency related
to branch mispredictions, encountered while debugging the
performance of k-means.

Figure 16 shows the task duration histogram for the com-
putation tasks, having filtered out all auxiliary tasks, such as
reduction and propagation tasks. Although computational tasks
have similar workloads, their execution time is not uniform, as
indicated by the peaks in the histogram. In addition, there is no
clear relationship between task duration and machine topology:
each core executes long and short running tasks during the
entire execution, as shown in the timeline in heatmap mode in
Figure 17. We investigated the code of the affected task type
and decided on a set of relevant hardware performance counters
to be analyzed. The work function associated to long running
tasks consists of a loop nest calculating the distance of a block’s
points to the cluster centers. As this involves access to a large

amount of data and frequent conditional updates, we focus on
hardware counters for memory and cache accesses as well as
branch predictions. Very low cache miss rates quickly rule
out hypotheses involving memory accesses, but a significant
amount of branch mispredictions occur during task execution.

Figure 18 shows the discrete derivative (difference quotient)
of the branch misprediction count rendered on top of a small
subset of the heatmap of Figure 17. As the hardware counters
for each core used to record the misprediction count have been
sampled immediately before and immediately after task execu-
tion, the graph interpolates with a constant value corresponding
to the average misprediction rate for each task. The interval
represented by the vertical axis has automatically been adjusted
to the minimum and the maximum number of branch mispre-
dictions per cycle and corresponds to the interval [0; 0.009215].
The combination of the graph and the task duration heatmap
instantly reveals a correlation: long running tasks with a darker
shade of red have a higher branch misprediction rate than short
running tasks with a lighter shade.

While visualization helps identifying such correlations on a
subset of the trace, manual verification of the correlation on
large parts of the trace is impractical. Aftermath allows to au-
tomate this process, exporting performance data to a file which
can then be processed by an external application. In particular,
Aftermath is able to determine the increase of a monotonically
increasing counter for each task and to write this information
to a file. For the analysis of branch mispredictions this means
that Aftermath can determine the number of mispredictions per
task along with the task duration. Fine-grained control over the
contents of the file is given by the filter mechanisms, which
also apply to the exported data. This functionality is essential to
filter out outliers and to limit the subsequent analysis to certain
types of tasks. The actual test of the correlation between the
duration and the performance counter can be carried out using a
statistics package, such as the SCIPY [2] package for PYTHON,
used in the analysis below.

A metric for the correlation of two indicators is the coeffi-
cient of determination of a linear regression. Figure 19 shows
the duration of the main computation tasks in the benchmark
as a function of the rate of branch mispredictions. Outliers
with an execution time below 1Mcycles have been filtered
out before exporting the data. The shape of the point cloud in
the center visually suggests a linear relationship between the
branch misprediction rate and the duration. The dashed straight
regression line has been determined using the least squares
method to minimize residuals. The coefficient of determination
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of 0.83 provides statistical evidence for a correlation.
This result implies that the frequent conditional updates in

the loop nest have a large impact on performance. It is possible
to transform the condition, making the cluster update uncondi-
tional, and hoisting the check outside of the time-critical loop.
This reduces the mean task duration of the main computational
tasks without outliers from 9.76Mcycles to 7.73Mcycles and
the standard deviation from 1.18Mcycles to 335 kcycles .

VI. IMPLEMENTATION AND PERFORMANCE ISSUES

Beyond the initial focus on functionality, tool design and
implementation quickly hit performance issues. The first chal-
lenge is to minimize the interference with the application at
trace collection, a well-known problem in observing parallel
execution behavior. Depending on the programming model, and
therefore on the information natively available in the run-time
system, generating traces can introduce variable amounts of
overhead. In the information-rich environment of the Open-
Stream run-time, the overall impact on execution time of
tracing is generally below the noise threshold, with minor
variations within similar confidence intervals, and therefore
does not alter application behavior to a significant degree. The
second is to optimize the efficiency of the analysis of the trace
data to provide a fluid and responsive interface for human
interaction and ultimately to scale up to processing very large
traces.(10GiB and above).

A. Trace format
Aftermath traces are organized as streams of data structures.
They contain events (i.e., state changes, hardware counters,
communication events or discrete events), topological informa-
tion about the machine, descriptions of hardware performance
counters or information about the location of memory regions
with respect to NUMA. Structures can appear in any order:
as long as event timestamps remain ordered for each worker,
events from different cores can be freely interleaved. This
avoids adding the overhead for sorting events during trace

generation. A total order per core is sufficient to limit overhead
when a trace file is loaded.

Aftermath uses a native trace format, currently specialized
for the OpenStream run-time. It may analyze trace files that
omit certain events, e.g., all OpenStream-specific events. If a
trace file only contains beginning and end markers for task
execution, but does not include information about memory
accesses, Aftermath cannot provide data locality information
but may still be used for analyses based on task duration; it may
also visualize data from hardware performance counters. The
purpose of this incremental approach is twofold: (1) it does not
limit Aftermath to any specific run-time system, but preserves
its capabilities for targeted analyses when the information is
available; and (2) trace collection overhead and trace size can
be reduced by omitting data not necessary to the analyses
requested by the user.

Finally, the format was also designed to minimize redun-
dancies. Information not explicitly available in the trace file,
but needed for rendering or generating statistics, is added to
the internal representation when the trace is loaded or on-
demand during rendering. For example, the NUMA placement
of a given memory region is stored only once, regardless of
the number of accesses; when localizing memory accesses,
the memory addresses are used to look up the corresponding
memory region and find its location. Trace data is stored in
a binary format, to reduce its size and to avoid long parsing
delays when a trace is opened, and compressed with standard
GNU/Linux tools, such as GZIP, BZIP2 or XZ. Aftermath can
directly open compressed traces, calling a decompression tool
and reading uncompressed data from an unnamed pipe.

B. Optimizations for rendering
Aftermath provides a responsive interface (based on GTK+ [5]
and the CAIRO GRAPHICS LIBRARY [3]), avoiding delays
that might interrupt the user’s work-flow. It supports arbitrary
zooming and scrolling along the timeline through an intuitive
interface. Filters directly affect the information displayed, as
well as the statistical views for the selected portion of the
trace, providing immediate visual feedback. Rendering has been
carefully optimized as discussed below. Note that the following
principles apply to all timeline modes, but we illustrate them
on the state mode and performance counters for simplicity.

a) Every pixel of an overlay (timeline, performance counter,
discrete events) is drawn only once:Each horizontal pixel of the
timeline represents an interval of the trace. The duration of the
interval and therefore the amount of information represented by



the pixel depend on the zoom level. Figure 20 shows two zoom
levels A and B. In Zoom A, every pixel represents an interval
short enough to display each state. However, when the interval
covers multiple state changes, as in Zoom B, a naive approach
would render sequentially each state, which is neither efficient
nor accurate. Instead, Aftermath determines the predominant
state covered by a pixel interval and only renders the associated
color once.

As performance counter samples have two dimensions, ren-
dering optimizations affect both the horizontal and vertical
direction. Figure 21a shows an example of performance counter
samples with linear interpolation. Instead of drawing a line
for each pair of adjacent samples, Aftermath determines the
minimum and maximum values vmin and vmax for each pixel
on the horizontal axis, determines the associated pixels pmin

and pmax on the vertical axis, and draws a line between them
as shown in Figure 21b. Depending on the zoom level, this
leads to a significantly lower number of drawing operations as
shown in Figures 21(b) to (d).

b) Aggregation of rendering operations: If the color for
adjacent pixels in the timeline is identical, such as in zoom B in
Figure 20, Aftermath reduces the number of calls to rendering
functions by aggregating these pixels and by issuing a single
call drawing a covering rectangle.

c) The use of indexes:Aftermath uses simple, yet efficient
data structures for its in-memory representation of traces. Each
core uses one array per type of event (state changes, discrete
events, performance counter data, etc.) sorted by the timestamp.
This allows to determine the array slice containing the relevant
events for any interval through a fast binary search.

For each performance counter and each core, Aftermath also
builds an n-ary search tree that allows to quickly determine the
minimum and maximum value of the counter for any interval
on any core. This accelerates the rendering of performance
counters described above as it avoids scanning all performance
counter values within the interval covered at the resolution
of a single pixel. To reduce the memory footprint of these
additional search trees, Aftermath uses a default arity of 100
for all search trees, resulting in fewer nodes. This effectively
limits the overhead to 5% of the actual performance counter
data.

C. Symbol tables and annotations
To enhance user experience when optimizing parallel applica-
tions, Aftermath relates the visual elements of the interface
to the source code of the application. This information is
extracted from the application’s binary using the NM command-
line tool. When the user selects a task in the timeline, Aftermath
retrieves the address of the associated work-function, looks up
the corresponding entry in the debug symbols and displays the
name of the function in the detailed text view. Clicking on this
name starts an editor that opens the corresponding source file
and jumps to the function.

To further support the user in the development cycle, in
particular in collaborative environments, Aftermath can be used
to record user-defined annotations. Since trace analysis can

be time-consuming and can involve more than one person,
annotations can be saved independently from the trace file and
loaded for further analysis at a later time.

VII. RELATED WORK

Visualization and analysis of trace files are common techniques,
critical for performance analysis and debugging in high perfor-
mance computing, for which many tools have been developed.
We concentrate our survey on the performance debugging
capabilities of 8 representative tools.

PARAVER [15] provides powerful interactive filtering mecha-
nisms for multiple graph types and independent views on trace
data. Earlier versions of OpenStream included support for trace
files in PARAVER’s native format. However, PARAVER focuses
on computation resources rather than memory and task com-
munication patterns, which are essential to the characterization
of performance anomalies on many-core NUMA architectures.

PARAPROF [6], a profile visualization tool of TAU [19], is a
retargetable framework for writing trace analysis applications
rather than a single tool for a specific type of trace files or per-
formance analysis. It provides a set of extensible components
for data sources, data management, analysis and visualization
that can be used as a basis for new tools, but does not provide
ready-to-use solutions for task-based performance analysis.

PERFEXPLORER [10] is an interactive data mining applica-
tion for performance analysis, based on TAU and PARAPROF.
It offers statistical tools to study correlations based on linear
regression, similar to the analysis in Section V. Clustering can
be used to group threads with similar characteristics and to
relate performance indicators to the topology. However, since
PARAPROF is essentially a generic framework for performance
data mining; the existing components and those of PERFEX-
PLORER have little overlap with the specialized ones required
for task-parallel applications. As a result, building Aftermath
within these frameworks would have been close to the cost of
developing Aftermath from scratch.

VAMPIR [13] is a well-known commercial tool that has been
used in high performance computing for almost two decades.
It provides a rich user interface for interactive exploration
and analysis of huge traces and has a highly elaborated filter
interface. Multiple connected views with different granularity
from cluster level to function calls are supported. But unlike
Aftermath, the tool is optimized for the analysis of massively
parallel applications based on message passing. Neither NUMA
resources nor tasks are modeled.

VITE [1] analyzes parallel programs traces while focusing
on fast rendering. However, the tool lacks support for NUMA
topologies and customizable analysis filters.

DAGVIZ [12] is a tool that is able to visualize the computa-
tion DAGs and parallelism profiles of task-parallel applications.
Applications to be analyzed with DAGVIZ must be rewritten
using a generic model for task parallelism proposed by the au-
thors. Furthermore, DAGVIZ neither models memory accesses
nor data dependences.

JEDULE [11] analyzes task schedules in parallel applications.
It offers zoomable Gantt charts, capable of displaying infor-
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mation similar to Aftermath’s timeline in state or type mode.
However, the scheduling-centric approach only covers the order
and execution location of tasks, but does not allow for NUMA-
specific analyses.

Weyers et al. [20] proposed a trace-based tool for NUMA
analysis that relates interconnect bandwidth usage for an inter-
actively selected interval by the user to the machine topology.
The visualization consists in a set of plots showing the evolution
of the bandwidth usage of the interconnect between each pair
of nodes, organized in the grid of a communication coincidence
matrix. The background color of each plot indicates the average
bandwidth for the pair of nodes for the selected interval. While
these visualizations are well-suited to investigate NUMA-
related performance anomalies in general, bandwidth usage
cannot be broken down to tasks as the tool does not focus
on task parallelism.

VIII. CONCLUSION

We presented Aftermath, the first performance engineering
tool enabling the fine-grained analysis of memory transfers
between dynamically created dependent tasks. The new ca-
pabilities of Aftermath are particularly well suited to the
optimization of locality and concurrency on NUMA systems,
involving advanced visualization and analyses. In particular,
Aftermath allows the user to immediately identify correla-
tions between program execution characteristics (e.g., slower
execution phases, computational load imbalance, insufficient
parallelism due to dependences or task creation overhead)
and any type of run-time or hardware event (e.g., NUMA
locality, hardware performance counters, synchronization, load
balancing events, communication).

Aftermath has been used extensively within the OpenStream
project and helped resolving a multitude of performance
anomalies. We presented a subset of these cases, selected to
demonstrate Aftermath’s strengths and capabilities.

Aftermath is currently being ported to other dependent
tasking models, starting with OpenMP 4.0. We also work on
the out-of-core processing of large traces, and proposing semi-
automatic statistical methods to quickly focus the search for
interesting anomalies.
Acknowledgments
Our work was supported by the grants EU FET-HPC ExaNoDe
H2020-671578, UK EPSRC EP/M004880/1, French Nano2017
DEMA. A. Pop is funded by a Royal Academy of Engineering
Research Fellowship.

REFERENCES

[1] http://vite.gforge.inria.fr/. Acc. 09/2015.
[2] http://www.scipy.org/. Acc. 10/2015.
[3] Cairo graphics. http://www.cairographics.org/. Acc. 09/2015.
[4] The DOT language. http://graphviz.org/doc/info/lang.html. Acc. 09/2015.
[5] The GTK+ project. http://www.gtk.org/. Acc. 09/2015.
[6] Robert Bell, Allen D Malony, and Sameer Shende. Paraprof: A portable,

extensible, and scalable tool for parallel performance profile analysis. In
Euro-Par 2003 Par. Processing, pages 17–26. Springer, 2003.

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Thomas Hérault,
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