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Abstract—This paper studies the interactive visualization and hardware components involved in the execution in particular.
post-mortem analysis of execution traces generated by task- For example, performance bottlenecks arise from the limited
parallel ‘programs. We focus on the detection of performance narqjelism exposed in the application (i.e., inappropriate parti-

anomalies inaccessible to state-of-the-art performance analysis tioni larit tial ts) f ; load
techniques, including anomalies deriving from the interaction of UONING, granularty, or sequental par s), from improper loa

multiple levels of software abstractions, anomalies associated with balancing across the machine's cores or from poor locality
the hardware, and anomalies resulting from interferences between inducing a drop of sequential task performance. Since main

optimizations in the application and run-time system. Building memory in modern parallel systems is usually distributed over
on our practical experience with the performance debugging of mitiple memory controllers with non-uniform memory access

representative task-parallel applications and run-time systems . . . .
for dynamic dependent task graphs, we designed a new tool (NUMA), interactions involving the memory subsystem are of

called Aftermath. This tool enables the visualization of intricate Particular interest during performance debugging.
anomalies involving multiple layers and components in the system. Due to the dynamic behavior of task-parallel applications,

It also supports ltering, aggregation and joint visualization of key .
metrics and performance indicators, such as task duration, run- very few performance bottlenecks can be practically detected

time state, hardware performance counters and data transfers. through static analysis. Trace-based analysis, i.e., post-mortem
The tool also relates this information to the machine's topology. analysis of a trace le with all relevant dynamic events recorded

While not speci cally designed for non-uniform memory access at execution time, is a common technique to overcome these
(NUMA) architectures, Aftermath takes advantage of the explicit limitations for performance debugging 115], [13]] [1]. A visual

memory regions and dependence information in dependent task . - - . . .
models to precisely capture long-distance and inter-core effects. representation of events and their relationships combined with

Aftermath supports traces of up to several gigabytes, with fastand Static information (e.g., the system topology) provides the
intuitive navigation and the on-line con guration of new derived necessary insight for an accurate analysis, sorting causes and

metrics. As it has proven invaluable to optimize both run-time effects and distinguishing application-speci ¢ anomalies from
environments and appllcatlons, we |IIustrate.Aftermath ongenuine .t ciencies of the run-time system. A major dif culty in
cases encountered in the OpenStream project. . : . . . X
this process is to correlate low-level information with high-
. INTRODUCTION level concepts of the programming and resource model. Many

Programming models based on dependent tasks are incré3Q!S for trace-based analysis target distributed applications
ingly presented as one of the most successful approache£¥GCuting On systems communicating through message passing;
unleashing the processing power of massively parallel gener3}- @ result, they do not natively support performance analysis
purpose computing architectures| [9]. [16], [14], [18]. [17]91‘ task-parallel applications and_run—tlme systems. In addition,
[7]. While these models provide means to expose parallelisfoSt tools do not re ect NUMA in their resource models.

ef cient exploitation of the hardware is particularly challenging We present Aftermath, a tool for interactive, off-line visu-
as the performance of task-parallel programs depends on maligation, ltering and analysis of execution traces of task-
aspects, ranging from static code optimizations by the comparallel applications and run-time systems with explicit support
piler or manual data-layout transformations by the programmier NUMA. Aftermath has been used extensively within the
to dynamic optimizations regarding the structure of the tagkpenStream projeci [17], a task-parallel, data- ow program-
graph, the order of task creation and interactions with timeing model implemented as an extension to OpenMP, adding
run-time system and the underlying hardware architectum/ntax to express task-level data- ow dependences. Arbitrary
Identifying performance anomalies and nding their causdependence patterns can be used to exploit task, pipeline and
requires a detailed understanding of all of these aspectsdmta parallelism. Aftermath has provided deep insight into
general and the complex interactions between the software ameractions between the application, the run-time, the operating



system and the hardware. Its large set of performance analyspects of program execution and interaction with the hardware,
views and tools can be applied to a wide variety of parallslich as memory locality or task duration. The timeline can
applications and run-time systems and is therefore not limitedte overlaid with supplemental information on the evolution of
a speci ¢ framework such as OpenStream. Multiple metrics amerformance counters and specic discrete events (e.g., task
indicators can be displayed jointly, accelerating the discovecyeation, communication between workers).
of signi cant correlations. For more complex relationships, 2. A group ofstatistical viewspresents aggregate quantitative
Aftermath offers powerful Itering mechanisms and is able tinformation for a user-selected interval from the timeline (e.g., a
match relevant information with the topology of the machindistogram showing the distribution of task durations, a text eld
Its graphical user interface is optimized for responsivenessdicating the average parallelism, a communication matrix
enabling rapid exploration of traces and ne-grained contrahdicating which cores and nodes communicate).
of the degree of detail needed for the analysis. 3. A set of lters allows the user to control the contents of the
Our contributions are threefold. timeline and the statistical views (e.g., only tasks of a specic

1) Aftermath is the rst performance engineering tool enlype, tasks whose execution duration is in a certain range or

abling the ne-grained analysis of memory transferd@sks that write to certain NUMA nodes). _
between dependent tasks. 4. Detailed textual informatiorfor a selected state and its

2) Aftermath provides native support for NUMA systems, fnclosing task e_xec_ution (e.g., task anq state type, duration,
particular allowing for the analysis and visualization ofthe sources/destinations of data read/written by the task).
the locality of task-level memory accesses. 5. A menu for customizinggeneratorsof metrics derived

3) Aftermath allows the user to immediately identify corrdrom high-level events or metrics that combine existing sta-
lations between program execution characteristics (e_di§tical counters (e.g., average task duration, number of bytes
slow execution phases, computational load imbalanc%%‘Cha”ged between speci c NUMA nodes, ratio of hardware
insuf cient parallelism) and any type of run-time or hard-counters, etc.), overlaid on the timeline.
ware event (e.g., NUMA locality, performance counteg. Timeline modes

synchronization, communication, load balancing event§)gcated in the center of the user interface, the timeline com-

The paper follows the a use-case driven structure, engaggnent can be specialized to highlight specic aspects of the
into concrete performance debugging scenarios and describifage by selecting one of the ve main modes:
how Aftermath's tools and views support these. The perfor- 1. The defaultstate modeshows which states each worker
mance anomalies, their visualization and characterization hdkeead traverses over time. These states correspond to the main
been selected to illustrate the original problems that can Betivities performed by the workers, to execute the application
tackled with Aftermath. Sectiofi]ll provides an overview ofr in the run-time, thus showing how much time is spentin each
the main features of Aftermath. The presentation of Aftemctivity. Common states include task execution, task creation,
math's capabilities for performance debugging of task-parallefoadcasts, synchronization or computational load balancing.
applications based on cases encountered in the OpenStreaéh In heatmap modethe timeline shows only task executions
project is divided into three sections with increasing complexitand encodes the relative duration of tasks with different shades
Sectior{ TI] presents performance anomalies related to the intef+ed (darker for longer tasks). For short, we refer to this visual
action of software layers, i.e., between the application, the rupresentation asteeatmap The duration of tasks is considered
time system and the operating system. Sedfion 1V focuses r@tative either to a user-de ned interval or to the shortest and
inef ciencies related to NUMA. The discovery of correlationdongest task execution currently displayed in the timeline. The
between performance indicators is illustrated in Sedtipn V. tasks displayed can be ltered, e.g., to show only instances of
Section[V], we provide details about the implementation @f given task type; shades are con gurable.
Aftermath, including the trace format and optimizations for 3. The timeline intask type modealso calledypemap asso-
rendering. Related work is discussed in Secfion| VII, beforates a different color to every task type (i.e., the work function
we conclude in Sectiop VIII. executed by the task), thus visualizing which type of task each
worker executes over time. For example, an application with

Il. AFTERMATH IN A NUTSHELL . . :
three work functions, used respectively for tasks performing

Before presenting concrete use cases of performancel anal}ﬁéﬁrix multiplication, initialization and termination, has three
and debugging, we.start W|th an overview of Aftermath's maip o types, which might be rendered in blue, green and yellow.
features and graphical user interface. 4. When inNUMA mode the timeline associates a color to

A. Organization of the user interface each NUMA node and shows which nodes are targeted by mem-
Figure[] shows the main window of Aftermath during analysisry accesses performed by the tasks executed by each worker
of a trace le with its ve primary interface groups. over time. This information is derived from the addresses of

1. Thetimeline shows the activity of each processor ovememory accesses and information on data placement present
time. The default mode displays the different states (e.in,the trace. The graphical representations generated in NUMA
executing a task, synchronizing, load balancing) of the workerode are calledNUMA read mapor NUMA write mapfor the
thread on each core. Additional modes visualize differemespective type of memory accesses.
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5. TheNUMA heatmap modeombines both NUMA modes number of workers that are simultaneously in any given state.
(read and write accesses) with information about the topolo8y selecting the idle state for this counter, it is thus possible to
of the machine. The result is a view that indicates the averagietain accurate information on the number of idle workers. To
fraction of remote memory accesses per interval with differegenerate the samples for this counter, Aftermath rst divides
shades from blue (mostly local accesses) to pink (mostlye execution into a user-de ned number of intervals. For each
remote). This view is especially important when the NUMAnterval it then determines for each worker how much time was
read and write maps do not show clear trends or relationshgent in the speci ed state. Finally, it calculates the sum for all
between the accessing and the targeted nodes. workers and divides the result by the duration of the interval.
Figure[3 shows the average number of workers in the idle state

1. OPTIMIZING PARALLELISM for the trace. The peaks in these plots exceed half the number of
To illustrate how Aftermath accelerates performance analygisres and thus con rm the presence of the idle phases identi ed
and debugging, we present real use cases encountered wiileéhe timeline.
developing applications written in OpenStream. We analyze twojdle phases in task-parallel programs are either the result of
applications:seide| which implements a 2-dimensional stencihoor computational load balancing by the scheduler or originate
over a matrix of double precision oating point elements, anjom insuf cient available parallelism in the application. We
k-meansa data mining application. The test system$eidel postulate that the work-stealing load balancing strategy is
is an SGI UV2000, composed of Xeon E5-4640 processokyund, and focus instead on the latter possible cause, which
with a total of 192 cores and56 GiB RAM, distributed over can pe validated by analyzing the applicatiotsisk graph
24 NUMA nodes connected through a Numalink 6 interconnect.\ys de ne the task graph as a directed, acyclic graph where
The analyses ok-meanshave been conducted on a quady,ges represent tasks and edges represent inter-task data depen-
SOCk?t AMD thgron 6282 SE with a total of 64 cores ‘?‘n&ences. Figurg]4 shows an example of task graph. The number
64 GiB RAM, distributed over 8 NUMA nodes connected Withyt 15515 at a giverlepthin the graph can serve as a metric to
HyperTransport 3.0 links. _estimate the amount of parallelism available during execution

We rst analyze idle phases and the amount of availablg terms of tasks that are ready for execution. The depth of a
parallelism inseidel We then illustrate the detection of execUzask t is de ned as the number of edges on the longest path
tion phases and the distribution of long and short running tasksm a task without any input dependencet tn Figure[4, the
in the same benchmgrk. The |mpa(?t of thg parametrization Rfhgest path from or t} to t2 has two edges, so the depth of
parallelism and run-time overhead is studied kemeans t2 is two. There are two tasks at depth zetp gndt3) and at
A. Detecting idle phases and tracking their origins depth onetf andt}), three at depth twa}, t;, andt3) and one
Figure[2 shows the timeline faeidelin state mode, indicating t@sk at depth 3t6), corresponding to the available parallelism
which states each worker traverses over time. Dark blue 35 €ach step of the computation.
associated with task execution and light blue is associated taAs tasks can have different durations and might be cre-
the idle state, in which a worker engages in work-stealingted recursively and dynamically, the parallelisfectively
As dark blue dominates the graph, the majority of the tim@vailable during execution can be lower than what the above
is spent on task execution. However, the are two distinct lightetric indicates. The metric thus provides an upper bound for
blue vertical bands, one in the rst quarter of the executioparallelism and is useful to detect bottlenecks that arise from
and the other at the end, indicating phases where a signi canter-task dependences.
number of workers are idling. This hypothesis, based on aDue to the high number of tasks created in most applica-
visual inspection of the timeline, is con rmed by analyzing théions, manual analysis of the task graph is usually infeasible.
number of workers simultaneously in the idle state. Aftermath ©herefore, Aftermath is able to reconstruct the task graph from
able to generate a derived counter indicating the evolution of ttiee information present in the trace le and offers tools for
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automated analysis of the generated graph. Reconstructiondenti ed in the previous section. As no task is executed during
based on data dependences between tasks that can be deiilfedimes, neither shade is used and the black and gray colors
from read and write accesses to memory regions shared by dfi¢he timeline's background become visible. The largest part of
tasks. For example, to reconstruct the task graph in Figuretde gure is occupied by the third phase with few long running
the trace le must contain the write accessestpyo memory tasks and a majority of short running tasks rendered in white. In
regions read byt andti, the write accesses df to the the fourth and nal phase towards the end, available parallelism
region read bytd and so on. Once the task graph has beeafops and the background becomes visible again.

reconstructed, Aftermath can be used to determine the depthhese qualitative observations based on the heatmap can be
of each task and to generate a graph showing the availapl, rmed by analyzing the derived counter indicating average
parallelism as a function of the depth. task duration, shown in Figufé 8. The peak of this plot coincides
Figure[$ shows this graph feeidelusing a2'*  2'4 matrix, with the rst phase with very long running tasks and the large
processed in blocks 0® 2° elements. Four phases Calplateau-like part occupies the interval associated to the third
be identi ed: (1) high parallelism with more than 5000 taskphase. Phases with low available parallelism do not appear in
during startup, (2) a sudden drop of parallelism to a singifie graph: as the number of executing tasks never reaches zero
task, (3) increasing parallelism, and (4) declining parallelisitor any interval, nor does the average duration.
Tojllustrate the origins of th(_ese ph_ases, Fi@re 6 shoyvs.a SUbseIthe most relevant part for performance is the rst phase
of the task graph of a one-dimensional versioseite] similar with very long running tasks. To track the origin of the high

to the actual task graph. The initialization tasksto i, are verage task duration in this phase, we rst correlate this part

transitive dependences of every task in the graphftexcept
the initialization tasks. With the execution &f, a diagonal
wave front is formed. Its size increases until it reaches t
maximum at about a depth of 120, corresponding to phase

is associated to initialization tasks, while main computation

tasks are rendered in ocher. The distinct pattern of pink and
her indicates that the rst phase is dominated by initialization
sks and that the majority of the tasks in the plateau phase are

Phase (4) starts with the next step following the tasks on t 8mputation tasks. We conclude that the long running tasks

wave front at, Its maximum size. ) identi ed earlier belong to the initialization.
For a detailed analysis of particular tasks, Aftermathisalso .. =~ ) .
Initialization tasks in theseidelbenchmark are the rst tasks

capable of exporting a subset of the task graph to a le in thﬁ ) ,
DOT format [4]. The contents of this le can be visualizeoL at write o the memory regions L.Jsed for d_ata exchanges
using theaRAPHVIZ packagel[8]. _etween tasks and thus trigger physical allocation of the asso-
ciated pages. As these tasks do not perform any computations,
B. Detecting slow initialization it is thus likely that memory allocation is the cause for low
Following this analysis of the fundamental properties of theerformance. To con rm this assumption it is necessary to (1)
implementation ofseide] we now illustrate the analysis of verify that physical allocation takes place during initialization
anomalies related to dynamic events at execution time of therd (2) that this process has a signi cant impact on perfor-
same benchmark, starting with a consideration of the tastance. Figurd 10 shows the discrete derivative (difference
duration. A quick method to get an overview on this metric iguotient) of the aggregated system time as well as the discrete
to use the timeline in heatmap mode, in which different shadeerivative for the application's resident size. This information
of red are used to visualize the task duration. has been collected in a separate trace, with statistics from
Figure [T shows the heatmap feeidel with ten shades the getrusage function with GNU extension, allowing per-
and the minimum and maximum durations seOtoyclesand worker measurements. A derived, aggregating counter created
50 Mcycles respectively. Four distinct phases can be identi edvith Aftermath converts per-worker data into global statistics.
The rst phase in dark red, at the beginning of the execution, e main reason for collectingetrusage  statistics in a
composed of very long running tasks whose duration is closeparate trace is our observation that concurrent calls to this
to or exceeding the con gured maximum for the heatmap. THenction generate signi cant overhead. This also in uences the
second phase corresponds to the phase with low parallelimmmination of the initialization phase, which occurs earlier in
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Figure[I0 than in the earlier graphs. However, the gure shovp®ints per block. Each bar represents the average for 50 execu-
that the memory footprint and the time spent in the operatitigns and error bars indicate standard deviation. As expected,
system increase almost exclusively during initialization. Thisxecution time is higher for very large or small blocks, with a
nally conrms our hypothesis about interactions betweeminimum for a block size ofl0* points.
initialization tasks and the operating system. The actual cause for this behavior can be veri ed by analyz-
ing the activity of the workers executing the tasks. Fidure 13
shows Aftermath's timeline in state mode for each block size.
The inefciencies detected in the analyses sdidel result For 3 plock size of 1.28 million points, the number of blocks is
from characteristics of its implementation. In the following2 \which is far below the number of cores. This causes most
analysis, we focus on the impact of parameters chosenftthe workers to idle, showing a pattern with predominant
execution time on available parallelism and run-time overheﬁght blue parts on the timeline. Decreasing the block size to
for k-means a data-mining benchmark that partitions a sg40 thousand points, as shown in Fig{ire |13b, increases the
of n multidimensional points intdk clusters using a naive numper of blocks to 64, which provides enough tasks to keep
implementation of the K-means clustering algorithm. each core busy during each iteration. However, differences in
Figure[I1 shows a subset of the application's task gragfe tasks' execution time cause some workers to nish earlier
for two iterations of the algorithm with. The set of points tahan others. This leads to a characteristic alternating pattern of
be clustered is rst divided intan blocks (8 blocks in the task execution and idle phases. Although this anomaly persists
example). The size of these blocks as well as the numbergiien further reducing the block size, its impact on execution
blocks remains constant and does not depend on the relationsitiiz becomes lower. For block sizes smaller than 20000 points
between points and clusters. In each iteratipreach block the pattern becomes imperceptible and the impact becomes
j is treated by a task| that calculates the distance of eachegligible. However, excessive reduction of the block size to
point to the k cluster centers and associates the point tess than 5000 points leads to high task management overhead
the nearest cluster center. At the end of each iteration, titgvards the end of the execution, resulting in idle phases at
application updates the cluster centers by calculating thedimination as shown in Figufe 13].
barycenters based on the set of associated points. This is done
by a reduction in a tree-like fashion by the tasky. The IV. OPTIMIZING MEMORY ACCESSES

root r, of this tree nally detects whether the algorithm hag et us now turn to NUMA-related performance anomalies. We
terminated, i.e., whether the number of points that have beggestigate two traces o$eidel obtained with two different
associated to a new cluster is below a user-de ned thresholdc#n gurations of the OpenStream run-time. Then-optimized
the algorithm has not terminated, another iteration is necessagn guration uses random work-stealing for computational load
and the updated cluster centers are propagated to theklagks balancing and does take NUMA into account, neither for
of the next iteration by the tree of tasks formed iy . scheduling nor data placement. Togtimized con guration
As the block size determines the number of tasks, the amoesploits NUMA-speci ¢ information within the scheduler and
of work per task and the memory footprint of each task, ihemory allocator.
must be chosen carefully. For huge block sizes, the availableaftermath offers three timeline modes for NUMA, shown
parallelism is low and only a subset of the cores can contribute Figure[I4, to intuitively visualize the locality of memory
to the computation, while tiny block sizes generate signi cardccesses with respect to NUMA. The rst mode, in Figures 14a
task management overhead. In the following experiments w&hd@, shows the origin of the predominant amount of data
k-meanswe use a set 04096 10* points, with 10 dimensions, read by a task. Every NUMA node is automatically assigned a
to be grouped in 11 clusters. different color and every task is represented on the timeline
Figure[I2 shows the wall clock execution time as a functiarsing the color corresponding to the NUMA node which
of the block size, ranging from 2500 points to 1.28 milliortontains the largest fraction of the data read by the task. Note

C. Adjusting task granularity
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(a) NUMA nodes targeted by read accesses, run-time not optimized (b) NUMA nodes targeted by read accesses, optimized run-time

(c) NUMA nodes targeted by write accesses, run-time not optimized (d) NUMA nodes targeted by write accesses, optimized run-time

(e) NUMA heatmap mode, run-time not optimized (f) NUMA heatmap mode, optimized run-time

Fig. 14: Seidel: locality of memory accesses

that the time scales for both traces have been normalizedNUMA nodes. In contrast, Figufe b shows the timeline of
the execution time7:91 Geyclesfor the non-optimized and the optimized execution, where a distinctive pattern can be
2:59 Geycles(3  speedup) for the optimized version. Due t@bserved: nearly all tasks executing on a same NUMA node
the normalization, and a higher optimization impact on mai@adjacent cores on the timeline) have the same color. This
computation tasks than on initialization tasks, the fraction dfand pattern means that a single NUMA node contains most
the execution time dedicated to initialization is visibly greatesf the data read by all of the tasks executed on a given node.
for the optimized version. Similarly, Figures[I4c and 1#d show the locality of write
Figure[I4&a shows the timeline for the non-optimized execmemory accesses, with the same intuitive visual con rmation
tion of the application; the absence of any apparent patternaffpoor [I4¢) and good (1#d) locallity.
colors in the timeline is characteristic of poor locality since Finally, Figures[ I4e an{l 14f show the NUMA heatmap,
tasks executing on a given node read data from all remae aggregated timeline mode where tasks are displayed with



(a) Not optimized (b) Optimized

Fig. 15: Communication incidence matrix for Seidel. Non-Optimized execution (left) and optimized execution (right).

shades ranging from blue (good locality) to pink (poor localityamount of data and frequent conditional updates, we focus on
Once again, this visualization allows to instantly identify thbardware counters for memory and cache accesses as well as
non-optimized[(14e), and optimized (114f) executions. branch predictions. Very low cache miss rates quickly rule
An application-wide summary of memory locality and comeut hypotheses involving memory accesses, but a signi cant
munication is provided as an incidence matrix, shown iamount of branch mispredictions occur during task execution.

Figure [T$. This matrix represents the overall proportion of Figure[T8 shows the discrete derivative (difference quotient)
communication between each pair of NUMA nodes as shadesgpfthe branch misprediction count rendered on top of a small
red (deeper for higher). Figufe 15a shows this matrix for a nosabset of the heatmap of Figdre] 17. As the hardware counters
optimized execution: deep red across the matrix means that efifeach core used to record the misprediction count have been
node communicates with every node in similar proportiongsampled immediately before and immediately after task execu-
generating a high amount of memory trafc. The optimizegion, the graph interpolates with a constant value corresponding
execution, in Figur¢ 18b, shows a very sharp diagonal whigh the average misprediction rate for each task. The interval
can be immediately interpreted as indicative of near-optimalpresented by the vertical axis has automatically been adjusted
locality. Indeed, there is no discernable red color present outsidethe minimum and the maximum number of branch mispre-
of the diagonal, which means that most of the data is accesgggtions per cycle and corresponds to the intef0a0:009215]
locally, within each node. The combination of the graph and the task duration heatmap
Aftermath also provides means to analyze data locality witRstantly reveals a correlation: long running tasks with a darker
respect to caches. Qualitative analysis is possible by visualizigigade of red have a higher branch misprediction rate than short
hardware performance counter data for cache misses of eﬂfgﬁhing tasks with a lighter shade.
CPU on top of the time line. By letting Aftermath attribute While visualization helps identifying such correlations on a

counter data to tasks (e.g., calculate the number of cacifqet of the trace, manual veri cation of the correlation on
misses fpr eagh tas'k),. it is possible to analyze caphe |Oca||'5¥ge parts of the trace is impractical. Aftermath allows to au-
quantitatively in bunt-_m_ hlstogram_s or by exporting thes‘?omate this process, exporting performance data to a le which
values to a le for statistical analysis with external tools. can then be processed by an external application. In particular,
V. CORRELATING PERFORMANCE INDICATORS Aftermath is able to determine the increase of a monotonically
The previous sections described new ana]yses of performameaSing counter for each task and to write this information
anomalies enabled by Aftermath by means of specic trade @ le. For the analysis of branch mispredictions this means
information and original views examining a single metric dhat Aftermath can determine the number of mispredictjoers
a time. However' other performance anomalies can 0n|y E@kalong with the task duration. Fine'grained control over the
discovered by correlating multiple metrics. In this section, weontents of the le is given by the Iter mechanisms, which
detail the analysis of such an anomaly: an inef ciency relatediso apply to the exported data. This functionality is essential to
to branch mispredictions1 encountered while debugg|ng tH@r out outliers and to limit the Subsequent anaIySiS to certain
performance ok-means types of tasks. The actual test of the correlation between the
Figure[I6 shows the task duration histogram for the corfluration and the performance counter can be carried out using a
putation tasks, having ltered out all auxiliary tasks, such agfatistics package, such as theiBy [2] package for RTHON,
reduction and propagation tasks. Although computational tagk&ed in the analysis below.
have similar workloads, their execution time is not uniform, as A metric for the correlation of two indicators is the coef -
indicated by the peaks in the histogram. In addition, there is o@nt of determination of a linear regression. Figuré 19 shows
clear relationship between task duration and machine topologlye duration of the main computation tasks in the benchmark
each core executes long and short running tasks during #ee a function of the rate of branch mispredictions. Outliers
entire execution, as shown in the timeline in heatmap modevirith an execution time belowl Mcycles have been Itered
Figure[IT. We investigated the code of the affected task typat before exporting the data. The shape of the point cloud in
and decided on a set of relevant hardware performance countbes center visually suggests a linear relationship between the
to be analyzed. The work function associated to long runnitganch misprediction rate and the duration. The dashed straight
tasks consists of a loop nest calculating the distance of a bloclegression line has been determined using the least squares
points to the cluster centers. As this involves access to a largethod to minimize residuals. The coef cient of determination



Fig. 16: Distribution of the main computation Fig. 17: The timeline in heatmap mode covering Fig. 18: Zoom with branch misprediction rate
tasks duration irk-means several iterations

generation. A total order per core is suf cient to limit overhead
when a trace le is loaded.

Aftermath uses a native trace format, currently specialized
for the OpenStream run-time. It may analyze trace les that
omit certain events, e.g., all OpenStream-speci c events. If a
trace le only contains beginning and end markers for task
execution, but does not include information about memory

Fig. 19: Task duration as a function of the number of branch mispredictioagcesses' Aftermath cannot provide data locality information

per thousand cycles ik-means ut may still be used for analyses based on task duration; it may
) o ) ) also visualize data from hardware performance counters. The
of 0.83 provides statistical evidence for a correlation. purpose of this incremental approach is twofold: (1) it does not

This result implies that Fhe frequent conditional u_pdates.mnit Aftermath to any speci ¢ run-time system, but preserves
the loop nest have a large impact on performance. Itis possifle capabilities for targeted analyses when the information is
to transform the condition, making the cluster update uncondiyajlaple; and (2) trace collection overhead and trace size can

tional, and hoisting the check outside of the time-critical l00pe reduced by omitting data not necessary to the analyses
This reduces the mean task duration of the main computatiop@&]uested by the user.

tasks without outliers fron®:76 Mcyclesto 7:73 Mcyclesand

= Finally, the format was also designed to minimize redun-
the standard deviation frorit18 Mcyclesto 335 kcycles.

dancies. Information not explicitly available in the trace le,
VI. IMPLEMENTATION AND PERFORMANCE ISSUES but needed for rendering or generating statistics, is added to
(the internal representation when the trace is loaded or on-
gemand during rendering. For example, the NUMA placement
f a given memory region is stored only once, regardless of

trace collection, a well-known problem in observing parallé e number of accesses; when localizing memory accesses,

execution behavior. Depending on the programming model, ai memory_addrezsesda{e Iuse(il_ to l(%Ok updthte gorr?sp(()jn(_jmg
therefore on the information natively available in the run-tim@'€Mory region and nd its ‘ocation. frace dala IS stored in

system, generating traces can introduce variable amountsaol’rInary format, to reduce its size and to avoid long parsing

overhead. In the information-rich environment of the Ope elays .When a trace is opened, and compressed with standard
NU/Linux tools, such aszIp, BzIP2 or Xz. Aftermath can

Stream run-time, the overall impact on execution time (j " dt I d ion tool
tracing is generally below the noise threshold, with mino Irectly open compressed traces, cafing a decompression oo

variations within similar con dence intervals, and thereforémd reading uncompressed data from an unnamed pipe.

does not alter application behavior to a signi cant degree. ThHg Optimizations for rendering

second is to optimize the ef ciency of the analysis of the tracgtermatn provides a responsive interface (based on GTK+ [5]
data to provide a uid and responsive interface for humal,g the @IrRO GRAPHICS LIBRARY [B]), avoiding delays
interaction gnd ultimately to scale up to processing very largg; might interrupt the user's work- ow. It supports arbitrary
traces {0 GiB and above). zooming and scrolling along the timeline through an intuitive
A. Trace format interface. Filters directly affect the information displayed, as

Aftermath traces are organized as streams of data structutégll as the statistical views for the selected portion of the
They contain events (i.e., state changes, hardware countdigce, providing immediate visual feedback. Rendering has been
communication events or discrete events), topological inform@arefully optimized as discussed below. Note that the following
tion about the machine, descriptions of hardware performarie@énciples apply to all timeline modes, but we illustrate them
counters or information about the location of memory regior®¥) the state mode and performance counters for simplicity.
with respect to NUMA. Structures can appear in any order: a) Every pixel of an overlay (timeline, performance counter,
as long as event timestamps remain ordered for each worldiscrete events) is drawn only oné&&ch horizontal pixel of the
events from different cores can be freely interleaved. Thigneline represents an interval of the trace. The duration of the
avoids adding the overhead for sorting events during traiteerval and therefore the amount of information represented by

Beyond the initial focus on functionality, tool design an
implementation quickly hit performance issues. The rst cha
lenge is to minimize the interference with the application



the pixel depend on the zoom level. Figliré 20 shows two zodre time-consuming and can involve more than one person,
levelsA andB. In ZoomA, every pixel represents an intervalannotations can be saved independently from the trace le and
short enough to display each state. However, when the interl@dded for further analysis at a later time.

covers multiple state changes, as in ZoBma naive approach

: A . . VIl. RELATED WORK
would render sequentially each state, which is neither ef cient

nor accurate. Instead, Aftermath determines the predomindfgu@lization and analysis of trace les are common techniques,
state covered by a pixel interval and only renders the associat&tical for performance analysis and debugging in high perfor-
color once. mance computing, for which many tools have been developed.
As performance counter samples have two dimensions, ré¢ concentrate our survey on the performance debugging
dering optimizations affect both the horizontal and vertic&@Papilities of 8 representative tools. _
direction. Figuré ZJa shows an example of performance countePARAVER [15] provides powerful interactive ltering mecha-
samples with linear interpolation. Instead of drawing a lin@iSms for multiple graph types and independent views on trace
for each pair of adjacent samples, Aftermath determines #lata. Earlier versions of OpenStream included support for trace
minimum and maximum valuegn, andvmax for each pixel les in PARAVER's native format. However, ARAVER focuses
on the horizontal axis, determines the associated ppals ©" computation resources rather than memory and task com-
and pmax 0N the vertical axis, and draws a line between tht:_,munication patterns, which are essential to the characterization

as shown in Figuré Z1b. Depending on the zoom level tthf performance anomalies on many-core NUMA architectures.

leads to a signi cantly lower number of drawing operations as PARAPROF [6], & pro le visualization tool of TAU [19], is a
shown in Figure§ 1(b) 1 (). retargetable framework for writing trace analysis applications

rather than a single tool for a speci c type of trace les or per-

formance analysis. It provides a set of extensible components
data sources, data management, analysis and visualization
t can be used as a basis for new tools, but does not provide

eady-to-use solutions for task-based performance analysis.

b) Aggregation of rendering operations$: the color for
adjacent pixels in the timeline is identical, such as in zddin
Figure[20, Aftermath reduces the number of calls to renderi
functions by aggregating these pixels and by issuing a sin$

call drawing a covering rectangle. . i ) - :
PERFEXPLORER [10] is an interactive data mining applica-

€) The use of indexedftermath uses simple, yet ef cient tichn for performance analysis, based on TAU amkRPROF.

data structures for its in-memory representation of traces. E L ) .
y rep . e}{: Pffers statistical tools to study correlations based on linear
core uses one array per type of event (state changes, discrg Fession, similar to the analysis in Secfign V. Clustering can

events, performance counter data, etc.) sorted by the timestafﬁ ‘used to aroup threads with similar characteristics and to
This allows to determine the array slice containing the relevan group

events for any interval through a fast binary search. relate performance indicators to the topology. However, since

ARAPROF is essentially a generic framework for performance
For each performance counter and each core, Aftermath ags yag P

builds an n-ary search tree that allows to quickly determine t ata mining, the existing components a_nd. those BRFFEX_.
PLORER have little overlap with the specialized ones required

€
minimum and maximum value of the counter for any mterv%r task-parallel applications. As a result, building Aftermath

on any core. This accelerates the rendering of performancet\ :
X : . . within these frameworks would have been close to the cost of
counters described above as it avoids scanning all performaré%e

o . - déveloping Aftermath from scratch.
counter values within the interval covered at the resolution . .
: : . VAMPIR [13] is a well-known commercial tool that has been
of a single pixel. To reduce the memory footprint of these

additional search trees, Aftermath uses a default arity of 1 8ed " high pe_rformancg computing fpr almo_st two deca_des.
t provides a rich user interface for interactive exploration

for all search trees, resulting in fewer nodes. This effectivea/nd analvsis of huge traces and has a highlv elaborated lter
limits the overhead to 5% of the actual performance counter, y 9 gnly

Interface. Multiple connected views with different granularity
data. . :
from cluster level to function calls are supported. But unlike
C. Symbol tables and annotations Aftermath, the tool is optimized for the analysis of massively
To enhance user experience when optimizing parallel appliggarallel applications based on message passing. Neither NUMA
tions, Aftermath relates the visual elements of the interfacesources nor tasks are modeled.
to the source code of the application. This information is VITE [1] analyzes parallel programs traces while focusing
extracted from the application’s binary using thie command- on fast rendering. However, the tool lacks support for NUMA
line tool. When the user selects a task in the timeline, Aftermattbpologies and customizable analysis lters.
retrieves the address of the associated work-function, looks uPDAGV 1z [12] is a tool that is able to visualize the computa-
the corresponding entry in the debug symbols and displays tien DAGs and parallelism pro les of task-parallel applications.
name of the function in the detailed text view. Clicking on thigpplications to be analyzed with DAGY must be rewritten
name starts an editor that opens the corresponding source uking a generic model for task parallelism proposed by the au-
and jumps to the function. thors. Furthermore, DAGN neither models memory accesses
To further support the user in the development cycle, imor data dependences.
particular in collaborative environments, Aftermath can be usedJebuLE [11]] analyzes task schedules in parallel applications.
to record user-de ned annotations. Since trace analysis daroffers zoomable Gantt charts, capable of displaying infor-



(a) Actual samples

Fig. 20: Timeline at different zoom levels

mation similar to Aftermath's timeline in state or type mode.

(b) Zoom A

(c) Zoom B (d) Zoom C

Fig. 21: Rendering of a performance counter at different zoom levels
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