Nonparametric prediction in the multivariate spatial context

Sophie Dabo-Niang 1, 2 Camille Ternynck 3 Anne-Françoise Yao 4
2 MODAL - MOdel for Data Analysis and Learning
Inria Lille - Nord Europe, LPP - Laboratoire Paul Painlevé - UMR 8524, CERIM - Santé publique : épidémiologie et qualité des soins-EA 2694, Polytech Lille - École polytechnique universitaire de Lille, Université de Lille, Sciences et Technologies
Abstract : This paper investigates a nonparametric spatial predictor of a stationary multidimensional spatial process observed over a rectangular domain. The proposed predictor depends on two kernels in order to control both the distance between observations and that between spatial locations. The uniform almost complete consistency and the asymptotic normality of the kernel predictor are obtained when the sample considered is an alpha-mixing sequence. Numerical studies were carried out in order to illustrate the behaviour of our methodology both for simulated data and for an environmental data set.
Type de document :
Article dans une revue
Journal of Nonparametric Statistics, American Statistical Association, 2016, 28 (2), pp.428-458. 〈10.1080/10485252.2016.01.007〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01425932
Contributeur : Sophie Dabo-Niang <>
Soumis le : mercredi 4 janvier 2017 - 08:14:21
Dernière modification le : mardi 20 novembre 2018 - 14:43:25

Identifiants

Collections

Citation

Sophie Dabo-Niang, Camille Ternynck, Anne-Françoise Yao. Nonparametric prediction in the multivariate spatial context. Journal of Nonparametric Statistics, American Statistical Association, 2016, 28 (2), pp.428-458. 〈10.1080/10485252.2016.01.007〉. 〈hal-01425932〉

Partager

Métriques

Consultations de la notice

346