Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries

Nicolas Barral 1 Géraldine Olivier 1 Frédéric Alauzet 1
1 Gamma3 - Automatic mesh generation and advanced methods
Inria Paris-Rocquencourt, UTT - Université de Technologie de Troyes
Abstract : Anisotropic metric-based mesh adaptation has proved its efficiency to reduce the CPU time of steady and unsteady simulations while improving their accuracy. However, its extension to time-dependent problems with body-fitted moving geometries is far from straightforward. This paper establishes a well-founded framework for multiscale mesh adaptation of unsteady problems with moving boundaries. This framework is based on a novel space–time analysis of the interpolation error, within the continuous mesh theory. An optimal metric field, called ALE metric field, is derived, which takes into account the movement of the mesh during the adaptation. Based on this analysis, the global fixed-point adaptation algorithm for time-dependent simulations is extended to moving boundary problems, within the range of body-fitted moving meshes and ALE simulations. Finally, three dimensional adaptive simulations with moving boundaries are presented to validate the proposed approach.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2017, 331, pp.157-187. 〈10.1016/j.jcp.2016.11.029〉
Liste complète des métadonnées

Littérature citée [54 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01426156
Contributeur : Frédéric Alauzet <>
Soumis le : mardi 17 janvier 2017 - 14:27:58
Dernière modification le : vendredi 25 mai 2018 - 12:02:06
Document(s) archivé(s) le : mardi 18 avril 2017 - 14:19:26

Fichier

PrePrint_Barral_Time-accurate ...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Nicolas Barral, Géraldine Olivier, Frédéric Alauzet. Time-accurate anisotropic mesh adaptation for three-dimensional time-dependent problems with body-fitted moving geometries. Journal of Computational Physics, Elsevier, 2017, 331, pp.157-187. 〈10.1016/j.jcp.2016.11.029〉. 〈hal-01426156〉

Partager

Métriques

Consultations de la notice

332

Téléchargements de fichiers

140