. La-conjecture-de-pierce, Birkhoff usuelle est démontrée dans [20] pour R[x, y] lorsque R est un corps réel clos discret mais il n'est pas si clair qu

A. Prestel and N. , Schwartz présentent une axiomatisation au premier ordre en une théorie cohérente dans [23]. Une version plusélémentaireplusélémentaire, semblablè a celle que nous proposons, se trouve dans

D. Bembé and A. Galligo, Virtual roots of a real polynomial and fractional derivatives, Proceedings of the 36th international symposium on Symbolic and algebraic computation, ISSAC '11, pp.27-34, 2011.
DOI : 10.1145/1993886.1993897

M. Bezem and T. Coquand, Automating coherent logic., Logic for programming, artificial intelligence, and reasoning, Proceedings, pp.246-260, 2005.
DOI : 10.1007/11591191_18

J. Bochnak, M. Coste, and M. Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), pp.14067-14082, 1998.
DOI : 10.1007/978-3-662-03718-8

T. Coquand and H. Lombardi, A note on the axiomatisation of real numbers, MLQ, vol.9, issue.3, pp.224-228, 2008.
DOI : 10.1002/malq.200710039

URL : https://hal.archives-ouvertes.fr/hal-00495336

M. Coste, An introduction to o-minimal geometry, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, 2000.

M. Coste, T. Lajous-loaeza, H. Lombardi, and M. Roy, Generalized Budan???Fourier theorem and virtual roots, Journal of Complexity, vol.21, issue.4, pp.479-486, 2005.
DOI : 10.1016/j.jco.2004.11.003

URL : http://doi.org/10.1016/j.jco.2004.11.003

M. Coste, H. Lombardi, and M. Roy, Dynamical method in algebra: effective Nullstellens??tze, Annals of Pure and Applied Logic, vol.111, issue.3, pp.203-256, 2001.
DOI : 10.1016/S0168-0072(01)00026-4

URL : http://doi.org/10.1016/s0168-0072(01)00026-4

A. Galligo, Budan tables of real univariate polynomials, Journal of Symbolic Computation, vol.53, pp.64-80, 2013.
DOI : 10.1016/j.jsc.2012.11.004

URL : https://hal.archives-ouvertes.fr/hal-00653756

L. González, -. Vega, and H. Lombardi, A real nullstellensatz and positivstellensatz for the semi- polynomials over an ordered field, Journal of Pure and Applied Algebra, vol.90, issue.2, pp.167-188, 1993.
DOI : 10.1016/0022-4049(93)90128-G

L. González-vega, H. Lombardi, and L. Mahé, Virtual roots of real polynomials, Journal of Pure and Applied Algebra, vol.124, issue.1-3, pp.147-166, 1998.
DOI : 10.1016/S0022-4049(96)00102-8

T. Peter and . Johnstone, Sketches of an elephant : a topos theory compendium, Oxford Logic Guides, vol.2, issue.44 2, p.18007, 2002.

V. Lifschitz, Semantical completeness theorems in logic and algebra, Proc. Amer, pp.89-96, 1980.
DOI : 10.1090/S0002-9939-1980-0560591-4

H. Lombardi, Structures alg??briques dynamiques, espaces topologiques sans points et programme de Hilbert, Annals of Pure and Applied Logic, vol.137, issue.1-3, pp.256-290, 2006.
DOI : 10.1016/j.apal.2005.05.023

URL : http://doi.org/10.1016/j.apal.2005.05.023

H. Lombardi, D. Perrucci, and M. Roy, An elementary recursive bound for effective Positivstellensatz and Hilbert 17-th problem, p.12, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980282

H. Lombardi and C. Quitté, Commutative algebra : constructive methods. finite projective modules, Algebra and Applications, Translated from the French (Calvage & Mounet, p.12, 2011.
DOI : 10.1007/978-94-017-9944-7

H. Lombardi and M. Roy, Elementary constructive theory of ordered fields, Effective methods in algebraic geometry (Castiglioncello, Progr. Math. Birkhäuser Boston, vol.9492, pp.249-262, 1990.

F. Lucas, J. Madden, D. Schaub, and M. Spivakovsky, Approximate roots of a valuation and the Pierce-Birkhoff conjecture, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.21, issue.2, pp.259-342, 2012.
DOI : 10.5802/afst.1336

URL : https://hal.archives-ouvertes.fr/ujm-00461549

J. J. Madden, Pierce-Birkhoff rings, Archiv der Mathematik, vol.14, issue.6, pp.565-570, 1989.
DOI : 10.1007/BF01199816

L. Mahé, R. On-the-pierce-birkhoff-conjecture, J. Mountain, and . Math, Ordered fields and real algebraic geometry, pp.983-985, 1983.

. V. Ju and . Matijasevi?, A metamathematical approach to proving theorems in discrete mathematics, Theoretical applications of the methods of mathematical logic, I. MR 0376327, pp.31-50, 1975.

A. Prestel and N. Schwartz, Model theory of real closed rings, Valuation theory and its applications, Fields Inst. Commun. Amer. Math. Soc, vol.32, issue.19, pp.261-290, 1999.

M. Rathjen, Remarks on Barr's theorem proofs in geometric theories, Concepts of proof in mathematics, philosophy, and computer science, Based on the Humboldt-Kolleg, issue.8, pp.347-374, 2013.

K. Schmüdgen, TheK-moment problem for compact semi-algebraic sets, Mathematische Annalen, vol.207, issue.1, pp.203-206, 1991.
DOI : 10.1007/BF01446568

N. Schwartz, Real closed spaces Real closed rings, Algebra and order (Luminy-Marseille, Habilitationsschrift. München Res. Exp. Math, vol.2889, issue.14, pp.19-175, 1984.

M. Schweighofer, An algorithmic approach to Schm??dgen's Positivstellensatz, Journal of Pure and Applied Algebra, vol.166, issue.3, pp.307-319, 2002.
DOI : 10.1016/S0022-4049(01)00041-X

URL : http://doi.org/10.1016/s0022-4049(01)00041-x

J. R. Shoenfield and L. Peters, Association for Symbolic Logic, pp.3003-3010, 2001.

M. Tressl, Super real closed rings, Fundamenta Mathematicae, vol.194, issue.2, pp.121-177, 2007.
DOI : 10.4064/fm194-2-2

D. Tsementzis, A syntactic characterization of Morita equivalence, 2015.

L. Van-den and . Dries, Tame topology and o-minimal structures, pp.1633348-99, 1998.
DOI : 10.1017/CBO9780511525919