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Abstract. In this paper we address the problem of estimating the phase from color

images acquired with differential-interference-contrast microscopy. In particular, we

consider the nonlinear and nonconvex optimization problem obtained by regularizing a

least-squares-like discrepancy term with a total variation functional, possibly smoothed

with the introduction of a positive constant. We deeply investigate the analytical

properties of the resulting objective function, proving the existence of minimum points,

and several optimization methods able to address the minimization problem. Besides

revisiting the conjugate gradient method proposed in the literature for this problem and

comparing it with standard conjugate gradient approaches, we introduce more recent

effective optimization tools able to obtain both in the smooth and in the nonsmooth

case accurate reconstructions with a reduced computational demand.

AMS classification scheme numbers: 65K05, 90C30, 90C90

Keywords: DIC microscopy, phase estimation, nonlinear optimization methods
Submitted to: Inverse Problems

1. Introduction

Since their invention, microscopes have been a powerful tool in a variety of disciplines

such as biology, medicine and the study of materials. In particular, the branch of optical

microscopy (also referred as light microscopy) has been successfully applied in biomed-

ical sciences and cell biology in order to study detailed structures and understand their

function in biological specimens. The optical microscope uses visible light for illuminat-

ing the object and contains lenses that magnify the image of the object and focus the
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light on the retina of the observer’s eye [1]. Optical microscopy includes several tech-

niques, such as bright-field, dark-field, phase contrast, differential interference contrast

(DIC), fluorescence and confocal microscopy. We refer to the work of Wilson and Bacic

[2] for a comparison of the advantages and limitations of these techniques.

The observation of biological structures is a challenging task, especially in live-cell

imaging. In fact, optical microscopes are limited by the diffraction of light, and imaging

is affected by the optical properties of the object, such as spatial variations in refractive

index which introduces aberrations as the light traverses the object [3]. Consequently,

since most of the cell components are transparent to visible light [4] and because of

the high content of water, traditional light microscopy may suffer from a lack of con-

trast, reason for which staining is often used to produce contrast by light absorption

[1]. Unfortunately, such a process is toxic to living cells and thus it is not suitable for in

vivo applications. An alternative solution consists in reducing the condenser numerical

aperture, which however worsens dramatically the resolution of the image.

The technique of interest on this paper is DIC microscopy, designed by Allen, David

and Nomarski [5] to overcome the inability to image unstained transparent biological

specimens, which is typical of bright-field microscopes, while avoiding at the same time

the halo artifacts of other techniques designed for the same purpose, such as phase con-

trast. DIC microscopes are able to provide contrast to images by exploiting the phase

shifts in light induced by the transparent specimens (also called phase objects) while

passing through them. This phenomenon is not detected by the human eye, neither

by an automatic visual system, and occurs because of the interaction of light with dif-

ferent refractive indexes of both the specimen and its surrounding medium. In DIC

microscopy, such phase shifts are converted into artificial black and white shadows in

the image, which correspond to changes in the spatial gradient of the specimen’s optical

path length. Furthermore, this technique has been widely recognized by its possibility

to use full numerical apertures in the objective, which results in high contrast images

at high lateral resolution.

One disadvantage of DIC microscopy is that the observed images cannot be easily

used for topographical and morphological interpretation, because the changes in phase

of the light are hidden in the intensity image. It is then of vital importance to recover

the specimen’s phase function from the observed DIC images. The problem of phase

estimation in optical imaging has been widely studied, as shown in the review made in

[6]. Previous work for reconstructing the DIC phase function has been done by Munster

et al [7], who retrieve the phase information by deconvolution with a Wiener filter; line

integration of DIC images is proposed by Kam in [8], supposing that the line integra-

tion along the shear angle yields a positive-definite image, which is not always the case

since the intensity image is a nonlinear relation between the transmission function of

the specimen and the point spread function of the microscope. Kou et al [9] introduce
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the use of transport of intensity equation to retrieve the phase function; Bostan et al

[10] also use this approach, including a total variation regularization term to preserve

the phase transitions. Finally, in the work of Preza [11, 12, 13, 14], the phase estimation

in DIC microscopy has been addressed by considering the minimization of a Tikhonov

regularized discrepancy term, which is performed by means of a modified nonlinear con-

jugate gradient (CG) method.

In this work, we are interested in reconstructing the phase by minimization of a

penalized least-squares term as proposed in [13]. Firstly, we introduce regularization

penalties able to reconstruct both sharp and smooth variations of the unknown phase,

as the total variation (TV) functional and its smooth generalization; secondly, we deepen

the analysis of the optimization methods used. To this aim, we revisit the modified non-

linear CG algorithm described in [13, 14], highlight possible drawbacks due to the lack

of the strong Wolfe conditions and compare the performances with standard nonlin-

ear Fletcher-Reeves (FR) and Polak-Ribière (PR) methods. Moreover, we compare the

CG approaches with a standard gradient method, in which suitable adaptive steplength

parameters are chosen to improve the convergence rate of the algorithm. Finally, we

introduce a recently proposed linesearch–based forward–backward method able to ad-

dress the nonsmoothness of the TV functional [15], which reduces to a standard gradient

method if a smooth TV regularizer is used. We are also interested in extending the one

color acquisition to polychromatic ones, trying to improve the reconstruction.

The organization of the paper is as follows. In Section 2, the DIC system for

transmitted coherent light is described, together with the corresponding polychromatic

image formation model. Furthermore the nonlinear inverse problem of the phase

reconstruction and its corresponding optimization problem are presented, remarking

some analytical properties of the objective function, such as the existence of minimum

points. In Section 3 the iterative optimization algorithms designed to address the phase

reconstruction problem are detailed. In Section 4 numerical simulations on synthetic

images are presented in order to evaluate efficiency and robustness of the considered

approaches. Conclusions and perspectives are included in Section 5.

2. Model and problem formulation

2.1. The DIC system

DIC microscopy works under the principle of dual-beam interference of polarized light,

as depicted in Figure 1. Coherent light coming from a source is passed through a polar-

izer lens. Every incident ray of polarized light is splitted by a Nomarski prism placed

at the front focal plane of the condenser. This splitting produces two wave components

– ordinary and extraordinary – such that their corresponding electromagnetic fields are

orthogonal and separated at a fixed shear distance 2∆x along a specific shear direction,
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whose angle τk formed with the x-axis is denominated shear angle. The specimen is

sampled by the pair of waves; if they pass through a region where there is a gradient

in the refractive index, the waves will be differentially shifted in phase. After this, they

will reach a second Normarski prism placed at the back focal plane of the objective

lens. This prism introduces an additional phase shift, called the bias retardation and

indicated with 2∆θ, which helps to improve the contrast of the observed image and to

give the shadow-cast effect characteristic of DIC images (see Figure 2). The interference

of the two sheared and phase shifted waves occurs inside this prism and, thus, the two

waves are recombined into a single beam that goes through a second polarizer lens called

the analyzer. For further details on the DIC working principle we refer to the work of

Murphy [16] and Mehta et al [17]. As explained in [12] and references therein, for a given

shear angle, one acquisition is related to the directional derivative of the object along

the direction τk. Then, in order to retrieve the optical path length of the specimen, one

acquires at least two images with a shear angle difference of π/2 [13].

Figure 1. Transmitted-light Nomarski DIC microscope. The difference of colors of

the ordinary and extraordinary waves indicates that their electromagnetic fields are

orthogonal to each other.

The observed images will have a uniform gray background on regions where there

are no changes in the optical path, whereas they will have dark shadows and bright

highlights where there are phase gradients in the direction of shear, having a 3-D relief-

like appearance (see Figure 2). It is important to note that the shadows and highlights

indicate the signs and slope of phase gradients in the specimen, and not necessarily
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(a) (b) (c) (d)

Figure 2. Phase functions of two phantom specimens and corresponding noiseless

DIC color images: (a) phase function of the “cone” object, (b) DIC image of the cone,

(c) phase function of the “cross” object, (d) DIC image of the cross. The images have

been computed by using model (1) and setting the shear to 2∆x = 0.6 µm, the bias to

2∆θ = π/2 rad and the shear angle to τ = π/4 rad.

indicate high or low spots [5].

In this paper we consider the polychromatic rotational-diversity model [18], which

is an extension of the model presented in [13] to color image acquisition. This model

assumes that K color images are acquired by rotating the specimen K times with respect

to the shear axis, which results in K rotations of the amplitude point spread function.

In this configuration, the relation between the acquired images and the unknown true

phase φ is given by

(ok,λℓ
)j = a1

∣∣(hk,λℓ
⊗ e−iφ/λℓ)j

∣∣2 + (ηk,λℓ
)j, (1)

for k = 1, . . . , K, ℓ = 1, 2, 3, j ∈ χ, where

• k is the index of the angles τk that the shear direction makes with the horizontal

axis [13], ℓ is the index denoting one of the three RGB channels and j = (j1, j2) is

a 2D–index varying in the set χ = {1, . . . ,M} × {1, . . . , P};

• λℓ is the ℓ−th illumination wavelength, being λ1 = 0.65, λ2 = 0.55 and λ3 = 0.45

the values for the red, green and blue wavelengths respectively;

• ok,λℓ
∈ RMP is the ℓ−th color component of the k−th discrete observed image

ok = (ok,λ1, ok,λ2, ok,λ3) ∈ RMP×3;

• φ ∈ R
MP is the unknown phase vector and e−iφ/λℓ ∈ C

MP stands for the vector

defined by (e−iφ/λℓ)j = e−iφj/λℓ ;

• hk,λℓ
∈ CMP is the discretization of the continuous DIC point spread function

[12, 19] corresponding to the illumination wavelength λℓ and rotated by the angle

τk , i.e.,

hk,λℓ
(x, y) =

1

2

[
e−i∆θpλℓ

(
Rk · (x− ∆x, y)T

)
− ei∆θpλℓ

(
Rk · (x+ ∆x, y)T

)]
, (2)

where pλℓ
(x, y) is the coherent PSF of the microscope’s objective lens for the

wavelength λℓ, which is given by the inverse Fourier transform of the disk support
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function of amplitude 1 and radius equal to the cutoff frequency fc = NA/λℓ
[12], being NA the numerical aperture of the objective lens, 2∆θ is the DIC bias

retardation, 2∆x is the shear distance and Rk is the rotation matrix which rotates

the coordinates according to the shear angle τk;

• h1⊗h2 denotes the 2D convolution between the two M×P images h1, h2, extended

with periodic boundary conditions;

• ηk,λℓ
∈ RMP is the noise corrupting the data, which is assumed to be a realization

of a Gaussian random vector with mean 0 ∈ RMP and covariance matrix σ2I(MP )2 ,

where I(MP )2 is the identity matrix of size (MP )2;

• a1 ∈ R is a constant which corresponds to closing the condenser aperture down to

a single point.

2.2. Optimization problem

The phase reconstruction problem consists in finding an approximation of the unknown

phase vector φ from the observed RGB images o1, . . . , oK . Let us first address this

problem by means of the maximum likelihood (ML) approach. Since the 3K images

ok,λℓ
are corrupted by Gaussian noise, then the negative log likelihood of each image is a

least-squares measure, which is nonlinear due to the presence of the exponential in (1).

If we assume white Gaussian noise, statistically independent of the data, the negative

log likelihood of the problem is the sum of the negative log likelihoods of the different

images, namely the following fit-to-data term

J0(φ) =

3∑

ℓ=1

K∑

k=1

∑

j∈χ

[
(ok,λℓ

)j − a1
∣∣(hk,λℓ

⊗ e−iφ/λℓ)j
∣∣2
]2
. (3)

Then the ML approach to the phase reconstruction problem consists in the minimization

of the function in (3):

min
φ∈RMP

J0(φ). (4)

In the next result, we collect some properties of J0 that will be useful hereafter.

Lemma 1 Let J0 : RMP → R be defined as in (3). Then we have the following:

(i) There exists T > 0 such that J0 is periodic of period T with respect to each variable,

i.e. for any j ∈ χ, defining ej = (δj,r)r∈χ = (0, . . . , 0, 1, 0, . . . , 0) ∈ RMP where δj,r
is the Kronecker delta, it holds

J0(φ+ Tej) = J0(φ), ∀ φ ∈ R
MP . (5)

(ii) J0(φ+ c1) = J0(φ), ∀ c ∈ R, where 1 ∈ R
MP is the vector of all ones.

(iii) J0 is an analytic function on RMP and therefore J0 ∈ C∞(RMP ).

Proof. (i) Fix j ∈ χ, ℓ ∈ {1, 2, 3} and consider the exponential in (3). Then for all r ∈ χ

(
e−i(φ+2πλℓej)/λℓ

)
r

=

{
e−iφr/λℓ , r 6= j

e−i[(φj/λℓ)+2π] = e−iφr/λℓ , r = j
= (e−iφ/λℓ)r, (6)
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where the equality inside the curly bracket is due to the periodicity of the complex

exponential. Then, for a fixed ℓ ∈ {1, 2, 3}, the expression given in (3) without the sum

in ℓ is 2πλℓ periodic w.r.t. the variable φj. This means that J0 is the sum of three

periodic functions of variable φj whose periods are 2πλ1, 2πλ2 and 2πλ3 respectively.

By recalling that the sum of two periodic functions is periodic if the ratio of the periods

is a rational number, we can conclude that J0 is periodic, as we have λℓ

λℓ′
rational for all

ℓ, ℓ′ ∈ {1, 2, 3}.

(ii) Set Jℓ,k,j(φ) =
∣∣(hk,λℓ

⊗ e−iφ/λℓ)j
∣∣2 =

∣∣∣∣
∑
r∈χ

(hk,λℓ
)re

−i(φj−r)/λℓ

∣∣∣∣
2

. If the thesis holds for

Jℓ,k,j, then it holds also for J0. We have

Jℓ,k,j(φ+ c1) =

∣∣∣∣∣
∑

r∈χ

(hk,λℓ
)re

−i(φj−r+c)/λℓ

∣∣∣∣∣

2

=

∣∣∣∣∣e
−ic/λℓ

∑

r∈χ

(hk,λℓ
)re

−i(φj−r)/λℓ

∣∣∣∣∣

2

=
∣∣e−ic/λℓ

∣∣2
∣∣∣∣∣
∑

r∈χ

(hk,λℓ
)re

−i(φj−r)/λℓ

∣∣∣∣∣

2

= Jℓ,k,j(φ). (7)

(iii) If Jℓ,k,j is an analytic function on RMP , then J0 is given by sums and compositions of

analytic functions and thus it is itself analytic [20, Propositions 1.6.2 and 1.6.7]. Hence

we focus on Jℓ,k,j. Since (hk,λℓ
)r ∈ C, it can be expressed in its trigonometric form

(hk,λℓ
)r = ρre

iθr , with ρr ∈ R≥0, θr ∈ [0, 2π). Then we can rewrite Jℓ,k,j as follows

Jℓ,k,j(φ) =

∣∣∣∣∣
∑

r∈χ

ρre
i[θr−(φj−r/λℓ)]

∣∣∣∣∣

2

=

=

∣∣∣∣∣
∑

r∈χ

ρr cos(θr − (φj−r/λℓ)) + i
∑

r∈χ

ρr sin(θr − (φj−r/λℓ))

∣∣∣∣∣

2

=

=

(
∑

r∈χ

ρr cos(θr − (φj−r/λℓ))

)2

+

(
∑

r∈χ

ρr sin(θr − (φj−r/λℓ))

)2

.

We now observe that the function Jℓ,k,j contains sin(θr − (φj−r/λℓ)) and cos(θr −

(φj−r/λℓ)), which are both analytic functions with respect to the single variable φj−r

and thus also with respect to φ, and the square function (·)2, which is also analytic.

Since Jℓ,k,j is given by sums and compositions of these functions, it is analytic. �

Problem (4) admits infinitely many solutions, as stated in the following theorem.

Theorem 1 J0 admits at least one global minimum point. Furthermore, if ψ ∈ RMP is

a global minimizer of J0, then also {ψ+ c1 : c ∈ R}∪ {ψ+mTej : j ∈ χ, m ∈ Z} are

global minimizers of J0.

Proof. Let Ω = [0, T ]MP ⊂ RMP . Point (iii) of Lemma 1 ensures that J0 is continuous

on Ω, thus from the extreme value theorem J0 admits at least one minimum point ψ on

Ω. By contradiction, assume that there exists φ ∈ RMP \ Ω such that J0(φ) < J0(ψ).
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Let I ⊂ χ be the subset of indices such that {φs}s∈I is the set of all components of

φ which belong to R \ [0, T ] and {ms}s∈I ⊂ Z \ {1} is the set of integers such that

φs ∈ [(ms − 1)T,msT ]. Define φ̄ = φ −
∑

s∈I(ms − 1)Tes ∈ Ω. By periodicity of J0
w.r.t. the variables φs, s ∈ I, we obtain

J0(φ̄) = J0(φ) < J0(ψ). (8)

Therefore, we have found a point φ̄ ∈ Ω such that J0(φ̄) < J0(ψ), where ψ is a minimum

point on Ω. This is absurd, hence ψ is a global minimizer for J0. The second part of

the thesis follows from points (i)-(ii) of Lemma 1. �

Theorem 1 asserts that the solution to problem (4) is not unique and it may be

determined only up to an unknown real constant or to multiples of the period T w.r.t.

any variable φj. Furthermore, since J0 is periodic, it is a nonconvex function of the phase

φ, thus it may admit several local minima as well as saddle points. In the light of these

considerations, we can conclude that (4) is a severely ill-posed problem, which requires

regularization in order to impose some a priori knowledge on the unknown phase. In

particular, we propose to solve the following regularized optimization problem

min
φ∈RMP

J(φ) ≡ J0(φ) + JTV (φ), (9)

where J0 is the least-squares distance defined in (3) and JTV is the smooth total variation

functional (also known as hypersurface potential - HS) defined as [21, 22]

JTV (φ) = µ
∑

j∈χ

√
((Dφ)j)21 + ((Dφ)j)22 + δ2, (10)

where µ > 0 is a regularization parameter, the discrete gradient operator D : RMP −→

R
2MP is set through the standard finite difference with periodic boundary conditions

(Dφ)j1,j2 =

(
((Dφ)j1,j2)1
((Dφ)j1,j2)2

)
=

(
φj1+1,j2 − φj1,j2

φj1,j2+1 − φj1,j2

)
, φM+1,j2 = φ1,j2, φj1,P+1 = φj1,1

and the additional parameter δ ≥ 0 plays the role of a threshold for the gradient of

the phase. Obviously JTV reduces to the standard TV functional [23] by setting δ = 0.

The choice of this kind of regularization term instead of the first-order Tikhonov one

used e.g. in [13, 14] lies in the capability of the HS regularizer to behave both as a

Tikhonov-like regularization in regions where the gradient assumes small values (w.r.t.

δ), and as an edge-preserving regularizer in regions where the gradient is very large, as

it happens in the neighborhood of jumps in the values of the phase.

Problem (9) is still a difficult nonconvex optimization problem and, when δ = 0, it

is also nondifferentiable. Some properties of the objective function J are now reported.

Lemma 2 Let J : RMP → R be defined as in (9). Then:

(i) J(φ+ c1) = J(φ), ∀ c ∈ R.
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(ii) If δ > 0, then J ∈ C∞(RMP ) and ∇J is Lipschitz continuous, namely there exists

L > 0 such that

‖∇J(φ) −∇J(ψ)‖2 ≤ L‖φ− ψ‖2, ∀φ, ψ ∈ R
MP . (11)

Proof. (i) We have already proved in point (ii) of Lemma 1 that the property holds for

J0. Since it is immediate to check that (D(φ+ c1))j1,j2 = (Dφ)j1,j2, the property is true

also for JTV and thus for J .

(ii) Point (iii) of Lemma 1 states that J0 ∈ C∞(RMP ) and the same property holds for

JTV , hence J is the sum of two C∞(RMP ) functions.

It is known that ∇JTV is LTV−Lipschitz continuous with LTV = 8µ/δ2 [24]. We

prove that also ∇J0 is Lipschitz continuous. If we introduce the residual image

rk,λℓ
=
∣∣∣(hk,λℓ

⊗ e−iφ/λℓ)
∣∣∣
2

− ok,λℓ
and fix s ∈ χ, the partial derivative of J0 with respect

to φs is given by

∂J0(φ)

∂φs
=

3∑

ℓ=1

K∑

k=1

∑

j∈χ

4

λℓ
(rk,λℓ

)jIm
{
e−iφs/λℓ(hk,λℓ

)j−s(hk,λℓ
⊗ e−iφ/λℓ)j

}
, (12)

where Im(·) denotes the imaginary part of a complex number. As concerns the entries

of the Hessian ∇2J0, the second derivative w.r.t. φs, φt (s, t ∈ χ) is given by

∂2J0(φ)

∂φt∂φs

= 4
3∑

ℓ=1

K∑

k=1

∑

j∈χ

2

λ2ℓ
Im{ϑs} Im{ϑt} +

(rk,λℓ
)j

λ2ℓ
Re
{
ei(φt−φs)/λℓ(hk,λℓ

)j−s(hk,λℓ
)j−t − δs,tϑs

}
, (13)

where ϑp = e−iφp/λℓ(hk,λℓ
)j−p(hk,λℓ

⊗ e−iφ/λℓ)j (p ∈ χ), Re(·) denotes the real part of a

complex number and δs,t is the Kronecker delta. By using the triangle inequality and

the fact that |e−iφr/λℓ | = 1, the following inequality hold:

|ϑp| ≤ |(hk,λℓ
)j−p|

∑

r∈χ

|(hk,λℓ
)r|. (14)

By applying the triangle inequality, the fact that |e−iφr/λℓ | = 1, |Im(z)| ≤ |z| and

|Re(z)| ≤ |z| for any z ∈ C and inequality (14) to (13), we obtain the following bound

on the second derivative of J0:
∣∣∣∣
∂2J0(φ)

∂φt∂φs

∣∣∣∣ ≤ 4

3∑

ℓ=1

K∑

k=1

∑

j∈χ

2

λ2ℓ
|(hk,λℓ

)j−s||(hk,λℓ
)j−t|

(
∑

r∈χ

|(hk,λℓ
)r|

)2

+

|(rk,λℓ
)j |

λ2ℓ

{
|(hk,λℓ

)j−s||(hk,λℓ
)j−t| + |(hk,λℓ

)j−s|
∑

r∈χ

|(hk,λℓ
)r|

}
. (15)

Set Hk,ℓ =
∑

r∈χ |(hk,λℓ
)r|. Taking the sum of (15) over s ∈ χ and picking the maximum

over t ∈ χ, a bound on the ℓ∞−norm of the Hessian ∇2J0 is obtained:

‖∇2J0(φ)‖∞ = max
t∈χ

∑

s∈χ

∣∣∣∣
∂2J0(φ)

∂φt∂φs

∣∣∣∣
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≤ 4

3∑

ℓ=1

K∑

k=1

∑

j∈χ

Hk,ℓ

λ2ℓ

{
2 max

t∈χ
|(hk,λℓ

)j−t|H
2
k,ℓ + |(rk,λℓ

)j|

[
max
t∈χ

|(hk,λℓ
)j−t| +Hk,ℓ

]}

= L0, ∀ φ ∈ R
MP .

From relation ‖A‖2 ≤
√

‖A‖1‖A‖∞ and the fact that ‖∇2J(φ)‖1 = ‖∇2J(φ)‖∞
(∇2J0(φ) is a symmetric matrix), it follows that ‖∇2J0(φ)‖2 ≤ L0 for all φ ∈ RMP .

Fix φ, ψ ∈ RMP . By the mean value theorem for vector-valued functions, we have

‖∇J0(φ) −∇J0(ψ)‖2 ≤ sup
θ∈(0,1)

‖∇2J0(ψ + θ(φ− ψ))‖2‖φ− ψ‖2 ≤ L0‖φ− ψ‖2. (16)

Then ∇J0 is L0−Lipschitz continuous and consequently also ∇J is Lipschitz continuous

with constant L = L0 + LTV . �

Point (i) of Lemma 2 makes clear that, if a solution to problem (9) exists, then it

is not unique and it can be determined only up to a real constant. This is a common

feature shared with the unregularized problem (4). However, unlike in (4), the objective

function J is not periodic and, in addition, none of the two terms J0 and JTV are

coercive, therefore we can not prove the existence of a minimum point of J neither as

in Theorem 1 nor by coercivity. A specific proof of existence of the solution for problem

(9) is now presented.

Theorem 2 The objective function J admits at least one global minimum point.

Furthermore, if ψ ∈ RMP is a global minimizer of J , then also {ψ + c1 : c ∈ R}

are global minimizers of J .

Proof. Let S = {φ ∈ RMP : φ = c1, c ∈ R} be the line in RMP of all constant images

and Π any hyperplane intersecting S in one point φS, i.e.

Π = {φ ∈ R
MP :

∑

r∈χ

arφr + b = 0},
∑

r∈χ

ar 6= 0, b ∈ R. (17)

Thanks to part (i) of Lemma 2, for any φ ∈ RMP the point φΠ = φ−
(∑

r arφr+b
∑

r ar

)
1 ∈ Π

is such that J(φΠ) = J(φ). Consequently, if ψ is a minimum point of J on Π, then

it is also a minimum point on RMP , because J(ψ) ≤ J(φΠ) = J(φ) for all φ ∈ RMP .

Hence we restrict the search of the minimum point on Π and we denote with J |Π the

restriction of J to Π. Since S = arg minφ∈RMP JTV (φ) and Π intersects S only in φS,

JTV is a convex function with a unique minimum point on Π, which implies that JTV is

coercive on Π. Furthermore, being J0 periodic and continuous, it is a bounded function

on Π. Then J |Π is the sum of a coercive term and a bounded one, therefore it is itself

coercive. This allows to conclude that J admits a minimum point on Π and thus also

on RMP . The second part of the thesis follows from Lemma 2, part (i). �

Note that the above proof of existence holds also for the regularized DIC problem

proposed in [13, 14], in which the Tikhonov-like regularizer used instead of the TV

functional is also noncoercive.
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3. Optimization methods

In previous works [13, 14, 11], the problem of DIC phase reconstruction had been

addressed with the nonlinear conjugate gradient method [25]. However, as better

explained in Subsection 3.2, these methods require in practice several evaluations of

the objective function and possibly its gradient in order to compute the linesearch

parameter. What we propose instead is to tackle problem (9) with a gradient descent

algorithm in the differentiable case (δ > 0) and a proximal-gradient method in the

nondifferentiable case (δ = 0). The key ingredients of both methods are the use of an

Armijo linesearch at each iteration, which ensures convergence to a stationary point

of problem (9), and a clever adaptive choice of the steplength in order to improve the

speed of convergence.

For sake of simplicity, from now on we assume that each monochromatic image is treated

as a vector in RN (being N = MP ) obtained by a lexicographic reordering of its pixels.

3.1. Gradient and proximal-gradient methods: LMSD and ILA

In this subsection we describe the two proposed algorithms to address problem (9) for

both cases δ > 0 and δ = 0. In the former case the objective function is differentiable and

we exploit the limited memory steepest descent (LMSD) method proposed by Fletcher

[26] and outlined in Algorithm 1. The LMSD method is a standard gradient method

equipped with a monotone Armijo linesearch and variable steplengths approximating

the inverse of some eigenvalues of the Hessian matrix ∇2J(φ(n)) in order to improve

the convergence speed. Unlike the classical Barzilai–Borwein (BB) rules [27] and its

generalizations (see e.g. [28, 29, 30]) which tries to approximate (∇2J(φ(n)))−1 with

a constant diagonal matrix, the idea proposed by Fletcher for quadratic objective

functions is based on a Lanczos iterative process applied to the Hessian matrix of the

objective function. Some algebra shows that this can be practically performed without

the explicit knowledge of the Hessian itself but exploiting only a set of back gradients and

steplengths (see steps 6–10 of Algorithm 1). Generalization to nonquadratic functions

can be obtained by computing the eigenvalues of the matrix Φ̃ in step 10 instead of Φ

(we remark that for quadratic J the two matrices coincide).

Some practical issues have to be addressed in the implementation of Algorithm 1:

• The first loop (step 1 to 5) build a matrix

G =
[
∇J(φ(n−m)) ∇J(φ(n−m+1)) . . .∇J(φ(n−1))

]

of size MP ×m. The initial values for the first m steplengths can be provided by

the user (e.g. by computing the BB ones) or can be chosen with the same approach

described in steps 6–10 but with smaller matrices. For example, one can fix α
(0)
0 ,

compute G = ∇J(φ(0)) and use steps 6–10 to compute α
(0)
1 . At this point, defining

G = [∇J(φ(0)) ∇J(φ(1))] one can compute α
(0)
2 and α

(0)
3 and repeat the procedure

until a whole set of m back gradients is available.
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Algorithm 1 Limited memory steepest descent (LMSD) method

Choose ρ, ω ∈ (0, 1), m ∈ N>0, α
(0)
0 , . . . , α

(0)
m−1 > 0, φ(0) ∈ RN and set n = 0.

While True

For l = 1, . . . , m

1. Define G(:, l) = ∇J(φ(n)).

2. Compute the smallest non-negative integer in such that αn = α
(0)
n ρin satisfies

J(φ(n) − αn∇J(φ(n))) ≤ J(φ(n)) − ωαn‖∇J(φ(n))‖2. (18)

3. Compute φ(n+1) = φ(n) − αn∇J(φ(n)).

If “Stopping Criterion” is satisfied

4. Return

Else

5. Set n = n + 1.

EndIf

EndFor

6. Define the (m + 1) ×m matrix Γ =




α−1
n−m

−α−1
n−m

. . .

. . . α−1
n−1

−α−1
n−1




.

7. Compute the Cholesky factorization RTR of the m×m matrix GTG.

8. Solve the linear system RT r = GT∇J(φ(n)).

9. Define the m×m matrix Φ = [R, r]ΓR−1.

10. Compute the eigenvalues θ1, . . . , θm of the symmetric and tridiagonal approximation

Φ̃ of Φ defined as

Φ̃ = diag(Φ) + tril(Φ,−1) + tril(Φ,−1)T ,

being diag(·) and tril(·,−1) the diagonal and the strictly lower triangular parts of

a matrix.

11. Define α
(0)
n+i−1 = 1/θi, i = 1, . . . , m.

EndWhile

• The same procedure can be adopted when step 10 provides only m′ < m positive

eigenvalues. In this case, all columns of G are discarded, G becomes the empty

matrix and the algorithm proceeds with m′ instead of m until a whole set of m back

gradients is computed. If m′ = 0, a set of m “safeguard” steplengths, corresponding

to the last set of m positive steplengths values provided by step 10, is exploited for

the next m iterations.

• If GTG in step 7 is not positive definite, then the oldest gradient of G is discarded

and a new matrix GTG is computed. This step is repeated until GTG becomes
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positive definite.

• The stopping criterion can be chosen by the user and be related to the decrease of J

or to the distance between two successive iterates. In our tests we decided to arrest

the iterations when the norm of the gradient ∇J goes below a given threshold κ:

‖∇J(φ(n))‖ ≤ κ. (19)

Concerning the computational costs of LMSD, the heaviest tasks at each iteration

are the computation of ∇J(φ(n)) at step 1 and J(φ(n) − αn∇J(φ(n))) at step 2.

Considering step 1, we focus on ∇J0. As it is written in (12), due to the product

between e−iφs/λℓ and (hk,λℓ
)j−s, ∇J0 can be performed with O(N2) complexity; this is

how the gradient is computed in [13]. However, if we take the sum over j of the residuals

into the argument of Im(·), then we can conveniently rewrite (12) as

∂J0(φ)

∂φs

=
3∑

ℓ=1

K∑

k=1

4

λℓ
Im
{(

(rk,λℓ
. ∗ (hk,λℓ

⊗ eiφ/λℓ)) ⊗ h̃k,λℓ

)
s
e−iφs/λℓ

}
, (20)

where h1. ∗ h2 denotes the componentwise product between two images h1, h2 and

(h̃k,λℓ
)j = (hk,λℓ

)−j for all j ∈ χ. Then the heaviest operations in (20) are the two

convolutions which, thanks to the assumption of periodic boundary conditions, can be

performed with a FFT/IFFT pair (O(N logN)) complexity). Hence, since ∇JTV has

O(N) complexity, we can conclude that step 1 has an overall complexity of O(N logN).

Similarly, the function at step 2 is computed with complexity O(N logN), due to the

presence of one convolution inside the triple sum in (3).

From a practical point of view, we have already shown that the LMSD method

is an effective tool for DIC imaging, especially if compared to more standard gradient

methods equipped with the BB rules [18]. From a mathematical point of view, one

can prove, in the same way as in [31], that every limit point of the sequence generated

by Algorithm 1 is a stationary point for problem (9). In addition, the convergence of

Algorithm 1 can be asserted whenever the objective function J satisfies the Kurdyka–

 Lojasiewicz (KL) property [32, 33] at each point of its domain. More precisely, as shown

in a number of recent papers [34, 35, 36], one can prove the convergence of a sequence

{φ(n)}n∈N to a limit point (if any exists) which is stationary for J if the following three

conditions are satisfied:

(H1) ∃ a > 0 : J(φ(n+1)) + a‖φ(n+1) − φ(n)‖2 ≤ J(φ(n))

(H2) ∃ b > 0 : ‖∇J(φ(n+1))‖ ≤ b‖φ(n+1) − φ(n)‖

(H3) J satisfies the KL property.

This scheme applies to the LMSD method. First of all, condition (H3) is satisfied

for the DIC functional defined in (9). Indeed J0 is an analytic function (Lemma 1,

part (iii)) and JTV is a semialgebraic function, which means that its graph is defined

by a finite sequence of polynomial equations and inequalities (see [37] for a definition).

Hence J is the sum of an analytic function and a semialgebraic one and for this reason
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it satisfies the KL property on RN (see [37, p. 1769] and references therein). Conditions

(H1) − (H2) follows from step 2 and 3, combined with the fact that ∇J is Lipschitz

continuous (Lemma 2, part (ii)), provided that the sequence of steplengths α
(0)
n defined

at step 11 is bounded from above. Therefore we can state the following result:

Theorem 3 Let J be defined as in (9), {φ(n)}n∈N the sequence generated by Algorithm

1 and assume that α
(0)
n ≤ αmax, where αmax > 0. If φ∗ is a limit point of {φ(n)}n∈N, then

φ∗ is a stationary point of J and φ(n) converges to φ∗.

Proof. We start by proving condition (H1). Step 3 of Algorithm 1 can be rewritten in

the following way:

−αn∇J(φ(n)) = φ(n+1) − φ(n) (21)

from which we have

αn‖∇J(φ(n))‖2 =
1

αn
‖φ(n+1) − φ(n)‖2. (22)

By substituting (22) in step 2 and since αn ≤ α
(0)
n ≤ αmax, we obtain

J(φ(n+1)) ≤ J(φ(n)) −
ω

αn

‖φ(n+1) − φ(n)‖2 ≤ J(φ(n)) −
ω

αmax

‖φ(n+1) − φ(n)‖2. (23)

Then (H1) holds with a = ω/αmax. Regarding condition (H2), we can rewrite again

step 3 as:

∇J(φ(n)) =
1

αn
(φ(n) − φ(n+1)). (24)

Recall that the Lipschitz continuity of ∇J implies that there is αmin > 0 such that the

linesearch parameter αn ≥ αmin (see [15, Proposition 4.2] for a proof). Then

‖∇J(φ(n+1))‖ ≤ ‖∇J(φ(n+1)) −∇J(φ(n))‖ + ‖∇J(φ(n))‖

≤ L‖φ(n+1) − φ(n)‖ +
1

αn
‖φ(n+1) − φ(n)‖

≤

(
L +

1

αmin

)
‖φ(n+1) − φ(n)‖.

This concludes the proof of (H2) with b = L + 1/αmin. The thesis follows from [34,

Theorem 2.9]. �

We now turn to the algorithm we used to address the nonsmooth case δ = 0. In

particular, we considered a simplified version of a recently proposed proximal-gradient

method called VMILA (Variable Metric Inexact Linesearch Algorithm) [15]. In its gen-

eral form, this method exploits a variable metric in the (possibly inexact) computation

of the proximal point at each iteration and a backtracking loop to satisfy an Armijo–like

inequality. Effective variable metrics can be designed for specific objective functions by

exploiting suitable decompositions of the gradient of the smooth part of the objective

function itself [31, 38, 39, 40]. However, since in the DIC problem the gradient of J0
does not lead to a natural decomposition in the required form, in our tests we used the



Models and algorithms for DIC microscopy 15

Algorithm 2 Inexact Linesearch based Algorithm (ILA)

Choose 0 < αmin ≤ αmax, ρ, ω ∈ (0, 1), γ ∈ [0, 1], τ > 0, φ(0) ∈ RN and set n = 0.

While True

1. Set αn = max
{

min
{
α
(0)
n , αmax

}
, αmin

}
, where α

(0)
n is chosen as in Algorithm 1.

2. Let h
(n)
γ , h(n) and ψ(n) be defined as in (27)-(28). Compute ψ̃(n) ∈ RN and ǫn ≥ 0

such that

h(n)(ψ̃(n)) − h(n)(ψ(n)) ≤ ǫn ; ǫn ≤ −τh(n)γ (ψ̃(n)). (25)

3. Set d(n) = ψ̃(n) − φ(n).

4. Compute the smallest non-negative integer in such that λn = ρin satisfies

J(φ(n) + λnd
(n)) ≤ J(φ(n)) + ωλnh

(n)
γ (ψ̃(n)). (26)

5. Compute the new point as φ(n+1) = φ(n) + λnd
(n).

If “Stopping Criterion” is satisfied

6. Return

Else

7. Set n = n+ 1.

EndIf

EndWhile

standard Euclidean distance (we will denote with ILA this simplified version of VMILA).

The main steps of ILA are detailed in Algorithm 2. At each iteration n, given the

point φ(n) ∈ RN and the parameters αn > 0, γ ∈ [0, 1], we define the function

h(n)γ (φ) = ∇J0(φ
(n))T (φ− φ(n)) +

γ

2αn
‖φ− φ(n)‖2 + JTV (φ) − JTV (φ(n)). (27)

We observe that h
(n)
γ is strongly convex for any γ ∈ (0, 1]. By setting h(n) = h

(n)
1 and

z(n) = φ(n) − αn∇J0(φ
(n)), we define the unique proximal point

ψ(n) := proxαnJTV
(z(n)) = arg min

φ∈RN
h(n)(φ). (28)

In step 2 of Algorithm 2, an approximation ψ̃(n) of the proximal point ψ(n) is defined by

means of condition (25). Such a point can be practically computed by remarking that

JTV can be written as

JTV (φ) = g(Dφ), g(t) = µ

N∑

j=1

∥∥∥∥∥

(
t2j−1

t2j

)∥∥∥∥∥ , t ∈ R
2N .

Then considering the dual problem of (28)

max
v∈R2N

Γ(n)(v), (29)
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the dual function Γ(n) has the following form

Γ(n)(v) = −
‖αnD

Tv − z(n)‖2

2αn

− g∗(v) − JTV (φ(n)) −
αn

2
‖∇J0(φ

(n))‖2 +
‖z(n)‖2

2αn

(30)

where g∗ is the convex conjugate of g, namely the indicator function of the set
(
B2

0,µ

)N
,

being B2
0,µ ⊂ R2 the 2-dimensional Euclidean ball centered in 0 with radius µ.

Condition (25) is fulfilled by any point ψ̃(n) = z(n)−αnA
Tv with v ∈ R2N satisfying [15]

h(n)(ψ̃(n)) ≤ ηΓ(n)(v), η = 1/(1 + τ). (31)

Such a point can be found by applying an iterative method to problem (29) and using

(31) as stopping criterion.

Similarly to LMSD, any limit point of the sequence generated by ILA is stationary

for problem (9) [15, Theorem 4.1] and, under the assumption that a limit point exists,

the convergence of ILA to such a point holds when J satisfies the Kurdyka– Lojasiewicz

property, the gradient of the smooth part ∇J0 is Lipschitz continuous and the proximal

point ψ̃(n) is computed exactly [36]. Whether and when ILA converges when the

proximal point is computed inexactly is still an open problem, therefore all we can say

for Algorithm 2 applied to the DIC problem is that all its limit points are stationary.

3.2. Nonlinear conjugate gradient methods

We compare the performances of LMSD and ILA with several nonlinear conjugate

gradient methods, including some standard CG methods [25, 41] and the heuristic CG

method previously used for DIC problems [11, 13]. The general scheme for a CG method

is recalled in Algorithm 3 and some classical choices for the parameter βn+1 are shown

in Table 1, namely the Fletcher-Reeves (FR), Polak-Ribière (PR), PR with nonnegative

values (PR+) and PR constrained by the FR values (FR-PR) strategies [42].

Algorithm 3 Conjugate gradient (CG) method

Choose φ(0) ∈ RN and set n = 0, p(0) = −∇J(φ(0)).

While True

1. Compute αn and set φ(n+1) = φ(n) + αnp
(n).

2. Choose the scalar parameter βn+1 according to the CG strategy used.

3. Define p(n+1) = −∇J(φ(n+1)) + βn+1p
(n).

If “Stopping Criterion” is satisfied

4. Return

Else

5. Set n = n+ 1.

EndIf

EndWhile
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CG algorithm βn+1

FR βFR
n+1 =

∇J(φ(n+1))T∇J(φ(n+1))

∇J(φ(n))T∇J(φ(n))

PR βPR
n+1 =

∇J(φ(n+1))T (∇J(φ(n+1)) −∇J(φ(n)))

∇J(φ(n))T∇J(φ(n))
PR+ βPR+

n+1 = max(βPR
n+1, 0)

FR-PR βFR−PR
n+1 =

{
βPR
n+1 if |βPR

n+1| ≤ βFR
n+1

βFR
n+1 otherwise

Table 1. Choice of the parameter βn+1 in CG methods. From top to bottom: Fletcher-

Reeves (FR), Polak-Ribière (PR), Polak-Ribière with nonnegative βn+1 (PR+), Polak-

Ribière constrained by the FR method (FR-PR).

In order to ensure the global convergence of the FR and FR-PR methods, the

steplength parameter αn in step 1 must comply with the strong Wolfe conditions [42, 25]

J(φ(n) + αnp
(n)) ≤ J(φ(n)) + c1αn∇J(φ(n))Tp(n)

|∇J(φ(n) + αnp
(n))Tp(n)| ≤ c2|∇J(φ(n))Tp(n)|

(32)

where 0 < c1 < c2 <
1
2
. Concerning the PR methods, one can prove convergence if

βn+1 is chosen according to the PR+ rule and αn satisfies both (32) and the following

additional condition [42, 25]

∇J(φ(n))Tp(n) ≤ −c3‖∇J(φ(n))‖2, 0 < c3 ≤ 1. (33)

For a practical implementation of a backtracking method to satisfy (32) see e.g. [25,

Section 3.5], while for the addition of condition (33) see [42, Section 6]. In Section 4, the

CG methods equipped with the FR, FR-PR, PR+ rules for the parameter βn+1, together

with conditions (32) for the linesearch parameter αn, will be denominated FR-SW, FR-

PR-SW and PR+-SW respectively, where SW stands for Strong Wolfe conditions.

Since in the DIC problem the evaluation of the gradient ∇J is computational

demanding and its nonlinearity w.r.t. α requires a new computation for each step of

the backtracking loop, in [11, 13] a heuristic version of the FR and PR methods is used

exploiting a linesearch based on a polynomial approximation method. The resulting

scheme for the choice of αn is detailed in Algorithm 4, even if we recognize that our

routines might differ from those used in [11, 13] due to the lack of several details crucial

for reproducing their practical implementation. As we will see in the next Section, this

linesearch is quite sensitive to the choice of the parameter t. Moreover, since the strong

Wolfe conditions are not imposed, there is no guarantee that the FR or PR methods

endowed with this choice for αn converges, nor that p(n+1) is a descent direction for

all n. In the following, the CG methods equipped with the FR and PR rule, together

with the linesearch described in Algorithm 4, will be indicated as FR-PA and PR-PA

respectively, where PA stands for polynomial approximation.
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Algorithm 4 Linesearch based on polynomial approximation

Let ψ(α) := J(φ(n) + αp(n)) and set t > 0, a = 0, b = t.

Compute ψ(a) and ψ(b).

1. Find a point c ∈ [a, b] such that ψ(a) > ψ(c) < ψ(b) as follows

If ψ(b) < ψ(a)

Set c = 2b and compute ψ(c).

While ψ(c) ≤ ψ(b)

Set a = b, b = c, c = 2c and compute ψ(c).

EndWhile

Else

Set c = b
2

and compute ψ(c).

While ψ(c) ≥ ψ(a)

Set b = c, c = c
2

and compute ψ(c).

EndWhile

EndIf

2. Compute αn as the minimum point of the parabola interpolating the points

(a, ψ(a)), (b, ψ(b)), (c, ψ(c)).

4. Numerical experiments

In this section we test the effectiveness of the algorithms previously described in some

synthetic problems.

4.1. Comparison between LMSD and CG methods

The evaluations of the various optimization methods discussed in Section 3 have been

carried out on two phantom objects (see Figure 3), which have been computed by using

the formula for the phase difference between two waves travelling through two different

media

φs = 2π(n1 − n2)ts, (34)

where n1 and n2 are the refractive indices of the object structure and the surrounding

medium, respectively, and ts is the thickness of the object at pixel s ∈ χ. The first

phantom, denominated “cone” and reported at the top row of Figure 3, is a 64 × 64

phase function representing a truncated cone of radius r = 3.2 µm with n1 = 1.33,

n2 = 1 and maximum value φmax = 1.57 rad attained at the cone vertex. The “cross”

phantom, shown at the bottom row of Figure 3, is another 64 × 64 phase function of

two crossing bars, each one of width 5 µm, measuring 0.114 rad inside the bars and 0

in the background. For both simulations, the DIC microscope parameters were set as

follows:

• shear: 2∆x = 0.6 µm;
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• bias: 2∆θ = π/2 rad;

• numerical aperture of the objective: NA = 0.9.

For each phantom, a dataset consisting of K = 2 polychromatic DIC images acquired

at shear angles τ1 = −π/4 rad and τ2 = π/4 rad was created, as in model (1), by

convolving the true phase function with the accordingly rotated DIC PSFs and then by

corrupting the result with white Gaussian noise at different values of the signal-to-noise

ratio

SNR = 10 log10

(
φ∗

σ

)
(35)

where φ∗ is the mean value of the true object and σ is the standard deviation of noise.

The SNR values chosen in the simulations were 9 dB and 4.5 dB.

As far as the regularization parameter µ and the threshold δ in (10) are concerned,

these have been manually chosen from a fixed range in order to obtain a visually

satisfactory reconstruction. Note that the parameters were first set in the differentiable

case (δ > 0) for the LMSD and the nonlinear CG methods and then the same value of

the parameter µ was used also in the nondifferentiable case (δ = 0) for the ILA method.

The values reported below have been used for each simulation presented in this section.

The resulting values have been µ = 10−2, δ = 10−2 for the cone and µ = 4·10−2, δ = 10−3

for the cross.

Some details regarding the choice of the parameters involved in the optimization

methods of Section 3 are now provided. The linesearch parameters ρ, ω of the LMSD

and ILA methods have been respectively set to 0.5, 10−4. These are the standard choices

for the Armijo parameters, however it is known that the linesearch algorithm is not so

sensible to modifications of these values [31, 43]. The parameter γ in the Armijo–like

rule (26) has been fixed equal to 1, which corresponds to the mildest choice in terms

of decrease of the objective function J . The parameter m in Algorithm 1 is typically

a small value (m = 3, 4, 5), in order to avoid a significant computational cost in the

calculation of the steplengths α
(0)
n ; here we let m = 4. The same choice for m is done

in Algorithm 2, where the values α
(0)
n are constrained in the interval [αmin, αmax] with

αmin = 10−5 and αmax = 102. The dual problem (29) is addressed, at each iteration of

ILA, by means of algorithm FISTA [44] which is stopped by using criterion (31) with

η = 10−6. This value represents a good balance between convergence speed and compu-

tational time per iteration [15]. Concerning the nonlinear CG methods equipped with

the strong Wolfe conditions, we set c1 = 10−4 and c2 = 0.1 in (32) as done in [42] and

we initialize the related backtracking procedure as suggested in [25, p. 59]. Regarding

the CG methods endowed with the polynomial approximation detailed in Algorithm 4,

a restart of the method is performed by setting βn+1 = 0, hence by taking a steepest

descent step, whenever the vector p(n+1) fails to be a descent direction. Finally, the

constant phase object φ(0) = 0 is chosen as initial guess for all methods.
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Figure 3. Data and results for the cone (top row) and cross (bottom row) objects.

From left to right: true object, noisy DIC color image taken at shear angle π

4
rad and

corrupted with white Gaussian noise at SNR = 4.5 dB, and reconstructed phase with

the LMSD method from observations at shear angles equal to −π/4 rad and π/4 rad.

In order to evaluate the performance of the phase reconstruction methods proposed

in Section 3, we will make use of the following error distance

E(φ(n), φ∗) = min
c∈R

‖φ(n) − φ∗ − c1‖

‖φ∗‖
=

‖φ(n) − φ∗ − c̄1‖

‖φ∗‖
(36)

where φ∗ is the phase to be reconstructed and c̄ =
∑
j∈χ

(φ
(n)
j −φ∗

j )

N
. Unlike the usual root

mean squared error, which is recovered by setting c = 0 in (36), the error distance

defined in (36) is invariant with respect to phase shifts, i.e.

E(φ+ c1, φ∗) = E(φ, φ∗), ∀φ ∈ R
N , ∀c ∈ R. (37)

That makes the choice of (36) well-suited for problem (9), whose solution might be re-

covered only up to a real constant.

The methods have been run for the cone and cross phantoms with the parameter

setting outlined in the previous subsection. The iterations of the LMSD and the CG

methods have been arrested when the stopping criterion (19) was met with κ = 10−3,

while the ILA method has been stopped when the error up-to-a-constant between two

successive iterates was lower than a prefixed κ > 0, that is∥∥∥φ(n+1) − φ(n) −
(
φ(n+1) − φ(n)

)
1

∥∥∥
‖φ(n+1)‖

≤ κ, (38)



Models and algorithms for DIC microscopy 21

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time (s)

E
rr

or

 

 

FR−PA
PR−PA
FR−SW
FR−PR−SW

PR+−SW
LMSD
ILA

Figure 4. Error versus computational time plots for the cone (top row) and cross

(bottom row) objects. From left to right: noise-free data, SNR = 9 dB and SNR =

4.5 dB.

where φ(n+1) − φ(n) is the mean value of the difference between the two objects. The

tolerance κ in (38) was set equal to 5 · 10−5 for the cone and 10−4 for the cross.

In Figure 4 we show the reconstruction error provided by the different methods

as a function of the computational time. We start by comparing LMSD with the CG

methods equipped with Algorithm 4 (FR-PA, PR-PA) and the CG methods equipped

with the Strong Wolfe conditions (FR-SW, FR-PR-SW, PR+-SW). From the plots of

Figure 4, it can be drawn that each method is quite stable with respect to the noise level

on the DIC images. However, in terms of time efficiency, LMSD outperforms all the

CG methods in the cone tests, showing a time reduction of nearly 50% to achieve the

smallest error. Furthermore, what emerges by looking at Tables 2 and 3 is that the CG

methods are much more computationally demanding than LMSD. For instance, in the

case of the cone (Table 1), LMSD evaluates the function on average less than 2 times

per iteration. By contrast, the backtracking procedure exploited in the FR, FR-PR and

PR+ methods requires an average of 4−5 evaluations per iteration of both the function

and gradient to satisfy the strong Wolfe conditions, whereas the FR-PA and PR-PA

methods, despite evaluating the gradient only once, need on average 10−12 evaluations

of the function before detecting the three-points-interval described in Algorithm 4. One

could reduce the number of evaluations in FR-PA and PR-PA by properly tuning the

parameter t in Algorithm 4. However, as it is evident from Table 4, these methods

are quite sensitive to the choice of t, as little variations of this parameter might result

in a great increase of the number of restarts and, eventually, in the divergence of the



Models and algorithms for DIC microscopy 22

SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

∞

FR–PA 280 3016 280 14.60 0.89 2.72 %

PR–PA 168 2137 168 10.10 0.89 2.66 %

FR–SW 183 770 770 11.08 0.89 2.73 %

FR-PR–SW 127 514 514 7.41 0.89 2.71 %

PR+–SW 129 504 504 7.32 0.89 2.71 %

LMSD 153 212 153 2.77 0.89 2.60 %

ILA 66 119 66 1.77 0.52 1.76 %

9

FR–PA 306 3245 306 15.79 1.65 2.85 %

PR–PA 188 2393 188 11.41 1.65 2.80 %

FR–SW 194 804 804 11.60 1.65 2.85 %

FR-PR–SW 134 520 520 7.61 1.65 2.84 %

PR+–SW 144 734 734 10.61 1.65 2.84 %

LMSD 149 197 149 2.61 1.65 2.75 %

ILA 60 91 60 1.56 1.29 1.91 %

4.5

FR–PA 347 3696 347 18.08 6.88 3.26 %

PR–PA 146 1858 146 8.84 6.88 3.24 %

FR–SW 204 867 867 12.58 6.88 3.26 %

FR-PR–SW 152 492 492 7.24 6.88 3.26 %

PR+–SW 144 701 701 10.22 6.88 3.26 %

LMSD 163 228 163 2.90 6.88 3.17 %

ILA 61 104 61 1.56 6.80 2.50 %

Table 2. Cone tests. From left to right: number of iterations required to meet

the stopping criteria, number of function and gradient evaluations, execution time,

objective function value and error achieved at the last iteration.

algorithm. In addition, it seems that the optimal value of t strictly depends on the

object to be reconstructed.

4.2. Comparison between LMSD and ILA

We now compare the performances of LMSD and ILA. On one hand, ILA reconstructs

the cross object slightly better than LMSD. Indeed, ILA provides the lowest

reconstruction error in Table 3 for each SNR value and the corresponding phase estimates

have better preserved edges, as clearly depicted in Figure 5, where we consider the

following “up-to-a-constant” residual

Rj =
∣∣φj − φ∗

j − φ− φ∗
∣∣ , ∀j ∈ χ (39)

to measure the quality of the reconstructions provided by the two methods. This result

was expected, since ILA addresses problem (9) with the standard TV functional (δ = 0

in (10)), which is more suited than HS regularization (δ > 0) when the object to be

reconstructed is piecewise-constant. On the other hand, ILA may be computationally
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SNR (dB) Algorithm Iterations # f # g Time (s) Obj fun Error

∞

FR–PA 412 2618 412 14.75 1.01 1.98 %

PR–PA 138 1373 138 6.73 1.01 1.98 %

FR–SW 411 2768 2768 39.27 1.01 1.98 %

FR-PR–SW 109 423 423 6.14 1.01 1.98 %

PR+–SW 116 438 438 6.32 1.01 1.98 %

LMSD 168 231 168 3.09 1.01 2.00 %

ILA 100 176 100 7.18 0.87 1.66 %

9

FR–PA 391 2490 391 13.77 1.96 2.25 %

PR–PA 121 1209 121 5.97 1.96 2.26 %

FR–SW 388 2417 2417 34.18 1.96 2.25 %

FR-PR–SW 106 323 323 4.69 1.96 2.25 %

PR+–SW 109 375 375 5.41 1.96 2.25 %

LMSD 140 190 140 2.52 1.96 2.27 %

ILA 57 106 57 2.60 1.82 1.94 %

4.5

FR–PA 303 2164 303 11.74 8.57 3.63 %

PR–PA 98 997 98 4.97 8.57 3.63 %

FR–SW 299 1705 1705 24.28 8.57 3.63 %

FR-PR–SW 96 300 300 4.41 8.57 3.63 %

PR+–SW 98 326 326 4.74 8.57 3.63 %

LMSD 152 221 152 2.75 8.57 3.64 %

ILA 97 179 97 5.26 8.47 3.46 %

Table 3. Cross tests. From left to right: number of iterations required to meet

the stopping criteria, number of function and gradient evaluations, execution time,

objective function value and error achieved at the last iteration.

Dataset t Iterations # f Time (s) Obj fun Error Restarts

10−4 500 4272 24.57 8.57 3.63 % 8

Cross 10−3 500 2911 19.66 8.57 3.63 % 6

- 5 · 10−3 500 3073 19.63 8.57 3.63 % 1

SNR 10−2 500 5337 28.97 8.57 3.63 % 21

4.5 dB 5 · 10−2 500 2023 15.22 8.59 3.91 % 424

10−1 500 2032 15.44 8.88 5.05 % 365

10−3 500 4788 26.13 6.88 3.27 % 0

Cone 10−2 500 3260 19.84 6.88 3.27 % 0

- 10−1 500 2126 15.86 6.88 3.27 % 3

SNR 2 · 10−1 500 2427 16.78 6.88 3.27 % 0

4.5 dB 2.25 · 10−1 500 1610 13.39 1507.4 130.94 % 41

2.5 · 10−1 500 1713 13.67 2373.4 315.50 % 87

Table 4. Setting the parameter t in the PR-PA algorithm.
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Figure 5. Cross test. The residuals defined in (39) for the reconstructions provided

by LMSD and ILA, respectively, when the acquired images are corrupted with SNR =

9 dB.

more expensive since, unlike LMSD, it requires to iteratively solve the inner subprob-

lem (29) at each outer iteration. Indeed, looking at Table 3 we notice that, although

the number of function evaluations per iteration in LMSD and ILA is quite similar (on

average around 1.4 for LMSD and 1.8 for ILA) and the ILA iterations are stopped way

before the LMSD ones, the computational time in ILA is always higher. For instance,

in the case SNR = 9 dB, the methods require approximately the same time, although

the number of iterations of ILA is more than halved. This fact is explained if we look

at the average number of inner iterations required by ILA to compute the approximate

proximal point: 21.3, 10.11 and 13.43 for SNR = ∞, 9, 4.5 dB respectively. Analogous

conclusions can be drawn by considering the results on the cone object (see Table 2).

In order to deepen the analysis between the differentiable TV approximation and

the original nondifferentiable one, we compared the LMSD and ILA methods in one

further realistic simulation. In particular, we considered the “grid” object in Figure 6,

which is a 1388 × 1040 image emulating the phase function of a multi-area calibration

artifact [45], which measures 1.212 rad inside the black regions and 2.187 rad inside the

white ones. The setup of the two methods is identical to that of the previous tests (with

the exception of the numerical aperture of the objective NA which has been set equal

to 0.8), and the parameters µ (for both models) and δ (for the smooth TV functional)

have been set equal to 2 · 10−1 and 10−1, respectively. Instead of three levels of noise,

here we only considered a SNR equal to 9 dB. In Figure 7 we report the behaviour of

the error (36) as a function of time and the number of inner iterations needed by ILA

to address problem (29)–(31).

The grid dataset confirms the remarks previously done, since ILA takes almost

twice the time than LMSD to provide an estimate of the phase. This is again due to the
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Figure 6. Data and results for the grid object. From left to right: true object, noisy

DIC color image taken at shear angle π

4
rad and corrupted with white Gaussian noise

at SNR = 9 dB, and reconstructed phase with the LMSD method from observations

at shear angles equal to −π/4 rad and π/4 rad.
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Figure 7. Grid test. From left to right: error versus time plots for LMSD and ILA

and number of inner iterations versus number of outer iterations for ILA.

number of inner iterations, which starts to oscillatory increase after the first 20 iterations

(see Figure 7). To conclude, we reckon that the LMSD method is generally preferable

since, unlike ILA, it does not require any inner subproblem to be solved and thus it

is generally less expensive from the computational point of view. However, the ILA

method should be considered as a valid alternative when the object to be reconstructed

is piecewise-constant.

4.3. Influence of color and bias retardation on phase reconstruction

Another analysis that was of our interest was to observe how color information and bias

retardation in the observations affect the behavior of phase reconstruction. We set four

scenarios for comparison: independent monochromatic observations with red, green,

and blue light, and polychromatic observation where all wavelengths are combined. For

each of these scenarios we used the cross object to generate 100 observations at different

realizations of noise, for both SNR = 4.5 dB and SNR = 9 dB, and bias retardation of 0

rad and π/2 rad, at shear angles equal to −π/4 rad and π/4 rad. We tested the LMSD

method to perform the reconstructions; results for SNR = 4.5 dB are shown in Figure

8 and for SNR = 9 dB in Figure 9.
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Figure 8. Average error comparison between monochromatic and polychromatic

reconstructions. SNR = 4.5 dB. Left: bias 0 rad; right: bias π/2 rad.
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Figure 9. Average error comparison between monochromatic and polychromatic

reconstructions. SNR = 9 dB. Left: bias 0 rad; right: bias π/2 rad.

The lines show the average error over the 100 observations. It is noticed that for

0 rad bias retardation, the reconstruction for polychromatic observations behave better

than for the monochromatic ones, even though the amount of error is not promising

of a good reconstruction. For π/2 rad bias retardation the estimation the algorithm

stops before the maximum number of iterations (500) is reached. In this case, for

both levels of noise, the performance of the reconstruction with polychromatic light

is quite comparable with monochromatic light. Another interesting finding about the

convergence for monochromatic light, is that for all cases, it happens in the order red-

green-blue; this is due to the fact that the amplitude PSF for blue light has the bigger

frequency support, thus provides more information for reconstruction.
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5. Conclusions and future work

In this paper we provided both theoretical and practical contributions to the inverse

problem of phase estimation from polychromatic DIC images. First of all, we studied

the analytical properties of the data fidelity function arising from a maximum likelihood

approach, showing its periodicity, shift-invariancy and analyticity. Secondly, we ana-

lyzed the minimization problem of the functional given by the sum of the discrepancy

term and a (possibly smoothed version of) total variation regularizer, proving the ex-

istence of minimum points. Furthermore, we revisited the state-of-the-art optimization

method for phase estimation in DIC microscopy providing implementation details, show-

ing possible pitfalls and comparing its performances with standard conjugate gradient

algorithms. Finally, we proposed two recent optimization strategies for the smooth and

nonsmooth cases, showing in simulated datasets that they provide accurate reconstruc-

tions of the phase in a lower computational time.

Future work will concern the application of the proposed strategies to real

acquisitions and the reformulation of the minimization problem in terms of the

specimen’s transmission function e−iφ. This would lead to a standard regularized

least-squares problem restricted to a nonconvex feasible set, which would require a

generalization of the (VM)ILA approach able to account for nonconvex projections and

to exploit the steplength selection rule proposed by Fletcher [26] in the presence of

constraints [46, 47].
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aux Dérivées Partielles, pages 87–89. Éditions du Centre National de la Recherche Scientifique,

Paris, 1963.

[33] K. Kurdyka. On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier,

48(3):769–783, 1998.

[34] H. Attouch, J. Bolte, and B. F. Svaiter. Convergence of descent methods for semi-algebraic and

tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel

methods. Math. Program., 137(1–2):91–129, February 2013.

[35] P. Frankel, G. Garrigos, and J. Peypouquet. Splitting methods with variable metric for Kurdyka–

 Lojasiewicz functions and general convergence rates. J. Optim. Theory Appl., 165(3):874–900,

June 2015.

[36] S. Bonettini, I. Loris, F. Porta, M. Prato, and S. Rebegoldi. On the convergence of variable metric

line-search based proximal-gradient method under the Kurdyka–  Lojasiewicz inequality. ArXiv

e-prints, page 1605.03791, 2016.

[37] Y. Xu and W. Yin. A block coordinate descent method for regularized multiconvex optimization

with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci.,

6(3):1758–1789, 2013.

[38] H. Lantéri, M. Roche, and C. Aime. Penalized maximum likelihood image restoration with

positivity constraints: multiplicative algorithms. Inverse Probl., 18(5):1397–1419, October 2002.

[39] S. Bonettini, G. Landi, E. Loli Piccolomini, and L. Zanni. Scaling techniques for gradient

projection-type methods in astronomical image deblurring. Int. J. Comput. Math., 90(1):9–

29, January 2013.

[40] S. Bonettini, A. Chiuso, and M. Prato. A scaled gradient projection method for Bayesian learning

in dynamical systems. SIAM J. Sci. Comput., 37(3):A1297–A1318, 2015.

[41] R. Fletcher. Practical methods of optimization. John Wiley and Sons, New York, 2nd edition,

2000.

[42] J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods for

optimization. SIAM J. Optim., 2(1):21–42, 1992.

[43] M. Prato, R. Cavicchioli, L. Zanni, P. Boccacci, and M. Bertero. Efficient deconvolution methods

for astronomical imaging: algorithms and IDL-GPU codes. Astron. Astrophys., 539:A133, March

2012.

[44] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse

problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

[45] Bruker AFM Probes. Product description APCS-0099. http://www.brukerafmprobes.com/

a-3472-apcs-0099.aspx, July 2016.

[46] F. Porta, R. Zanella, G. Zanghirati, and L. Zanni. Limited-memory scaled gradient projection

methods for real-time image deconvolution in microscopy. Commun. Nonlinear Sci. Numer.

Simul., 21(1–3):112–127, April 2015.

[47] F. Porta, M. Prato, and L. Zanni. A new steplength selection for scaled gradient methods with

application to image deblurring. J. Sci. Comput., 65(3):895–919, December 2015.


