
HAL Id: hal-01426632
https://inria.hal.science/hal-01426632

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bounding Deadline Misses in Weakly-Hard Real-Time
Systems with Task Dependencies

Zain A. H. Hammadeh, Rolf Ernst, Sophie Quinton, Rafik Henia, Laurent
Rioux

To cite this version:
Zain A. H. Hammadeh, Rolf Ernst, Sophie Quinton, Rafik Henia, Laurent Rioux. Bounding Deadline
Misses in Weakly-Hard Real-Time Systems with Task Dependencies. Design, Automation & Test in
Europe Conference & Exhibition (DATE 2017), Mar 2017, Lausanne, Switzerland. �hal-01426632�

https://inria.hal.science/hal-01426632
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Bounding Deadline Misses in Weakly-Hard
Real-Time Systems with Task Dependencies

Zain A. H. Hammadeh, Rolf Ernst
TU Braunschweig, Germany

{hammadeh, ernst}@ida.ing.tu-bs.de

Sophie Quinton
Inria Grenoble, France

sophie.quinton@inria.fr

Rafik Henia, Laurent Rioux
Thales Research & Technology, France

{rafik.henia, laurent.rioux}@thalesgroup.com

Abstract—Real-time systems with functional dependencies be-
tween tasks often require end-to-end (as opposed to task-level)
guarantees. For many of these systems, it is even possible to
accept the possibility of longer end-to-end delays if one can bound
their frequency. Such systems are called weakly-hard.

In this paper we provide end-to-end deadline miss models
for systems with task chains using Typical Worst-Case Analysis
(TWCA). This bounds the number of potential deadline misses
in a given sequence of activations of a task chain. To achieve this
we exploit task chain properties which arise from the priority
assignment of tasks in static-priority preemptive systems. This
work is motivated by and validated on a realistic case study
inspired by industrial practice and derived synthetic test cases.

I. INTRODUCTION AND RELATED WORK

Timing performance analysis of real-time systems with
concurrently executing task chains is notoriously difficult
due to the complexity of timing interference between tasks.
This is all the more true when task chains are derived from
communicating threads [9]. In this paper, we are interested in
the analysis of end-to-end guarantees for weakly-hard systems
with task dependencies, i.e., systems for which it is possible
to accept the possibility of end-to-end deadline misses if one
can bound their frequency [1].

We present a method to compute end-to-end deadline miss
models for static-priority preemptive systems with task chains.
This bounds the number of potential deadline misses in a given
sequence of executions of a task chain. Our approach is an
extension of Typical Worst-Case Analysis (TWCA) [8], [10],
for which we exploit task chain properties derived from the
priority assignment of tasks in a way similar to [9].

To the best of our knowledge, there is no state-of-the-art
method for the computation of weakly-hard guarantees in real-
time systems with task dependencies.

Extensive research has focused on the schedulability anal-
ysis of hard real-time systems with task dependencies. This
includes approaches focusing on offset analysis [2] but also
more general precedence models [3]. In [9], an upper bound
on the end-to-end latency of task chains in real-time systems
is presented, on which we will base our work in this paper.

In contrast, there is little in the literature regarding the
analysis of weakly-hard systems. Initial attempts [4], [1] can
only handle periodic tasks (or sporadic tasks but using a coarse

This work has been partially funded by the German Research Foundation
(DFG) as part of the project “TypicalCPA” under the contract number TWCA
ER168/30-1.

interarrival time model) and no task dependencies. Recent
work has focused on providing guarantees for systems with
more complex activation patterns [8], [5], [10] and [6], mostly
relying on the so-called TWCA approach. None of these,
however, can handle task dependencies.

The paper is organized as follows: Section II introduces
our system model and formulates the problem that we address.
Then, Section III explains the basic principles of TWCA. Sec-
tion IV proposes an improved version of the worst-case latency
analysis of [9] which we use in V for the core contribution of
our paper. Finally, Section VI shows our experimental results
while Section VII proposes some conclusions.

II. SYSTEM MODEL

We consider uniprocessor systems consisting of a finite set
of m disjoint task chains scheduled according to the Static
Priority Preemptive (SPP) scheduling policy. A task chain is a
sequence of distinct tasks which activate each other. Tasks in a
system are required to belong to exactly one chain1. Formally,
a task chain σa, a ∈ [1,m], is defined by a finite sequence
(τ1a , τ

2
a , . . . , τ

n
a ) of distinct tasks for some n ∈ N+, meaning

that the output of τ ia is connected to the input of τ i+1
a for

i ∈ [1, n − 1]. Every task chain σa is assigned an activation
model (see definition below) defining the frequency of arrival
at the input of τ1a ; and a relative deadline Da.

The tasks in σa are denoted τ ia, τ ja etc. Task τ ia denotes
the i-th task in task chain σa. The number of tasks in σa is
denoted na. The first task in σa is called the header task of
σa and the last one is called its tail task.

Figure 1 shows an example system with two task chains:
σa = (τ1a , τ

2
a , τ

3
a , τ

4
a , τ

5
a , τ

6
a ), σb = (τ1b , τ

2
b , τ

3
b ).

We denote C the set of task chains. This set is partitioned
into SC and AC, which contain respectively the synchronous
and asynchronous chains. Synchronous and asynchronous
chains are specified in the same way but behave differently
at execution: In a synchronous chain σa an incoming activa-
tion cannot be processed until the previous instances of σa
have finished [9]. In an asynchronous chain σb an incoming
activation is processed independently from previous instances.

The activation models of task chains are defined using
arrival curves as in e.g. [7], i.e., functions η−a , η

+
a : N → N

such that for any time window ∆T , η+a (∆T ) defines the

1To analyze systems that are not only made of disjoint task chains but also
contain forks and joins (but no cycle), one can additionally define paths, i.e.
sequences of distinct task chains. This is out of the scope of this paper.



SPP scheduled processor

τ1a/7 τ2a/9 τ3a/5 τ4a/2 τ5a/4 τ6a/1

task chain σa

τ1b /8 τ2b /3 τ3b /6

task chain σb

Figure 1. A system task structure with chains and task priorities

maximum number of activations of chain σa that might occur
within ∆T , and η−a (∆T ) the minimum (in this paper we only
use η+a ). We will also need the pseudo-inverse representation
of arrival curves, namely δ−b , δ

+
b : N → N, such that

δ−b (k) (respectively δ+b (k)) defines the minimum (respectively
maximum) time that might pass between the first and the last
activation in any sequence of k consecutive activations of σb.

A task τ ia is defined by: (1) an arbitrary priority πia and (2) an
upper bound on its execution time Cia (we take 0 as a lower
bound). The notation πia > πjb is used to denote that τ ia has
higher priority than τ jb . As a result, τ ia may preempt τ jb when
it arrives. We also use the notation πia > π

j
b .

The timing behavior of a task τ ia is an infinite sequence of
instances defined by: an arrival time, possible preemption
delays and a finish time. Preemption delays are due to the
task being blocked by higher priority tasks from other task
chains, but also by higher priority tasks from the same chain
if it is asynchronous. In contrast, tasks in a synchronous chain
cannot be preempted by other tasks of the same chain, even if
they have higher priority. Task τ ia finishes latest after having
been scheduled for Cia units of time.

The timing behavior of a task chain σa is an infinite
sequence of task chain instances, where a task chain instance
is made of one instance of each task in the chain such that
the finish time of task τ ia corresponds to the arrival time of
task τ i+1

a (assuming τ ia is not the last task in the chain). The
arrival of task τ1a follows the activation model of σa.

The latency of an instance of a task chain σa is the time
interval between the activation of the header task of σa and the
finish time of the tail task of σa. The worst-case latency of σa
is the maximum latency over all instances of σa. An instance
of σb is said to miss its deadline if its latency exceeds the rela-
tive deadline of σb. This can happen in weakly-hard real-time
systems. We consider a simple, deadline-agnostic scheduler
that does not anticipate, monitor or react to deadline misses
but instead runs every instance to completion, independent of
whether a deadline miss has occurred or not.

As usual in TWCA, we suppose that deadline misses are
caused by rarely activated sporadic chains, e.g., interrupt ser-
vice routines or recovery chains. These chains cause transient
overload, increasing chain latencies which may cause deadline
misses, hence their name: overload chains. We assume that the
set of overload chains is identified and denoted Cover.

Definition 1. A deadline miss model for a task chain σb is
a function dmmb : N+ → N such that dmmb(k) bounds

the maximum number of deadline misses in a window of k
consecutive executions of σb.

In this paper, we address the problem of computing DMMs
of task chains in systems which contain overload task chains.

III. PRINCIPLE OF TYPICAL WORST-CASE ANALYSIS

Typical Worst-Case Analysis (TWCA) is a technique to
compute deadline miss models which bound the number of
deadline misses in a sequence of activations of a given task.
TWCA applies to systems of independent tasks which may
occasionally miss deadlines due to overload tasks. We recall
here the principle of TWCA and refer to [10] for more detail.

Formally, a Deadline Miss Model (DMM) for a task τi is
a function dmmi : N+ → N such that dmmi(k) bounds the
maximum number of deadline misses that τi may experience
out of a sequence of k consecutive executions. The DMM
computation is based on the analysis of unschedulable com-
binations, i.e., sets of overload tasks which, when activated
together, may lead to a deadline miss. More formally, a com-
bination, denoted c̄, is a set of overload tasks. c̄ is schedulable
(with respect to τi) if an instance of τi is guaranteed to meet
its deadline as long as only tasks in c̄ experience overload
activations in its level-i busy window, where a level-i busy
window is a maximal time interval during which the processor
has activations of τi or higher priority tasks pending.

Let us consider a sequence of k activations of a given task
τi and focus on the computation of dmmi(k). Note that the
sequence may span multiple busy windows. The activation
model of the overload tasks bounds the number of activations
of these tasks (also called overload activations) which may
arrive during the considered sequence. Assuming we have all
unschedulable combinations at hand, the problem is then to
find how to assign overload activations to busy windows so as
to pack as many unschedulable combinations as possible into
the level-i busy windows under consideration. Therefore the
problem becomes a multi-dimensional knapsack problem.
Example. Figure 2 illustrates two possible packings of overload
activations into 5 busy windows. Every row corresponds to
one overload task while every column corresponds to one busy
window of τi. The number of activations per line is constrained
by the activation models of the overload tasks. The number
of deadline misses associated to a given packing depends on
how many columns are unschedulable combinations. Here, any
combination containing more than one task is unschedulable.

τ1

τ2

τ3

X X X X X Busy windows

case 1 case 2

Figure 2. Packing combinations into busy windows (X = deadline miss).

So far, TWCA can only handle independent tasks. In the
rest of this paper we show how the state-of-the-art approach
can be generalized to systems with task chains.



IV. LATENCY ANALYSIS REVISITED

Let us first revisit the worst-case latency analysis of systems
with task chains [9]. Consider two chains σa and σb. To
quantify the interference of σa on σb we distinguish two cases:

1) some tasks in σa have lower priority than all tasks in
σb; in that case, σa will be blocked by σb every time it
reaches one of those tasks.

2) In any other case, σa is said to arbitrarily interfere
with σb. This means that every time σa is triggered,
we suppose that it may entirely execute before σb can
be scheduled again. As we will see later, there is no
guarantee however that this will happen.

Definition 2. A chain σa is said to be deferred by chain σb if

∃i ∈ [1, na], πia < min{πjb}
nb
j=1

Otherwise it is arbitrarily interfering with σb.

The set of chains deferred by σb is denoted DC(b) and the
set of chains arbitrarily interfering with σb is denoted IC(b).

For a chain σa which is arbitrarily interfering with σb,
interference on σb can be directly derived from the number
of activations of σa. If σa is, however, deferred by σb, then
interference is defined based on the concept of segment of σa
w.r.t. σb. Intuitively, a segment of σa w.r.t. σb represents a
subchain of σa that may interfere with σb.

Definition 3. A segment of σa w.r.t σb is a maximal subchain
(τ ia, τ

i+1
a , . . . , τ i+ka ) of σa, i ∈ [1, na] and k ∈ [0, na−1], with

the convention2 that task identifiers should be read modulo na
and such that

∀l ∈ [0, k], πi+la > min{πjb}
nb
j=1

Note that we (conservatively) assume that a segment may
span over two instances of σb. Sba denotes all such segments.

Example. Chain σa in Figure 1 has 2 segments w.r.t. chain σb:
(τ1a , τ

2
a , τ

3
a ) and (τ5a ). Note that τ4a and τ6a have lower priority

than τ2b and are therefore not part of any segment.

Definition 4. The critical segment of a chain σa deferred by
σb, denoted scrit

a,b , is the segment (τ ia, τ
i+1
a , . . . , τ i+ka ) of σa

w.r.t. σb that maximizes computation time, i.e.,
∑

06l6k C
i+l
a .

Definition 5. Consider an asynchronous chain σa. We denote:
• sheader

a the subchain (τ1a , τ
2
a , . . . , τ

i
a) where i ∈ [1, na−1]

is the smallest integer such that τ i+1
a has the lowest priority

in σa. If τ1a has the lowest priority then sheader
a is empty.

• if σa is deferred by σb then we denote sheader
a,b the header

segment of σa w.r.t. σb defined as the subchain (τ1a , τ
2
a , . . . , τ

i
a)

where i ∈ [1, na − 1] is the smallest integer such that τ i+1
a

has lower priority than all tasks in σb.

We now revisit the worst-case latency analysis introduced
in [9] and propose a description that is similar to worst-case
response-time analysis as explained in [8].

2That is, if i+ l > na then it should be read (i+ l) modna.

Definition 6. A σb-busy-window is a maximal time interval
during which (at least) one instance of σb is pending, i.e., it
has been activated but has not finished yet.

Definition 7. The q-event busy time of a chain σb is the
maximum time it may take to process q activations of σb within
a σb-busy-window starting with the first of these q activations.

Theorem 1. The q-event busy time of σb is bounded by
Bb(q) = q × Cb

+ max(0, η+b (Bb(q))− q)× Csheader
b

if σb ∈ AC

+
∑

σa∈IC(b)

η+a (Bb(q))× Ca

+
∑

σa∈AC∩DC(b)

η+a (Bb(q))× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)

Cscrit
a,b

(1)

where Cx denotes the sum of the execution time bounds of the
tasks in segment or chain x.

Proof. The above equation is made of five components:

1) The first line corresponds to the time needed to actually
perform the q computations;

2) The second component accounts for the interference of
additional activations of σb which may arrive while the q
activations under consideration are being processed. Note
that these instances will at most interfere until they have
to execute the lowest priority task in σb. This component
only applies to asynchronous chains;

3) The third element represents the interference from arbi-
trarily interfering chains, synchronous or asynchronous;

4) The fourth line deals with interference from deferred,
asynchronous chains. Instances can arbitrarily queue up
which allows the header segment to interfere arbitrarily.
For all other segments at most one instance can be
backlogged because tasks between segments have lower
priority than tasks within segments. Each such instance
can interfere for at most one segment (see below).

5) The fifth component in the equation accounts for the
interference from deferred, synchronous chains. Here
only one instance per chain may interfere for at most
one segment (see below). �

The correctness of the last two components in Equation (1)
relies on the following property.

Lemma 1. Tasks of a chain σa that are in different segments
cannot execute instances corresponding to the same chain
instance in the same σb-busy-window.

Proof. Segments are maximal sequences of tasks with a
priority higher than or equal to the lowest priority task, say
τ ib , in σb. This means that between two segments of σa there
is at least one task, say τ ja , that has lower priority than τ ib . In
order to execute these two segments for the same instance of
σa, one has to execute τ ja . Since τ ja has lower priority than all



Pr
io

rit
y

τ2a

τ1b

τ1a

τ3b

τ3a

τ5a

τ2b

Figure 3. Number of impacted busy windows of chain b.

the tasks in σb, this can only happen after σb closes its current
σb-busy-window. �

Theorem 2. The maximum number of activations of σb in a
σb-busy-window is

Kb = min{q > 1 | Bb(q) 6 δ−b (q + 1)}

The latency of a task chain σb is bounded by

WCLb = max
q∈[1,Kb]

{Bb(q)− δ−b (q)}

Proof. This proof proceeds exactly as the proofs in [8]. �

The main objective of TWCA is to bound the number of
deadlines misses of a task chain σb which may be caused by
an activation at the input of an overload task chain σa. For
that, we need to know over how many σb-busy-windows a
instance of σa may span.

We already know that, in a chain σa, the execution of tasks
corresponding to the same instance of σa cannot take place
in the same σb-busy-window if those tasks are in different
segments. This implies that an instance of σa spans over at
least as many σb-busy-windows as there are segments of σa
w.r.t. σb.

Note that there is no guarantee that a segment of σa will
be executed within one σb-busy-window. As an example, in
Figure 3 the execution of segment (τ1a , τ

2
a , τ

3
a ) spans over two

σb-busy-windows. We therefore introduce the notion of active
segment, which applies to subsegments which are guaranteed
to be executed in the same σb-busy-window.

Definition 8. An active segment of σa w.r.t σb is a subchain3

of a segment (τ ia, τ
i+1
a , . . . , τ i+ka ) of σa where i ∈ [1, na] and

k ∈ [0, na − i] such that
∀l ∈ [1, k], πi+la > πtail

b

where τ tail
b denotes the tail task of σb.

Example. In Figure 1, chain σa has three active segments:
(τ1a , τ

2
a ), (τ3a ), (τ5a ).

Lemma 2. The execution of an active segment of σa w.r.t. σb
cannot span over more than one σb-busy-window.

3Here, i+ l is always smaller than or equal to na.

Proof. Once the execution of an active segment of σa w.r.t. σb
has started, τ tail

b will not be able to execute because the active
segment is blocking it or a task preceding it, and therefore
the current σb-busy-window cannot be closed, until the whole
segment has finished executing.

�

This lemma is illustrated in Figure 3, where every active
segment of chain σa executes within one σb-busy-window.

Note that an active segment is part of a segment in the sense
of Definition 3. As a result, we easily conclude from Lemma 1
and 2 that two active segments of chain σa may be executed
within one σb-busy-window if and only if they are part of the
same segment of σa.

V. TWCA FOR TASK CHAINS

We now have all the ingredients needed to show how we
extend TWCA to handle task chains. We follow here the
same approach as the one for systems with independent tasks
explained in Section III. For the rest of the section we suppose
given a chain σb and k > 1 and focus on the computation of
dmmb(k), that is, a bound on the number of deadlines that σb
can miss out of a k-sequence, i.e., k consecutive activations.
Similar to [10], we assume that there is at most one activation
of an overload chain σa in a σb-busy-window. As a result,
we can without loss of generality consider our overload task
chains as synchronous.

A. Combinations for TWCA of task chains

For the case where tasks are independent, a combination
is defined as a set of overload tasks. The DMM computation
based on this definition heavily relies on the fact that one
overload activation impacts exactly one busy window. In the
context of task chains, we have seen in the previous sections
that one instance of a task chain σa may span over several
σb-busy-windows. As a result, the impact of one overload
activation is not here limited to one σb-busy-window. We have
however also shown that the execution an active segment of
σa is restricted to a single σb-busy-window. Hence our choice
to define combinations based on active segments rather than
tasks or task chains.

Definition 9. A combination c̄ is a set of active segments w.r.t.
σb such that if two active segments of the same chain σa are
in c̄ then they are part of the same segment of σa w.r.t. σb.

Note that our definition excludes combinations which cannot
execute within one σb-busy-window based on our definition
of segment.

Example. There are four possible combinations
of the active segments of chain σa in Figure 1:
{(τ1a , τ2a )}, {(τ3a )}, {(τ5a )}, {(τ1a , τ2a ), (τ3a )}.

Definition 10. A combination c̄ is schedulable (w.r.t. σb) if σb
is guaranteed not to miss any deadline in a σb-busy-window
in which only the active segments in c̄ execute (in addition to
non-overload chains). Otherwise c̄ is said to be unschedulable.



B. An ILP formulation for the DMM

Having clarified the notion of combination that we use, we
can now state our main theorem, similar to [10].

Theorem 3. Let us define dmmb(k) as

max
{
Nb

∑
c̄∈U

xc̄ | ∀σa ∈ Cover,∀s ∈ Sa,
∑

{c̄∈U | s∈c̄}

xc̄ 6 Ωab

}
(2)

where
• Nb is the maximum number of deadlines that σb can miss

in one busy window;
• U is the set of unschedulable combinations;
• xc̄ is the variable constraining the number of busy win-

dows that could contain one activation of the k-sequence
and suffer from an overload corresponding to c̄ ∈ U;

• Sa denotes the set of active segments of σa;
• Ωab is the maximum number of activations of σa which

could impact the considered k activations of σa.
Then dmmb(k) is a DMM for σb.

The formal definition of Nb and Ωab is given below. Because
U can be too large to be statically constructed, Section V-C
discusses an efficient criterion to determine whether a combi-
nation is in U . The xc̄ are the variables of our ILP problem.
Proof. Assume that we have Ωab for all chains σa, i.e. the
maximum number of activations of σa which could impact
the k-sequence. In the worst case, each active segment of σa
also impacts σb Ωab times. As in Section III, we here also face a
multi-dimensional knapsack problem where items correspond
to unschedulable combinations and capacities to Ωab for every
line s associated with an active segment of overload chain σa.
So considering that xc̄ stands for the number of times that
a combination c̄ is used in the packing under consideration,
we want to find the packing that maximizes the number of
deadline misses of σb — which is equal to the number of
unschedulable combinations used multiplied by the maximum
number of deadline misses due to each combination. This
packing is constrained by the fact that active segments can-
not be used in more combinations than is allowed by their
corresponding Ωab . �

Let us now formally define Nb and Ωab .

Lemma 3.

Nb = #{q ∈ [1,Kb] | Bb(q)− δ−b (q) > Db}

Proof. The proof proceeds exactly like that of Theorem 2.�

Lemma 4. The maximum number Ωab of activations of σa
which could impact the considered k activations of σa is

Ωab = η+a (δ+b (k) + WCLb) + 1

Proof. Clearly, activations of chain σa which occur after the
first instance of chain σb in the k-sequence is activated and
before the last activation in the k-sequence finishes may have
an impact on the latencies in the k-sequence. There are at most
η+a (δ+b (k) + WCLb) such activations. In contrast, an instance

of σa which arrives after the last instance of chain σb in the k-
sequence has finished does not impact the k-sequence. Finally,
we have assumed that there is at most one activation of σa in
a σb-busy-window so that at most one activation of σa before
the k-sequence can impact it. �

C. Criterion of schedulability

As already mentioned, U can be too large to be statically
constructed. We present here an efficient criterion to determine
whether a combination c̄ is in U or not. Let us reorganize
Equation 1 for the multiple busy-time computation to show
explicitly the contribution of the overload chains of a combi-
nation in the multiple busy time (and the latency) of σb.
Bc̄
b (q) = q × Cb

+ max(0, η+b (Bc̄
b (q))− q)× Csheader

b
if σb ∈ AC

+
∑

σa∈IC(b)\Cover

η+a (Bc̄
b (q))× Ca

+
∑

σa∈AC∩DC(b)

η+a (Bb(q))× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)\Cover

Csab

+
∑

σa∈Cover

∑
s∈Sa

Cs × rc̄
s

(3)
where rc̄

s is a Boolean which holds exactly when s ∈ c̄.
A combination c̄ is schedulable if Bc̄

b (q)− δ−b (q) 6 Db for
all q ∈ [1,Kb]. Now, let us define Lb(q) as follows.

Lb(q) = q × Cb
+ max(0, η+b (δ−b (q) +Db)− q)× Csheader

b
if σb ∈ AC

+
∑

σa∈IC(b)\Cover

η+a (δ−b (q) +Db)× Ca

+
∑

σa∈AC∩DC(b)

η+a (δ−b (q) +Db)× Csheader
a,b

+
∑
s∈Sb

a

Cs

+
∑

σa∈SC∩DC(b)\Cover

Csab

(4)
Then we now have a much simpler sufficient condition for

schedulability: c̄ is schedulable if

∀q ∈ [1,Kb], Lb(q)+
∑

σa∈Cover

∑
s∈Sa

Cs×rc̄
s 6 δ

−
b (q)+Db (5)

We have now shown how we can reuse the ILP solution
of [10] for systems with task chains with limited changes.

VI. EXPERIMENTAL RESULTS

We have experimented with a case study directly derived
from industrial practice at Thales Research & Technology.
The system is a single-core processor scheduled according to
SPP. Figure 4 shows the specified task set and the real-time
attributes of each task. In the following experiments we focus
on providing DMMs for σc and σd.



R1 : SPP

σd [200:200]

τ1d [11:38]

τ2d [10:6]

τ3d [9:27]

τ4d [5:6]

τ5d [2:38]

σc[200:200]

τ1c [8:4]

τ2c [7:6]

τ3c [1:41]

σb[600]

τ1b [13:10]

τ2b [12:10]

τ3b [6:10]

σa[700]

τ1a [4:10]

τ2a [3:10]

Figure 4. Model of our case study. We use the following notations: task
chains are specified as σ[δ−(2) : D] and tasks with τ [π : C]. Chains σc and
σd are periodically activated while σa and σb are sporadic, overload chains.

Experiment 1. We first compute the worst-case latency WCL
of task chains σc and σd as described in Section IV. The
analysis results show that the system is not schedulable as σc
can in the worst-case miss its deadline, see Table I.

task chain WCL D
σc 331 200
σd 175 200

Table I
WCL OF TASK CHAINS σc AND σd

A second analysis, in which all overload chains are ab-
stracted away, reveals that the system is schedulable and σc
meets its deadline if neither σa nor σb are activated. We thus
perform TWCA as presented in this paper. The computed
DMM of σc is shown in Table II — σd is schedulable and
therefore does not need a DMM.

task chain DMM
σc dmmc(3) = 3, dmmc(76) = 4, dmmc(250) = 5

Table II
dmm(k) FOR TASK CHAIN σc

Let us provide additional details resulting from this DMM
computation. Both chains σa and σb arbitrarily interfere with
σc because neither has a task with a priority lower than 1
which is the lowest priority in σc. As a result σa and σb have
only one segment, respectively (τ1a , τ

2
a ) and (τ1b , τ

2
b , τ

2
b ). These

two segments are also active segments because the priority of
the tail task of chain σc is lower than all priorities in these
segments (see figure 4). Therefore no constraints on combining
active segments are needed. Our set of combinations thus
has three elements: c̄1 = {(τ1a , τ2a )}, c̄2 = {(τ1b , τ2b , τ3b )},
and c̄3 = {(τ1a , τ2a ), (τ1b , τ

2
b , τ

3
b )}. Based on the schedulability

criterion we introduced in the previous section we conclude
that c̄3 is the only unschedulable combination, so in this case
the TWCA is fairly simple.

We now want to generalize the results obtained on our
industrial case study, while preserving practical relevance. For
that purpose, we arbitrarily modify the priority assignment so
as to generate random systems with different scenarios.
Experiment 2. We arbitrarily assign priorities to show the
impact of priority assignments on the schedulability and the
deadline miss models. In this experiment we randomly choose
1000 assignments to test our analysis intensively. Figure 5
shows dmmc(10) and dmmd(10). Notice first that out of

0 3 4 6 8 10
0

200

400

600

dmmc(10)

D
up

lic
at

io
n

σc

0 3 4 6 8 10
0

200

400

600

dmmd(10)

D
up

lic
at

io
n

σd

Figure 5. dmmc(10) and dmmd(10)

the 1000 assignments generated, chain σc is schedulable
(misses no deadline) 633 times. More interestingly, chain σd
is schedulable only 307 times out of 1000. TWCA in that case
is very useful as for more than 500 of the remaining systems
it can guarantee that no more than 3 out 10 deadlines can be
missed. Note that we have repeated our experiment 30 times
and observed similar results.

VII. CONCLUSION

In this paper we present the first method for comput-
ing end-to-end deadline miss models for systems with task
dependencies, using Typical Worst-Case Analysis (TWCA).
This bounds the number of potential deadline misses in a
given sequence of activations of a task chain. Our approach
addresses uniprocessor systems with Static Priority Preemptive
scheduling. We show how state-of-the-art TWCA can be
extended using recent results in the analysis of hard real-
time systems with task dependencies. Specifically, we show
how we can formulate our problem as a knapsack problem.
Our approach is validated on a realistic case study inspired by
industrial practice and synthetic variants of it.

This paper is an important step towards using TWCA for
the practical design of distributed embedded systems.

REFERENCES

[1] G. Bernat, A. Burns, and A. Llamosı́. Weakly hard real-time systems.
IEEE Trans. Computers, 50(4):308–321, 2001.

[2] J. C. P. Gutiérrez and M. G. Harbour. Schedulability analysis for tasks
with static and dynamic offsets. In Proceedings of RTSS’19, pages 26–
37, 1998.

[3] J. C. P. Gutiérrez and M. G. Harbour. Exploiting precedence relations
in the schedulability analysis of distributed real-time systems. In
Proceedings of RTSS’99, pages 328–339, 1999.

[4] M. Hamdaoui and P. Ramanathan. A dynamic priority assignement tech-
nique for streams with (m, k)-firm deadlines. IEEE Trans. Computers,
44(12):1443–1451, 1995.

[5] Z. A. H. Hammadeh, S. Quinton, and R. Ernst. Extending typical
worst-case analysis using response-time dependencies to bound deadline
misses. In Proceedings of EMSOFT’14, pages 10:1–10:10, 2014.

[6] P. Kumar and L. Thiele. Quantifying the effect of rare timing events
with settling-time and overshoot. In Proceedings of RTSS’33, pages
149–160, 2012.

[7] M. Moy and K. Altisen. Arrival curves for real-time calculus: The
causality problem and its solutions. In Proceedings of TACAS’10, pages
358–372, 2010.

[8] S. Quinton, M. Hanke, and R. Ernst. Formal analysis of sporadic
overload in real-time systems. In Proceedings of DATE’12, pages 515–
520. IEEE, 2012.

[9] J. Schlatow and R. Ernst. Response-time analysis for task chains in
communicating threads. In Proceedings of RTAS’16, 2016.

[10] W. Xu, Z. A. H. Hammadeh, A. Kröller, S. Quinton, and R. Ernst.
Improved deadline miss models for real-time systems using typical
worst-case analysis. In Proceedings of ECRTS’15, pages 247–256, 2015.


