
HAL Id: hal-01426658
https://inria.hal.science/hal-01426658

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Quantifying the Flexibility of Real-Time Systems
Rafik Henia, Alain Girault, Christophe Prévot, Sophie Quinton, Laurent

Rioux

To cite this version:
Rafik Henia, Alain Girault, Christophe Prévot, Sophie Quinton, Laurent Rioux. Quantifying the
Flexibility of Real-Time Systems. 10th Junior Researcher Workshop on Real-Time Computing , Oct
2016, Brest, France. �hal-01426658�

https://inria.hal.science/hal-01426658
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Quantifying the Flexibility of Real-Time Systems
Rafik Henia1, Alain Girault2, Christophe Prévot1,2, Sophie Quinton2, Laurent Rioux1

1 Thales Research & Technology
2 Inria Grenoble Rhône-Alpes

1. INTRODUCTION
The life cycle of many safety or mission critical real-time

systems, such as avionic systems, satellites or software de-
fined radios, is superior to 10 years whereas the supporting
ICT technologies have a much faster evolution rate. This
mismatch between system life cycle on one side and software
life cycle on the other side is a challenge for performance
engineers. It is therefore essential for commercial offers to
allow technology evolutions and upgrades of the architecture
and functions after the initial system deployment. Besides,
this must be done while preserving the satisfaction of timing
performance requirements over the entire system lifetime.

Our objective is to develop novel techniques to quantify
the ability of a real-time system to cope with future soft-
ware evolutions, while remaining schedulable. We propose
to define the flexibility of a system as its ability to schedule
a new software function and show how this concept can be
used to anticipate at design time schedulability bottlenecks
that may prove problematic, after deployment, for system
evolution. In this paper we focus on an evolution scenario
where a single task is added to an existing system running on
a single-core processor. Our task model here is restricted to
independent periodic tasks with implicit deadlines and the
scheduling policy is static priority preemptive. Of course our
goal is to generalize our approach to more complex systems.

The research area that is most closely related to our prob-
lem is sensitivity analysis [9, 2, 5, 7]. Sensitivity analysis is
used (1) to provide guarantees on the schedulability of a sys-
tem in case of uncertainty on the system parameters, or (2)
given a non schedulable system, to find a set of changes that
lead to a schedulable system.

Most related work on sensitivity analysis addresses changes
of one type of parameter, e.g., changes of task worst-case
execution times (WCETs) or changes of periods — but not
both. In [2] for example, the authors analyze the sensitivity
of a system to changes in the arrival frequency of all tasks, or
in the WCET of all tasks. In [7], the authors are interested
in sensitivity analysis of systems with shared resources, for
which they study the impact of an increase of the WCETs
on system schedulability.

Dealing with different parameters (i.e. periods and prior-
ities) is the approach used in [8]. Here the authors define
the sensitivity using evolutionary algorithms and a stochas-
tic approach. It will be interesting to compare our results
with this method.

In contrast with the above mentioned approaches, we do
not allow parameters of the deployed system to be modi-
fied in according with industrial practice. But we need to

handle at the same time changes in the period, priority and
WCET of the task to be added. As a result, the set of pos-
sible system configurations that need to be checked is much
smaller than in classical sensitivity analysis and we hope to
be able to handle much more complex systems that what
state-of-the-art sensitivity analysis can handle.

Other papers like [10, 1, 3] deal with flexibility related to
task allocation, priority assignment or scenario based opti-
mization. In [3], the authors use concepts similar to ours to
define an optimal or a robust priority assignment. In [10],
the authors deal with task allocation and priority assignment
to maximize the extensibility of each task chain, where ex-
tensibility is the maximum execution time it is possible to
increase the WCET before missing the deadline. In [1] the
flexibility of a system is defined according to scenarios. To
define the flexibility it is necessary to define possible scenar-
ios of change.

Related work that deals with flexibility is used to define
at design time what is the best task allocation or priority as-
signment. But most of the time in an industrial context, the
designer cannot take into account only timing constraints
and some functionalities have fixed parameters. Moreover
we are interested in system evolution when most parameters
of the system are already defined. It is at this point unclear
if our problem (adding a task) can be precisely encoded into
existing methods dealing with increased execution times.

As a summary, by restricting ourselves to a simple change
scenario with industrial relevance, we hope to come up with
an approach that can provide guidance for the evolution
of complex systems, which cannot be covered by existing
sensitivity analysis techniques. Finally, to the best of our
knowledge, no existing work discusses the notion of limiting
task, i.e. the task which will miss its deadline first. The
final aim is to help the designer by giving him information to
allow a system to evolve while respecting timing constraints.

2. SYSTEM MODEL
Unless otherwise specified all the parameters defined in

the following have positive integer values. In particular, we
assume a discrete time clock.

We consider a uni-processor real-time system S consisting
of a finite set of n independent tasks scheduled according
to the Static Priority Preemptive (SPP) scheduling policy.
Each task τi, i ∈ [1, n], is defined by a tuple (πi, Ti, Ci) where
πi is the priority, Ti the period, and Ci an upper-bound on
the worst case execution time (WCET). Each task τi has an
implicit deadline Di = Ti, meaning that a given activation
of τi must finish before the next activation of τi.

We assume that different tasks have different priorities
and use as convention that πi < πj means that τi has a
higher priority than τj . For the purpose of our evolution
scenario, we also suppose that for any two tasks τi and τj
with πi < πj , it is always possible to define a new task τnew
with πi < πnew < πj . This is done without loss of generality
as priorities are only used to define a total order on tasks.

For each τi in S, hp(i) is the set of tasks of S that have
a higher priority than τi, while lp(i) is the set of tasks of S
that have a lower priority than τi.

The execution of a task τi is triggered periodically with
period Ti and each activation of τi generates a new instance.
A task instance is defined by its activation time, possible
preemption delays, and finish time. Preemption delays are
due to the task instance being blocked by higher priority task
instances. Each instance of τi finishes at the latest after
having being scheduled (i.e., not counting the preemption
delays) for Ci units of time.

3. PROBLEM STATEMENT
We are interested in system evolutions that may happen

after system delivery. We focus here on a simple evolution
scenario where a new task τnew defined by (πnew, Tnew, Cnew)
is added to a schedulable system S, thus yielding the sys-
tem Snew = S ∪ {τnew}. From now on, τnew will denote the
task (πnew, Tnew, Cnew) and Snew will denote the system
S ∪ {τnew}.

We wish to answer the following question: Given a schedu-
lable system S and a task τnew with unknown parameters:
how can we quantify the flexibility of S, that is, its ability
to accommodate τnew while remaining schedulable?

To address these issues, we start below by formalizing the
notions of evolution and flexibility of a system.

Definition 1. Evolution: An evolution of a system S is a
task τnew where πnew belongs to [min

i
πi−1,max

i
πi+1]\{πi}i

and (Tnew, Cnew) belongs to N+ × N+, such that the CPU
load after the evolution does not exceed 100%:

Cnew
Tnew

+
∑
i

Ci
Ti
≤ 1

Definition 2. Valid evolution: S being a schedulable sys-
tem, an evolution τnew is valid for S if Snew is schedulable.

We denote by FS the set of all valid evolutions for system S.
Note that if τnew is in FS , then for any 0 < C′

new < Cnew,
the task (πnew, Tnew, C

′
new) is also in FS . Moreover for any

T ′
new > Tnew, the task (πnew, T

′
new, Cnew) is also in FS . The

flexibility of a system quantifies its ability to schedule a new
task. We focus in this paper on the flexibility w.r.t. Cnew.
The notion of flexibility w.r.t. Tnew is left for future work.

Definition 3. Flexibility: Let S be a schedulable system.
The flexibility of S is the partial function flexS from N+×N+

into N+ such that (πnew, Tnew,flexS(πnew, Tnew)) is in FS
and flexS(πnew, Tnew) is maximal.

The function flex returns, for all (πnew, Tnew), the value
of the maximum WCET such that S ∪ {(π, T,flexS(π, T))}
is schedulable. This function is partial as such an WCET
may not exist. In the rest of the paper, we first focus on
methods for computing flex and then we will show how we
can use it for system design.

4. SLACK ANALYSIS
Let us first briefly recall the standard analysis used to es-

tablish the schedulability of systems of independent periodic
tasks on a single processor under the SPP policy [6].

The response time of an instance of a task τi is the de-
lay between its activation and its finish time. The worst
case response time of τi (WCRT) is the maximum response
time over all instances of τi; it is denoted ri. A system is
schedulable if ri ≤ Ti for any task τi.

A critical instant of τi is an activation scenario that max-
imises the response time of τi. A task is said to be schedu-
lable if and only if its WCRT is smaller than its (implicit)
deadline: ri ≤ Ti. For the systems we consider, a crit-
ical instant of τi occurs whenever an activation of a task
instance occurs simultaneously with the activation of all
higher-priority tasks. The WCRT of τi can thus be obtained
by computing:

ri = Ci +
∑

τj∈hp(i)

⌈
ri
Tj

⌉
Cj (1)

To quantify the flexibility of a system, we start by intro-
ducing the slack of a task, which takes into account all the
preemptions from higher priority tasks [4].

Definition 4. The slack of a task τi is the maximum value
it is possible to increase Ci while keeping τi schedulable.

The slack Sl i of a task τi can be computed using the al-
gorithm presented in [4].

Theorem 1. Let S be a schedulable system and τnew a
task. Snew is schedulable if:

∀τi ∈ lp(new),

⌈
Ti
Tnew

⌉
Cnew ≤ Sl i (2)

and
rnew ≤ Tnew (3)

Proof sketch of Theorem 1. We have to prove that,
for each τi ∈ S ∪ {τnew}, we have ri ≤ Ti. Since S is
schedulable, this holds for each τh ∈ hp(new). For τnew
itself, this holds directly by Eq. (3). And for each τ` ∈
lp(new), the preemptions of the tasks in hp(`) are already
taken into account in the slack Sl`, hence there only remains
to take into account the preemptions of τnew on τ`, which is
precisely the goal of Eq. (2).

This gives a sufficient but non necessary condition because
the slack Sli is a lower bound on the slack available for τi.
The reason the criterion is not necessary is that the preemp-
tion delays induced by τnew may be overapproximated.

5. FLEXIBILITY ANALYSIS
Recall that the flexibility of a system is quantified through

the function flex . We now show how to approximate flex
using the above sufficient schedulability condition for Snew.

Definition 5. For a given period Tnew and priority πnew
of τnew, denote

• CS the largest WCET of τnew such that S is schedu-
lable after evolving,

• Cτnew the largest WCET of τnew such that τnew is
schedulable after evolving.

Theorem 2. S being a system and τnew an evolution, let
CmaxS be the largest WCET allowed by Eq. (2) i.e. a lower
bound of CS. Let Cmaxτnew

be the largest WCET allowed by
Eq. (3) i.e. a lower bound of Cτnew . Then

CmaxSnew
= min {CmaxS , Cmaxτnew

}

is a lower bound of flexS(πnew, Tnew).

Proof sketch of Theorem 2. Theorem 1 gives a guar-
antee on the schedulability of Snew depending on τnew which
is a sufficient non necessary condition. As a consequence,
Theorem 2 based on Theorem 1 is also a sufficient and non
necessary condition, i.e., a lower bound of the largest Cnew
that guarantees the schedulability of Snew for fixed πnew and
Tnew — which is given by flexS .

We can compute both CmaxS and Cmaxτnew
using Theorem 3.

Theorem 3. Let S be a schedulable system and τnew a
task. Then we have CmaxS and Cmaxτnew

:

CmaxS = min
τi∈lp(new)

 Sl i⌈
Ti

Tnew

⌉
 (4)

and

Cmaxτnew
=

Tnew − ∑
τj∈hp(new)

⌈
Tnew
Tj

⌉
Cj

 (5)

Proof. Eq. (2) implies that, for all task τi in lp(new),
we have Cnew ≤ Sli/d Ti

Tnew
e. Since Cnew must be in N+, it

follows that

Cnew ≤ min
τi∈lp(new)

⌊
Sli/d

Ti
Tnew

e
⌋

hence Eq. (4). We found the largest Cnew by computing the
largest Slnew. Again, since Cnew must be in N+, this leads
to Eq. (5).

Intuitively, if τnew has a high priority, then it will be easy
to schedule but it will have a stronger impact on S. And
this impact will be greater if the period Tnew is small. In
contrast, a task τnew with a low priority will have a smaller
impact on the other tasks and it will be harder to schedule
with a small period.

Note that the function flexS is partial. Both Conditions (4)
and (5) on the flexibility of τnew imply that some tuples
(πnew, Tnew) lead to non schedulable systems. These tuples
imply that at least one task in Snew will have not enough
time to be executed. This is the case in a system if we add
τnew with a high priority and a small period.

6. LIMITING TASK OF THE SYSTEM
We now focus on the fact that for a priority πnew and

a period Tnew, CmaxS is limited by one, or possibly several
tasks in lp(new). We call the lowest priority task among
them the limiting task.

Definition 6. The limiting task of S w.r.t. a priority πnew
and a period Tnew, denoted τ`, is the lowest priority task τ`
such that:

` = arg min
τi∈lp(new)

 Sl i⌈
Ti

Tnew

⌉
 (6)

Note that our definition of limiting task is based on the
sufficient condition in Theorem 1. As a result, it is a good
indicator of where the bottlenecks for software evolution are,
but it is not an exact criterion (yet).

We are particularly interested in the fact that some tasks
never limit CmaxS , whatever the priority and period of τnew.

Theorem 4. Consider the system S. The tasks that will
never limit the system are all the tasks τi such that:

∃τj ∈ S s.t. τj ∈ lp(i) ∧ Tj ≤ Ti

Proof sketch of Theorem 4. Tasks for which there ex-
ists another task of lower priority (hence with more preemp-
tions) and lesser or equal period (hence with less or the same
available time to finish) can never be the limiting task.

A good strategy to increase the flexibility of the system is
to decrease the interference of higher priority tasks on the
limiting task τ`, i.e., to increase its slack. One source of
complexity here is that the limiting task is not necessarily
the same for different values of Tnew and πnew.

We therefore identify the values of the period Tnew upon
which τ` may change. The set of these values is:

T =

{
t ∈ N+ | ∃τi ∈ S,

⌈
Ti
t

⌉
6=
⌈
Ti
t− 1

⌉}
(7)

This corresponds to the values of Tnew for which the number
of preemptions of τnew on τi, with i ∈ lp(new), changes. It
follows that τ` remains constant in any interval [T inew, T

j
new[

where T inew and T jnew are two consecutive periods in T . It is
thus sufficient to compute the limiting task of S w.r.t. each
priority πnew and period of Tnew ∈ T using Eq. (6).

7. CASE STUDY
Let us now show how the concepts presented in this paper

are applied on an example. Consider a system:

S = {(2, 10, 1), (4, 5, 1), (6, 15, 1), (8, 10, 2), (10, 30, 2)}

Case 1: Priority and period of τnew are known
Suppose that we want to add a task τnew to S, with πnew = 1
and Tnew = 5. By applying Theorem 3 and Definition 6 we
determine that CmaxS = 1 and τ5 is the limiting task of S.
This means that τnew should not have an execution time
larger than 1 otherwise τ5 may miss its deadline.

Case 2: CmaxS as a function of Tnew
Let us now assume that we know nothing about τnew and
we want to quantify the flexibility of S.

Table 1 shows the values of CmaxS obtained for the possi-
ble values of πnew and τnew. Whenever any WCET larger
than 0 would make one task in S unschedulable we put ⊥.
Note that we group periods of τnew for which the number
of preemptions of tasks in S does not change, based on the
computation of T . In addition, if πnew ≥ 11 then τnew will
have no impact on the system so we do not represent Cmaxnew .

Similarly, Table 2 shows Cmaxτnew
for possible values of πnew

and Tnew (we leave out periods larger than 15). Finally,
based on Table 1 and Table 2 we easily obtain Table 3 which
shows the possible values of CmaxSnew

.
The concepts introduced in this paper allow the system

designer to: (1) understand when an evolution will be con-
strained by the need to preserve the schedulability of the sys-
tem, and when it will be constrained by the need to schedule

aaaaaa
Tnew

πnew 1 3 5 7 9

[2, 3[⊥ ⊥ ⊥ ⊥ ⊥
[3, 4[1 1 1 1 1
[4, 5[1 1 1 1 1
[5, 6[1 1 1 1 1
[6, 8[2 2 2 2 2
[8, 10[2 2 2 2 2
[10, 15[3 3 3 3 3
[15, 30[3 3 4 4 5
[30, +∞[3 3 4 4 11

Table 1: CmaxS for different values of πnew and Tnew

aaaaaa
Tnew

πnew 3 5 7 9 11

2 1 ⊥ ⊥ ⊥ ⊥
3 2 1 ⊥ ⊥ ⊥
4 3 2 1 ⊥ ⊥
5 4 3 2 ⊥ ⊥
6 5 3 2 ⊥ ⊥
7 6 4 3 1 ⊥
8 7 5 4 2 ⊥
9 8 6 5 3 1
10 9 7 6 4 2
11 9 6 5 1 ⊥
12 10 7 6 2 ⊥
13 11 8 7 3 1
14 12 9 8 4 2
15 13 10 9 5 3

Table 2: Cmaxτnew
for different values of πnew and Tnew

the new task; (2) identify, through the concept of limiting
task, which task in the system will “break” first in case of a
software update.

8. CONCLUSION
In this paper we have defined the flexibility of a system as

its capability to schedule a new task. We also presented an
approach to quantify the flexibility of a system. More impor-
tantly, we show that it is possible under certain conditions
to identify the task that will directly induce the limitations
on a possible software update. If performed at design time,
such a result can be used to adjust the system design by
giving more slack to the limiting task. We illustrate how
these results apply to a simple system.

We plan to extend our work in several main directions.
First, we want to replace our sufficient conditions for by
necessary and sufficient conditions so as to provide more
relevant information to the system designer.

Second, we want to study further the notion of limiting
task and propose a solution to compare the flexibility of
different systems. Our objective is to come up with a set of
guidelines for the designer to help him factor in flexibility at
design time. Such guidelines must be simple to understand
by someone with limited expertise in schedulability analysis,
and they must take into account the fact that many design
choices are fixed.

Finally, we intend to study more complex systems. We
are in particular interested in systems with jitter, sporadic

aaaaaa
Tnew

πnew 1 3 5 7 9 11

2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
3 1 1 1 ⊥ ⊥ ⊥
4 1 1 1 1 ⊥ ⊥
5 1 1 1 1 ⊥ ⊥
6 2 2 2 2 ⊥ ⊥
7 2 2 2 2 1 ⊥
8 2 2 2 2 2 ⊥
9 2 2 2 2 2 1
10 3 3 3 3 3 2
11 3 3 3 3 1 ⊥
12 3 3 3 3 2 ⊥
13 3 3 3 3 3 1
14 3 3 3 3 3 2
15 3 3 4 4 5 3

Table 3: CmaxSnew
for different values of πnew and Tnew

bursts, task chains, multiple processing resources, etc. When
compared to the general sensitivity analysis problem, the
problem we consider has many fixed parameters. This is
why we expect to be able to provide useful results even for
such complex systems.

9. REFERENCES

[1] I. Bate and P. Emberson. Incorporating scenarios and
heuristics to improve flexibility in real-time embedded
systems. In RTAS’06, pages 221–230, San Jose (CA),
USA, 2006. IEEE.

[2] E. Bini, M. Di Natale, and G. Buttazzo. Sensitivity
analysis for fixed-priority real-time systems. In
ECRTS’06, pages 13–22. IEEE, 2006.

[3] R. Davis and A. Burns. Robust priority assignment for
fixed priority real-time systems. In RTSS’07, pages
3–14. IEEE, 2007.

[4] R. I. Davis, K. Tindell, and A. Burns. Scheduling
slack time in fixed priority pre-emptive systems. In
RTSS’93, pages 222–231, 1993.

[5] F. Dorin, P. Richard, M. Richard, and J. Goossens.
Schedulability and sensitivity analysis of multiple
criticality tasks with fixed-priorities. Real-Time Syst.,
46(3):305–331, 2010.

[6] M. Joseph and P. Pandya. Finding response times in a
real-time system. The Computer Journal,
29(5):390–395, 1986.

[7] S. Punnekkat, R. Davis, and A. Burns. Sensitivity
analysis of real-time task sets. In ASIAN’97, volume
1345 of LNCS, pages 72–82. Springer-Verlag, 1997.

[8] R. Racu, A. Hamann, and R. Ernst. Sensitivity
analysis of complex embedded real-time systems.
Real-Time Syst., 39(1-3):31–72, 2008.

[9] R. Racu, M. Jersak, and R. Ernst. Applying
sensitivity analysis in real-time distributed systems. In
RTAS’05, pages 160–169. IEEE, 2005.

[10] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and
A. Sangiovanni-Vincentelli. Optimizing extensibility in
hard real-time distributed systems. In RTAS’09, pages
275–284. IEEE, 2009.

