L. Aroyo and C. Welty, Measuring crowd truth for medical relation extraction, 2013 AAAI Fall Symposium Series, 2013.

T. Cohn and L. Specia, Modelling annotator bias with multi-task Gaussian processes: An application to machine translation quality estimation, ACL, 2013.

A. Johannsen, D. Hovy, H. Martínez, B. Plank, and A. Søgaard, More or less supervised supersense tagging of Twitter, Proceedings of the Third Joint Conference on Lexical and Computational Semantics (*SEM 2014), 2014.
DOI : 10.3115/v1/S14-1001

D. Jurgens, Embracing ambiguity: A comparison of annotation methodologies for crowdsourcing word sense labels, HLT-NAACL, pp.556-562, 2013.

K. Krippendorff, Agreement and Information in the Reliability of Coding, Communication Methods and Measures, vol.34, issue.2, pp.93-112, 2011.
DOI : 10.1037/0033-2909.103.3.374

O. Lopez-de-lacalle and E. Agirre, A Methodology for Word Sense Disambiguation at 90% based on large-scale CrowdSourcing, Proceedings of the Fourth Joint Conference on Lexical and Computational Semantics, 2015.
DOI : 10.18653/v1/S15-1007

A. Héctor-martínez-alonso and . Johannsen, Predicting word sense annotation agreement, Workshop on Linking Models of Lexical, Sentential and Discourse-level Semantics (LSDSem), p.89, 2015.

A. Héctor-martínez-alonso, S. Johannsen, S. Olsen, and . Nimb, Supersense tagging for danish, Nordic Conference of Computational Linguistics NODALIDA 2015, p.21, 2015.

B. Héctor-martínez-alonso, A. Plank, A. Skjaerholt, and . Søgaard, Learning to parse with iaa-weighted loss, Proceedings of Naacl, 2015.

G. A. Miller, M. Chodorow, S. Landes, C. Leacock, and R. G. Thomas, Using a semantic concordance for sense identification, Proceedings of the workshop on Human Language Technology , HLT '94, pp.240-243, 1994.
DOI : 10.3115/1075812.1075866

URL : http://acl.ldc.upenn.edu/H/H94/H94-1046.pdf

J. Rebecca, B. Passonneau, and . Carpenter, The benefits of a model of annotation, TACL, vol.2, pp.311-326, 2014.

J. Rebecca, A. Passonneau, V. Salleb-aouissi, N. Bhardwaj, and . Ide, Word sense annotation of polysemous words by multiple annotators, LREC, 2010.

A. Bolette-sandford-pedersen, A. Braasch, H. Johannsen, S. Martínez-alonso, S. Nimb et al., Anders Søgaard, and Nicolai Sørensen. 2016. The semdax corpus?sense annotations with scalable sense inventories, LREC

B. Plank, D. Hovy, and A. Søgaard, Learning part-of-speech taggers with interannotator agreement loss, EACL, 2014.

B. Plank, . Héctor-martínez-alonso, D. Zeljko-agi´cagi´c, A. Merkler, and . Søgaard, Do dependency parsing metrics correlate with human judgments?, Proceedings of the Nineteenth Conference on Computational Natural Language Learning, 2015.
DOI : 10.18653/v1/K15-1033

URL : https://curis.ku.dk/portal/da/publications/do-dependency-parsing-metrics-correlate-with-human-judgments(52af33d2-c5b2-4680-8a60-78481a96014b).html

A. Ratnaparkhi, A maximum entropy model for part-of-speech tagging, Proceedings of the conference on empirical methods in natural language processing, pp.133-142, 1996.

D. Reidsma and R. Op-den-akker, Exploiting 'subjective' annotations, Proceedings of the Workshop on Human Judgements in Computational Linguistics, HumanJudge '08, 2008.
DOI : 10.3115/1611628.1611631

URL : http://eprints.eemcs.utwente.nl/13249/01/HJCL03.pdf

A. Ritter, S. Clark, and O. Etzioni, Named entity recognition in tweets: an experimental study, Proceedings of EMNLP, 2011.

N. Tomuro, Tree-cut and a lexicon based on systematic polysemy, Second meeting of the North American Chapter of the Association for Computational Linguistics on Language technologies 2001 , NAACL '01, 2001.
DOI : 10.3115/1073336.1073346

D. Yarowsky and R. Florian, Evaluating sense disambiguation across diverse parameter spaces, Natural Language Engineering, vol.8, issue.4, pp.293-310, 2002.
DOI : 10.1017/S135132490200298X