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Abstract

1. Diatoms include a great diversity of taxa and are recognized as powerful
bioindicators of freshwater quality. However using diatoms for bioassess-
ment is costly and time consuming, because most of the indices necessitate
species-level identification. Simplifying diatoms-based assessment proto-
cols has focused the attention of water-managers and researchers in recent
years.

2. The increasing availability of genomic data and phylogenies can benefit
in the development of bioassessment methods making use of these tools,
where a clade plays the role of a species if relevant. Indeed, the null hy-
pothesis is that closely related species are more likely to exhibit similar
environmental sensitivity because of phylogenetic constraints and inher-
itance. Such patterns have been reported recently for sensitivity to a
variety of pollutants for two important groups of bioindicators used for
freshwater monitoring: benthic macroinvertebrates and diatoms.

3. We introduce a method to extract clusters of species sharing similar traits
and being phylogenetically related. We apply this method on the gen-
eral pollution sensitivity (IPS specific sensitivity value; Coste, 1982) of
262 species of diatoms and, by tuning the method settings; we generate
different clade-based derivatives of the traditional IPS index.

4. Finally, we estimate traditional and derived IPS scores for 2119 natu-
ral communities of diatoms in eastern France to compare and assess the
performances of these new indices.

5. Synthesis and applications. We show that phylogenetic approaches offer a
scope for simplification without an important loss of information and we
discuss the potential of their use in biomonitoring.

This is a post-print version of an article originally published in Journal of Applied Ecology.
(link editor). Please cite: Keck F., Bouchez A., Franc A. & Rimet F. (In press) Linking
phylogenetic similarity and pollution sensitivity to develop ecological assessment methods:
a test with river diatoms. Journal of Applied Ecology.
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1 Introduction

Diatoms have been traditionally recognized as a good candidate group to moni-
tor freshwater ecosystems, because they exhibit an important diversity and their
community composition is strongly structured by numerous environmental factors
including growth stimulating nutrients (Patrick, 1961; Lange-Bertalot, 1979). From
this premise, the first environmental quality indices, based on diatoms assemblages,
were developed about 50 years ago (e.g. Zelinka and Marvan, 1961) and nowadays di-
atoms are part of routine bioassessment standard methods in freshwater monitoring
(Stevenson et al., 2010).

With an estimation of 100000 extant species, diatoms constitute one of the
most diverse algal classes (Mann and Vanormelingen, 2013). Taxonomic diversity is
important for biomonitoring, because it promotes assemblage diversity and allows
ecological assessment at a fine level (Birks, 2010). However, the extreme diversity
of diatoms also constitutes a challenge for applied biomonitoring. Indices are tra-
ditionally developed by skilled diatomists and are usually derived at species-level
to maximize their performance. Moreover, they may include several hundreds of
species. Extending the use of such complex protocols — for example at a national
network scale — is costly and requires training of many operators with continuous
intercalibration (Prygiel et al., 2002; Kahlert et al., 2009). In addition, there is still
the risk of imprecise or wrong identifications, which can lead to a biased estima-
tion of environmental quality and ultimately lead managers to take unsatisfactory
decisions (Besse-Lototskaya et al., 2006).

Simplifying and standardizing diatoms-based assessment protocols focused the
attention of many researchers in recent years. Two main pathways have been ex-
plored: (i) reducing the number of species included in the indices by focusing on



most abundant and key species (Lenoir and Coste, 1996; Lavoie et al., 2009) and
(ii) reducing the taxonomic resolution (Kelly et al., 1995; Chessman et al., 1999;
Growns, 1999; Hill et al., 2001; Wunsam et al., 2002; Raunio and Soininen, 2007;
Rimet and Bouchez, 2012).

With the increasing availability of genetic data and phylogenies (Benson et al.,
2008; Wheeler et al., 2008), the idea arose that the development of bioassessment
methods could also benefit from phylogenetic statistical approaches. Carew et al.
(2011) first formulated the concept of phylogenetic redundancy in freshwater mon-
itoring by analyzing links between mayflies and chironomids pollution sensitivity
and phylogeny. The central idea is that closely related species are more likely to
exhibit similar sensitivity because of phylogenetic constraints and inheritance. This
hypothesis is commonly tested in the literature by measuring and testing the pres-
ence of the phylogenetic signal (“the tendency for related species to resemble each
other more than they resemble species drawn at random from the tree”; Blomberg
and Garland, 2002). The presence of such a signal may have direct consequences
on biomonitoring, because it opens up interesting possibilities of simplification by
using larger clades instead of species. Interestingly, the phylogenetic signal has been
assessed for sensitivity to pollution on two important groups of bioindicators used
for freshwater monitoring: benthic macroinvertebrates and diatoms (Ibanez et al.,
2010). Phylogenetic signal has been found significant for macroinvertebrates sensi-
tivity to various metals (Buchwalter et al., 2008; Poteat et al., 2013; Poteat and
Buchwalter, 2014) and to general pollutants (Carew et al., 2011). For diatoms, sig-
nificant phylogenetic signal was found for sensitivities to different herbicides (Larras
et al., 2014) and for general ecological preferences (Keck et al., 2016).

Demonstrating the presence of phylogenetic signal is essential, but is only the
first step in making proposals for biomonitoring tools based on phylogenetic knowl-
edge. A second step is to develop methods to extract informative groups of species
based on phylogenetic signal to derive simpler indices and test their ability to predict
environment quality. Thus, we introduce a simple distance-based method to extract
clusters of species sharing similar traits, but also are phylogenetically related. It is
classical in ecology to compare two distances within a set of individuals, typically
through a Mantel test to compare phenetic or genetic distance with geographic dis-
tance (Sokal, 1979; Fortin and Gurevitch, 2001; Vignieri, 2005). Here, we go one
step further, by building clusters of species based both on traits values and phylo-
genetic proximity meaning that, two distantly related species cannot be included in
the same cluster even if they exhibit similar trait values.

In this paper, we apply this method to get different sets of clusters from 262
diatom species. Clustering is based on the phylogeny and on the general pollution
sensitivity of the species (IPS specific sensitivity value; Coste, 1982). We use these
sets of clusters to develop derivatives of the traditional IPS index. Finally we esti-
mate traditional and derived IPS scores of 2119 samples to compare and assess the
performances of these new indices.



2 DMaterial and Methods

2.1 Phylogenetic tree reconstruction

We used the phylogenetic tree reconstructed in Keck et al. (2016). This phylogeny
is based both on the nuclear gene coding for the small subunit 185 rRNA and
the chloroplast rbcL gene coding for the RuBisCO enzyme. The tree includes 549
diatoms species for which genetic information is available for at least one of these
markers. Reconstruction was done with RAxML 7.2.8 (Stamatakis, 2006) using a
partitioned Maximum Likelihood analysis with a GTR+I4+G evolutionary model
(see Keck et al., 2016, for details). The tree was dated in relative time using a
semi-parametric method based on penalized likelihood (Sanderson, 2002).

2.2 Phylogenetically constrained clustering

We present here a simple co-clustering method for a set of n species in a phylogeny
with one or more associated trait values (as illustrated in Figure 1A). The method
is based both on the pairwise trait distance matrix T and the pairwise phylogenetic
distance matrix P. We consider the graph G = (V, E') where V denotes the vertices
(the species) and E the set of edges connecting the vertices. Here, the graph G is
defined by its adjacency binary matrix A, an n x n matrix where A;; = 1 if there
is an edge joining species ¢ with species j and A;; = 0 otherwise. A variety of rules
can be used to decide whether there is an edge or not between two vertices. Here,
we propose a linear rule given in Equation 1, for which a graphical illustration is
given in Figure 1B.

(1)

Ay — o if _%PijZTijQi#j
0 otherwise

where ¢ and p are the upper bounds to be considered for respectively trait and
phylogenetic distances (see Figure 1B) and must be manually set. Thus, the higher
the values of t and p, the lower the trait and phylogenetic constraints are, respec-
tively.

Once the adjacency matrix is given, we compute the connected components of
the associated graph, which define the clusters (Figure 1C). Note, however, that

different strategies are possible (e.g. selection of cliques, use of community detection
algorithms) which will be discussed later.

2.3 Defining new indices based on phylogenetic clusters

We chose to work with the IPS index (indice de polluo-sensibilité; Coste, 1982). The
IPS index is a weighted average autecological index based on a modified version of
the Zelinka and Marvan (1961) equation (Equation 2) where a; is the proportional
abundance of the taxon i, v; is its indicator value and s; its pollution sensitivity.

" oap X v X 8;
IPS:EZ—ln —— (2)
Sy % v
We then have simplified the index by defining some clusters as explained above,
and averaging values of v; and s; and summing the values of a;, over clusters of
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Figure 1: Phylogenetically constrained clustering process. A. The process is il-
lustrated with a dataset of 19 species (identified by letters A-S). The trait data
are simulated under a Brownian Motion model of trait evolution and are centred.
B. Pairs of species in function of their phylogenetic (patristic) distance and trait
(Euclidean) distance. The selected pairs (following Equation 1, p and ¢ values) are
represented with crosses while non-selected pairs are represented with circles. The
dashed line illustrates the selection limit. C. A graph where species are connected
according to previously selected pairs, unveiling 8 disconnected components (clus-
ters).

species. Let us denote by v a cluster. Then, aggregated IPS index is defined as in
Equation 3.

Dy Gy X Uy X Sy

IPSp = (3)
Dy Gy X Uy
where
1 1 .
am,:ZaZ-, vV:TTZU“ SVZFZSi’ ny=#{i: 1 e~}
1€y v 1€y v 1€y

As the grain for species sensitivity variation is coarser (in IPSp, all species be-
longing to the same cluster are assumed to share a same value for s and v), the
estimate of IPS will be coarser. In order to evaluate the discrepancy between IPS
and IPSp, we have calculated the error made by using IPSp instead of IPS, by a first
order development of IPSp. We show now that the discrepancy induced by using the
coarse index is minimized when the clusters are such that the discrepancy between
average value and individual values within each cluster are bounded from above.
This is precisely the role of ¢ in the above calculation. Indeed, the error made by
using IPSp instead of IPS depends on two types of terms given in Equation 4 (see
Appendix S1 for details).

Av,i = Zai(vi - UW), As,i = Zai(si - S’y) (4)

1€y 1€y
Each of these terms is a combination of two terms: the abundances in the en-
vironmental sample a;, and the discrepancy between the species s; and v; and the



cluster s, and v, it belongs to. Each term remains small, i.e. the approximation is
acceptable, if (i) the species ill positioned in a group, i.e. the term |z; — x| is high,
with = s or x = v has a low abundance, or (ii) the discrepancy is acceptable. Let
us note that for each cluster v, we have > ;. (si — sy) = > ;e (v;i — vy) = 0, which
means that the error terms are expected to be small. The detailed calculations are
available in Appendix S1.

2.4 Developing IPSp indices

We carried out clustering analyses using the method described above for species
for which both phylogenetic and IPS data (s and v values) were available. IPS
data were retrieved from OMNIDIA (Lecointe et al., 1993). We used a phylogenetic
distance matrix P, based on the number of nodes separating two species ¢ and j and
a trait distance matrix T, based on the pairwise Euclidean distance of IPS pollution
sensitivity (T;; = 1/(si — s;)?). To make things more interpretable, both P and T
were divided by their respective maximum values so that all distances range between
0 and 1.

Since there is no rule to set t and p values, we tested different settings. A full
grid of 10* combinations of ¢+ and p = {0.01,0.02,0.03,...,0.99,1} was processed.
However, for clarity, we report results for a set of representative combinations of
t = {0.2,0.4,0.6,0.8} and p = {0.05,0.1,0.15} giving 12 different graphs and as
many different sets of clusters. Then, we developed a series of phylogenetically IPS-
derived indices using Equation 3 (referred as IPSp ;) with ¢ and p indicating the
trait and phylogenetic constraints applied for the clustering).

2.5 Comparing IPSp indices performances

To assess the performances of IPSp indices we used a database of 2119 diatom
community samples collected in rivers and streams in eastern France between 2001
and 2008. For each of them, 400 diatom frustules were counted and identified at
species level. Details about this database are given in Rimet and Bouchez (2012).
These count data were used to compute the IPSgtandarq value of each sample, which
constitutes the reference index value. Thus we can compute different statistics to
compare the ability of the different IPSp to recover the information contained in
IPSgtandarda- First, the Pearson correlation index is computed as a measure of the
dependence between the samples scores as estimated by IPSp and by IPSgiandard-
Second, the residual sum of square (RSS) is used as a measure of the discrepancy
between the scores of IPSp and the scores of IPSgtangara- Finally, it is common to use
IPS scores to classify samples in 5 levels of water quality: [0; 7[ = Very Poor; [7; 11 =
Poor; [11; 13.5] = Fair; [13.5; 16] = Good; [16;20] = Very Good (Prygiel et al., 1996).
In particular, these thresholds are currently used by managers to take decisions
for environmental restoration. We reported the percentage of good classification
and percentages of misclassification (over and under estimates) of samples by IPSp
compared to IPSgtandard-



2.6 Statistical Packages

We performed all the statistical analyses with R 3.0.2 software (R Development
Core Team, 2013). Phylogenies were handled with the ape package (Paradis et al.,
2004) and the phylobase package (Hackathon et al. 2013). Phylogenetic distances
were computed with the adephylo package (Jombart et al., 2010). Phylogenetic
clustering was performed with the phylosignal package .

3 Results

The dataset includes 262 taxa which were found both in the phylogenetic tree and
the IPS database (Figure 2). The full grid approach generated 10* sets of cluster.
We investigated the effects of phylogenetic and trait constraints on the number of
clusters produced (Figure 3A) and the relationship between the number of cluster
of an IPSp index and its ability for sample classification (Figure 3B).

The subset of 12 combinations of ¢ and p values tested produced contrasting
sets of clusters. The most restrictive graph (¢t = 0.2, p = 0.05; i.e. low trait and
phylogenetic distances) is composed of 196 connected components (i.e. clusters)
while the most relaxed graph (t = 0.8 and p = 0.15; i.e. high trait and phylogenetic
distances) is composed of 9 components. Other graphs have a number of connected
components ranging between these two extremes (Table 1).

Since the number of cluster on which they are based varies greatly, the capacity
of the different IPSp indices to reflect the information of IPSgiangara varies also
markedly. The correlation between IPSp indices and IPSgtandarq is high (> 0.9) as
long as the number of clusters remains high (> 68; Table 1 and Figure 4). The
highest correlation (0.938) is achieved with IPSpp0.1) and IPSpjgo,.15 (6. low
trait and moderate to high phylogenetic distances).

The residual sum square (RSS) ranged between 2990 and 4357 as long as the
number of clusters remains high (> 68). Under this threshold, the error increases
drastically (Table 1 and Figure 4). The lowest RSS is achieved with IPSp(g.2 0.1
(2990).

More than 73% of the samples are correctly classified as long as the number
of clusters remains above 68. For indices based on very few clusters (16 and 9),
the number of misclassified samples falls under the number of correctly classified
samples. The best percentage of classification is achieved with IPSp.20.1) (80.6%
of good classification). Strong overestimations of water quality (> 2 classes) are
rare overall while strong underestimations (> 2 classes) appear to be more frequent
when the number of clusters is very low. Overall, in case of misclassification, IPSp
indices are more likely to underestimate water quality than overestimate it.

4 Discussion

4.1 Phylogenetic clustering — methodological discussion

The idea of simplifying bioassessment methods using phylogenetics has been raised
in the last few years (Carew et al., 2011; Larras et al., 2014), but no study pro-

https://cran.r-project.org/web/packages/phylosignal /
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Figure 2: Phylogenetic tree of 262 diatoms species and their respective IPSgiandard
sensitivity value (s). The colors delineate 68 clusters based on ¢ = 0.6 and p = 0.1.
Diatoms names are reported using 4-letter codes (Lecointe et al., 1993, see Table S1
for corresponding Linnaean names).



Quality classification (% of samples)
compared to IPSstandard

Clustering Overestimate Exact Underestimate
constraints

t P Number of Correlation RSS 2 1 0 1 2 3

clusters IPSstandara  IPSstandara

0.2 0.05 196 0.935 3099 0.1 9.7 79.5 10 0.5 0.1
0.4 0.05 187 0.936 3081 0.1 8.2 79.8 11.2 0.5 0.1
0.6 0.05 157 0.929 3335 0.2 9.5 775 123 04 0.1
0.8 0.05 153 0.925 3989 0.2 6.5 73.9 181 1.2 0.1
0.2 0.1 126 0.938 2990 0.1 8 80.6 10.7 0.5 0.1
0.4 0.1 89 0.928 3594 0.2 74 76.1 154 0.8 0
0.2 0.15 86 0.938 3179 0.1 7.5 773 142 0.7 0.1
0.6 0.1 68 0.907 4357 0.4 9.9 734 15 1.2 0
0.8 0.1 51 0.863 7922 0.7 9 63.2 25 2 0
0.4 0.15 32 0.904 8684 0.1 2.2 55.3 39 3.1 0.2
0.6 0.15 16 0.774 17317 0.2 5.3 375 481 83 0.6
0.8 0.15 9 0.591 31120 0.9 5.9 23.5 374 302 2.1

Table 1: Comparison of the 12 IPSp indices. Each index is based on a set of clusters
generated by a pair of ¢t and p values. Performances of the indices are assessed by
comparing with results of IPSgiandarq for 2119 diatom samples.
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posed a phylogenetically based biomonitoring tool. We introduced a simple and
general approach to develop such tools and tested it in order to simplify a popular
biomonitoring diatomic index: the IPS (Coste, 1982).

We proposed a simple method, which allows clustering species taking into ac-
count both their phylogenetic proximities and trait similarities. Clusters generated
by this method are not necessarily monophyletic clades. The method has many
declinations possible, since each step is independent and adaptable. First, a dif-
ferent phylogenetic distance matrix (P) can be used. Here we used the number
of internal nodes separating two species, but patristic distance (length of branches
separating two species) or more complex distances (Pavoine et al., 2008; Pavoine
and Ricotta, 2013) can be considered, as well as transformation of these distances
(e.g. square root of patristic distance; Hardy and Pavoine, 2012). Second, we ap-
plied the method on a single trait (species sensitivity), but since clustering is based
on the Euclidean distance of trait (T), it can be easily extended to a multivariate
framework. Third, different rules can be used to select which pairs of species are
connected by an edge in the graph. We used a simple rule based on a linear equation
(Equation 1, Figure 1B), but other options can be developed (e.g. rectangular and
elliptical selections are included in the R package phylosignal). Finally, different
cluster extraction approaches can be tested. In particular, for complex data, clus-
ters can be detected using community detection algorithms (Newman and Girvan,
2004) and clusters validity can be assessed with statistics derived from graph theory
like measures of density and connectivity (Van Steen, 2010). Since the method is
extremely general and flexible, this gives an opportunity to fit to a large variety of
data. Clustering can be applied to any kind of trait. For example in freshwater
biomonitoring, other indices could be clustered like the trophic diatom index (Kelly
and Whitton, 1995), the global periphyton indices (Rott et al., 1997; Rott et al.,
1999) or the Brettum index for lakes monitoring (Brettum, 1989), but the method
could also be applied directly on species preferences through a multivariate approach
(see Keck et al., 2016).

The method does not provide an optimal pair of p and t constraining values.
This can limit the ease of use, but is also a source of flexibility. Since the clustering
algorithm we propose is not computationally intensive, it can be easy to test thou-
sands of settings. Thus, a practitioner developing a new index can pick up the pair
of phylogenetic and trait constraints which fit the best with his/her own needs in
terms of trade-off between simplification and precision. Representing the relation-
ship between the number of clusters and the efficiency of indices (Figure 4) may be
a good way to support the decision process.

Overall, the results must always be interpreted carefully and we stress the impor-
tance to make a detailed analysis of how ¢ and p influence the clustering outcomes.
An identified issue is the linkage effect: if there is an edge between species A and
species B and an edge between species B and C, then A, B and C will be included in
the same connected component (i.e. cluster), even if A and C are not connected. A
way to overcome this problem might be to use more sophisticated method to extract
clusters from the graph, as discussed above. Another point which needs attention
is that if ¢ or p values are too high, the method will converge to phylogenetic-only
clustering (7.e. clusters strictly based on phylogenetic distances) or trait-only clus-
tering (i.e. clusters strictly based on traits distances), respectively. For example

12



in our dataset, when the number of clusters is very low and the performance of
the index is very high, this is due to the phylogenetic constraint, which is nonex-
istent (p > 0.25; high phylogenetic distance). Therefore, the results converge to a
trait-only clustering, which is definitely not the aim here.

4.2 Phylogenetically based indices — potential for applications

The tests we conducted showed that the number of clusters can be reduced without
an important loss of information. These results tends to confirm that biomonitoring
with diatoms can be simplified using taxonomic levels higher than the species level
as previously suggested by other authors (Kelly et al., 1995; Chessman et al., 1999;
Growns, 1999; Hill et al., 2001; Wunsam et al., 2002; Raunio and Soininen, 2007;
Rimet and Bouchez, 2012). This is achieved for the first time using a phylogenetic
approach in order to take account phylogenetic redundancy (Carew et al., 2011).

It is important to note that the phylogeny of diatoms is far from complete. Only
262 species have been included in the clustering method, whereas IPS computation is
based on more than 5000 species with 909 of them present in the samples of our test
dataset. Including more species in the phylogenetic tree could produce more clusters,
but also it will probably increase significantly the performance of IPSp indices. In
particular, some missing taxa are important for biomonitoring like Achnanthidium
subatomus, A. subatomoides, A. daonense, which are indicators of pristine rivers of
relatively low conductivity. These missing species can probably explain the tendency
of IPSp to underestimate the water quality. On the other hand, pollution tolerant
taxa are better represented in the current phylogeny. Significant progress has been
made in our understanding of diatom phylogeny in recent years (Theriot et al., 2010;
Theriot et al., 2011; Medlin, 2011). Large scale phylogenetic trees, including many
more species and based on many more markers, will be made available, making
phylogenetic approaches more robust and relevant. Biomonitoring methods based
on phylogenies can be easily updated as new data are made available.

The use of phylogenetic approaches aims principally to simplify biomonitoring
by avoiding phylogenetic redundancy (Carew et al., 2011). In this paper, we try to
address this issue by extracting clusters of phylogenetically related species sharing
similar pollution sensitivities. Ideally, these clusters would provide the best com-
promise between simplicity and efficiency. However, it seems difficult to import a
tool developed with phylogeny in the traditional biomonitoring workflows based on
classical microscopic counts, because there are several incongruencies between mor-
phology and DNA-phylogeny (Kermarrec et al., 2011; Zimmermann et al., 2014).
Moreover taxonomical classification is rarely matching the IPSp clusters proposed,
and it would ask the technician counting diatoms to learn these new clusters even if
many of them are intuitive (e.g. Ulnaria group, Nitzschia lanceolatae group). This is
probably hardly applicable for already trained diatomists. However, in some cases,
clusters match the taxonomy, especially at genus level. For example, in Figure 2,
the genera Funotia and Stauroneis are identified as two clusters with high sensitivity
while all Entomoneis species are detected in the same non sensitive (low sensitivity
values) cluster. Such results can be interesting to develop biomonitoring tools based
on a mixture of taxonomical levels as suggested by Jones (2008) for macroinverte-
brates. For diatoms, tools based both on species and genus levels exists (Kelly and
Whitton, 1995), but could undergo new developments with phylogenetic approaches.
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Finally, these approaches seem to be much better adapted for next genera-
tion biomonitoring, so-called biomonitoring 2.0, based on metabarcoding and high
throughput sequencing methods (Baird and Hajibabaei, 2012), which aims to use
DNA-barcodes to assess environmental quality. Since this approach is based on
molecular characters, it is much more straightforward to integrate phylogenetic con-
siderations. In metabarcoding, one of the difficulties is the taxonomic assignment
of metabarcode sequences (Coissac et al., 2012). Assigning DNA sequences to clus-
ters of species, rather than species would be more flexible and probably would be
achieved more easily. Another common issue is the lack of data in taxon-stressor
response libraries. The use of phylogenetic methods to infer taxa traits from their
phylogenetic position could offer a solution to this problem (Keck et al., 2016) and
a complete modeling framework has been proposed by Guénard et al. (2013). How-
ever, as a first step in a biomonitoring context, it would be simple to infer trait
values of unknown sampled species if they fall within a given cluster. Thus, increas-
ing information on traits and taxa — thanks to metabarcoding associated together
with phylogenetically based methods — should significantly enhance the efficiency of
environmental monitoring.

5 Acknowledgments

This work was funded by ONEMA (French National Office for Water and Aquatic
Ecosystems) in the context of the 2013-2015 “Phylogeny and Bioassessment” pro-
gram.

References

Baird, D. J. and M. Hajibabaei (2012). “Biomonitoring 2.0: a new paradigm in
ecosystem assessment made possible by next-generation DNA sequencing”. In:
Molecular Ecology 21.8, pp. 2039-2044.

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler (2008).
“GenBank”. In: Nucleic Acids Research 36 (Database Issue), pp. D25-D30.
Besse-Lototskaya, A., P. F. M. Verdonschot, and J. A. Sinkeldam (2006). “Uncer-
tainty in diatom assessment: sampling, identification and counting variation”. In:

Hydrobiologia 566.1, pp. 247-260.

Birks, H. J. B. (2010). “Numerical methods for the analysis of diatom assemblage
data” In: The Diatoms: Applications for the Environmental and Farth Sciences.
Ed. by J. P. Smol and E. F. Stoermer. 2nd. Cambridge, UK: Cambridge Univer-
sity Press, pp. 23-54.

Blomberg, S. P. and T. Garland (2002). “Tempo and mode in evolution: phyloge-
netic inertia, adaptation and comparative methods”. In: Journal of Fvolutionary
Biology 15.6, pp. 899-910.

Brettum, P. (1989). Algen als Indikatoren fir die Gewdsserqualitit in norwegischen
Binnenseen. Norway: Norsk Institutt for vannforskning (NIVA), p. 102.

Buchwalter, D. B., D. J. Cain, C. A. Martin, L. Xie, S. N. Luoma, and T. Garland
Jr (2008). “Aquatic insect ecophysiological traits reveal phylogenetically based
differences in dissolved cadmium susceptibility”. In: Proceedings of the National
Academy of Sciences 105.24, pp. 8321-8326.

14



Carew, M. E., A. D. Miller, and A. A. Hoffmann (2011). “Phylogenetic signals and
ecotoxicological responses: potential implications for aquatic biomonitoring”. In:
Ecotozicology 20.3, pp. 595-606.

Chessman, B., I. Growns, J. Currey, and N. Plunkett-Cole (1999). “Predicting di-
atom communities at the genus level for the rapid biological assessment of rivers”.
In: Freshwater Biology 41.2, pp. 317-331.

Coissac, E., T. Riaz, and N. Puillandre (2012). “Bioinformatic challenges for DNA
metabarcoding of plants and animals”. In: Molecular Fcology 21.8, pp. 1834—
1847.

Coste, M. (1982). Etude des méthodes biologiques d’appréciation quantitative de la
qualité des eaux. Cemagref, p. 218.

Fortin, M.-J. and J. Gurevitch (2001). “Mantel tests: spatial structure in field exper-
iments”. In: Design and Analysis of Ecological Experiments. Ed. by S. M. Scheiner
and J. Gurevitch. 2nd. New York: Oxford University Press, pp. 308-326.

Growns, 1. (1999). “Is genus or species identification of periphytic diatoms required
to determine the impacts of river regulation?” In: Journal of Applied Phycology
11.3, pp. 273-283.

Guénard, G., P. Legendre, and P. Peres-Neto (2013). “Phylogenetic eigenvector
maps: a framework to model and predict species traits”. In: Methods in Ecology
and Evolution 4.12, pp. 1120-1131.

Hackathon et al. (2013). phylobase: Base package for phylogenetic structures and
comparative data. Version 0.6.5.2.

Hardy, O. J. and S. Pavoine (2012). “Assessing phylogenetic signal with measure-
ment error: A comparison of Mantel tests, Blomberg et al’s K, and phylogenetic
distograms”. In: Evolution 66.8, pp. 2614-2621.

Hill, B. H., R. J. Stevenson, Y. Pan, A. T. Herlihy, P. R. Kaufmann, and C. B.
Johnson (2001). “Comparison of correlations between environmental character-
istics and stream diatom assemblages characterized at genus and species levels”.
In: Journal of the North American Benthological Society 20.2, pp. 299-310.

Ibéfiez, C., N. Caiola, P. Sharpe, and R. Trobajo (2010). “Ecological indicators to
assess the health of river ecosystems”. In: Handbook of Ecological Indicators for
Assessment of Ecosystem Health. Ed. by S. E. Jgrgensen, L. Xu, and R. Costanza.
2nd. Boca Raton, Florida: CRC Press, pp. 447—464.

Jombart, T., F. Balloux, and S. Dray (2010). “adephylo: new tools for investigating
the phylogenetic signal in biological traits”. In: Bioinformatics 26.15, pp. 1907—
19009.

Jones, F. C. (2008). “Taxonomic sufficiency: the influence of taxonomic resolution on
freshwater bioassessments using benthic macroinvertebrates”. In: Environmental
Reviews 16, pp. 45—69.

Kahlert, M. et al. (2009). “Harmonization is more important than experience—
results of the first Nordic-Baltic diatom intercalibration exercise 2007 (stream
monitoring)”. In: Journal of Applied Phycology 21.4, pp. 471-482.

Keck, F., F. Rimet, A. Franc, and A. Bouchez (2016). “Phylogenetic signal in di-
atom ecology: perspectives for aquatic ecosystems biomonitoring”. In: Ecological
Applications.

15



Kelly, M. G., C. J. Penny, and B. A. Whitton (1995). “Comparative performance
of benthic diatom indices used to assess river water quality”. In: Hydrobiologia
302.3, pp. 179-188.

Kelly, M. G. and B. A. Whitton (1995). “The trophic diatom index: a new index
for monitoring eutrophication in rivers”. In: Journal of Applied Phycology 7.4,
pp. 433-444.

Kermarrec, L., L. Ector, A. Bouchez, F. Rimet, and L. Hoffmann (2011). “A pre-
liminary phylogenetic analysis of the Cymbellales based on 185 rDNA gene se-
quencing”. In: Diatom Research 26.3, pp. 305-315.

Lange-Bertalot, H. (1979). “Pollution tolerance of diatoms as a criterion for water
quality estimation”. In: Nova Hedwigia 64, pp. 285—-304.

Larras, F., F. Keck, B. Montuelle, F. Rimet, and A. Bouchez (2014). “Linking Di-
atom Sensitivity to Herbicides to Phylogeny: A Step Forward for Biomonitor-
ing?” In: Environmental Science & Technology 48.3, pp. 1921-1930.

Lavoie, 1., P. J. Dillon, and S. Campeau (2009). “The effect of excluding diatom
taxa and reducing taxonomic resolution on multivariate analyses and stream
bioassessment”. In: Fcological Indicators 9.2, pp. 213-225.

Lecointe, C., M. Coste, and J. Prygiel (1993). ““Omnidia”: software for taxonomy,
calculation of diatom indices and inventories management”. In: Hydrobiologia
269-270.1, pp. 509-513.

Lenoir, A. and M. Coste (1996). “Development of a practical diatom index of overall
water quality applicable to the French National Water Board Network”. In: Use
of Algae for Monitoring Rivers II. International symposium, Volksbildungsheim
Grilhof Vill, AUT, 17-19 September 1995. Universitat Innsbruck: Whitton, B.A.,
Rott, E., Eds., pp. 29-43.

Mann, D. G. and P. Vanormelingen (2013). “An inordinate fondness? The number,
distributions, and origins of diatom species”. In: Journal of Eukaryotic Microbi-
ology 60.4, pp. 414-420.

Medlin, L. K. (2011). “A review of the evolution of the diatoms from the origin of the
lineage to their populations”. In: The Diatom World. New York, USA: Seckbach,
J., Kociolek, P., Eds., pp. 93-118.

Newman, M. E. J. and M. Girvan (2004). “Finding and evaluating community struc-
ture in networks”. In: Physical review FE 69.2, p. 026113.

Paradis, E., J. Claude, and K. Strimmer (2004). “APE: analyses of phylogenetics
and evolution in R language”. In: Bioinformatics 20.2, pp. 289-290.

Patrick, R. (1961). “A study of the numbers and kinds of species found in rivers in
eastern United States”. In: Proceedings of the Academy of Natural Sciences of
Philadelphia 113.10, pp. 215-258.

Pavoine, S. and C. Ricotta (2013). “Testing for Phylogenetic Signal in Biological
Traits: The Ubiquity of Cross-Product Statistics”. In: Fvolution 67.3, pp. 828-
840.

Pavoine, S., S. Ollier, D. Pontier, and D. Chessel (2008). “Testing for phylogenetic
signal in phenotypic traits: new matrices of phylogenetic proximities”. In: Theo-
retical Population Biology 73.1, pp. 79-91.

Poteat, M. D. and D. B. Buchwalter (2014). “Phylogeny and Size Differentially Influ-
ence Dissolved Cd and Zn Bioaccumulation Parameters among Closely Related
Aquatic Insects”™ In: Environmental Science & Technology 48.9, pp. 5274-5281.

16



Poteat, M. D., T. Garland, N. S. Fisher, W.-X. Wang, and D. B. Buchwalter (2013).
“Evolutionary Patterns in Trace Metal (Cd and Zn) Efflux Capacity in Aquatic
Organisms”. In: Environmental Science & Technology 47.14, pp. 7989-7995.

Prygiel, J., P. Carpentier, S. Almeida, M. Coste, J.-C. Druart, L. Ector, D. Guil-
lard, M.-A. Honoré, R. Iserentant, and P. Ledeganck (2002). “Determination of
the biological diatom index (IBD NF T 90-354): results of an intercomparison
exercise”. In: Journal of Applied Phycology 14.1, pp. 27-39.

Prygiel, J., L. Lévéque, and R. Iserentant (1996). “Un nouvel Indice Diatomique
Pratique pour I’évaluation de la qualité des eaux en réseau de surveillance”. In:
Journal of Water Science 9.1, pp. 97-113.

Raunio, J. and J. Soininen (2007). “A practical and sensitive approach to large river
periphyton monitoring: comparative performance of methods and taxonomic lev-
els” In: Boreal environment research 12.1.

R Development Core Team (2013). R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Computing.

Rimet, F. and A. Bouchez (2012). “Biomonitoring river diatoms: Implications of
taxonomic resolution”. In: Ecological Indicators 15.1, pp. 92-99.

Rott, E., P. G. Hofmann, K. Pall, P. Pfister, and E. Pipp (1997). “Indikationslisten
flir Aufwuchsalgen in 6sterreichischen Fliessgewéssern. Teil 1: Saprobielle Indika-
tion”. In: Bundesministerium fiir Land-und Forstwirtschaft, Wasserwirtschaft-
skataster, Wien.

Rott, E., E. Pipp, P. Pfister, H. Van Dam, K. Ortler, N. Binder, and K. Pall (1999).
“Indikationslisten fir Aufwuchsalgen in Osterreichischen Fliessgewéssern. Teil
2: Trophie-indikation sowie geochemische Priferenz; taxonomische und toxikol-
ogische Anmerkungen”. In: Bundesministerium fir Land-und Forstwirtschaft,
Wasserwirtschaftskataster, Wien.

Sanderson, M. J. (2002). “Estimating Absolute Rates of Molecular Evolution and
Divergence Times: A Penalized Likelihood Approach”. In: Molecular Biology and
Evolution 19.1, pp. 101-109.

Sokal, R. R. (1979). “Testing Statistical Significance of Geographic Variation Pat-
terns”. In: Systematic Zoology 28.2, pp. 227-232.

Stamatakis, A. (2006). “RAxML-VI-HPC: maximum likelihood-based phylogenetic
analyses with thousands of taxa and mixed models”. In: Bioinformatics 22.21,
pp- 2688-2690.

Stevenson, R. J., P. Yangdong, and H. Van Dam (2010). “Assessing environmental
conditions in rivers and streams with diatoms”. In: The Diatoms: Applications
for the Environmental and Earth Sciences. Ed. by J. P. Smol and E. F. Stoermer.
2nd ed. Cambridge University Press, pp. 55-85.

Theriot, E. C., M. Ashworth, E. Ruck, T. Nakov, and R. K. Jansen (2010). “A
preliminary multigene phylogeny of the diatoms (Bacillariophyta): challenges for
future research”. In: Plant Ecology and Fvolution 143.3, pp. 278-296.

Theriot, E. C., E. Ruck, M. Ashworth, T. Nakov, and R. K. Jansen (2011). “Status
of the pursuit of the diatom phylogeny: Are traditional views and new molecular
paradigms really that different?” In: The Diatom World. Ed. by J. Seckbach and
J. Kociolek. New York, USA: Springer, pp. 119-142.

Van Steen, M. (2010). Graph Theory and Complex Networks: An Introduction.
Maarten van Steen. 300 pp.

17



Vignieri, S. N. (2005). “Streams over mountains: influence of riparian connectivity
on gene flow in the Pacific jumping mouse (Zapus trinotatus)”. In: Molecular
Ecology 14.7, pp. 1925-1937.

Wheeler, D. L. et al. (2008). “Database resources of the National Center for Biotech-
nology Information”. In: Nucleic Acids Research 36 (Database Issue), pp. D13—
D21.

Wunsam, S., A. Cattaneo, and N. Bourassa (2002). “Comparing diatom species,
genera and size in biomonitoring: a case study from streams in the Laurentians
(Quebec, Canada)”. In: Freshwater Biology 47.2, pp. 325-340.

Zelinka, M. and P. Marvan (1961). “Zur prézisierung der biologischen klassifikation
der reinheit flieender gewésser”. In: Archiv fiir Hydrobiologie 57.3, pp. 389—407.

Zimmermann, J., N. Abarca, N. Enk, O. Skibbe, W.-H. Kusber, and R. Jahn (2014).
“Taxonomic Reference Libraries for Environmental Barcoding: A Best Practice
Example from Diatom Research”. In: PLoS ONE 9.9, e108793.

18



	Introduction
	Material and Methods
	Phylogenetic tree reconstruction
	Phylogenetically constrained clustering
	Defining new indices based on phylogenetic clusters
	Developing IPSP indices
	Comparing IPSP indices performances
	Statistical Packages

	Results
	Discussion
	Phylogenetic clustering – methodological discussion
	Phylogenetically based indices – potential for applications

	Acknowledgments
	References

