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A NOTE ON OPTIMAL SPECTRAL BOUNDS FOR

NONOVERLAPPING DOMAIN DECOMPOSITION

PRECONDITIONERS FOR hp–VERSION DISCONTINUOUS

GALERKIN METHODS

PAOLA F. ANTONIETTI, PAUL HOUSTON, AND IAIN SMEARS

Abstract. In this article, we consider the derivation of hp–optimal spectral bounds for a class of

domain decomposition preconditioners based on the Schwarz framework for discontinuous Galerkin

finite element approximations of second–order elliptic partial differential equations. In particular,
we improve the bounds derived in our earlier article [P.F. Antonietti and P. Houston, J. Sci.

Comput., 46(1):124–149, 2011] in the sense that the resulting bound on the condition number of

the preconditioned system is not only explicit with respect to the coarse and fine mesh sizes H
and h, respectively, and the fine mesh polynomial degree p, but now also explicit with respect to

the polynomial degree q employed for the coarse grid solver. More precisely, we show that the

resulting spectral bounds are of order p2H/(qh) for the hp–version of the discontinuous Galerkin
method.
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1. Introduction

In this article, we study a class of nonoverlapping Schwarz preconditioners em-
ployed for the hp–version discontinuous Galerkin finite element (DGFEM) ap-
proximation of second–order elliptic partial differential equations. We stress that
Schwarz-type preconditioners are particularly suited to DGFEMs, in the sense that
uniform scalability of the underlying iterative method may be established without
the need to overlap the subdomain partition of the computational mesh. In a paral-
lel setting, this is a particularly attractive property, since the absence of overlapping
subdomains reduces communication between processors.

In the h–version setting, spectral bounds of order H/h for the underlying pre-
conditioned system may be established, where H and h denote the granularity of
the coarse and fine meshes, respectively, cf., for example, [12, 1, 2, 3, 4, 9, 10]. We
note that h-version results generally do not specify the dependence of the spectral
bounds on the polynomial degree of the finite element space, as they are left implicit
in the constants carried through the analysis. The extension of the above results to
the hp–version setting has been undertaken in our previous articles [5, 6]; in partic-
ular, we showed that the condition number of the preconditioned system is of order
p2H/h, where p denotes the polynomial degree employed on the fine finite element
mesh (of granularity h). While this bound is indeed optimal with respect to H, h,
and p, when the polynomial degree q employed for the coarse grid solver is kept
fixed, the dependence on q may not be explicitly determined from this analysis.
Indeed, on the basis of the computations presented in [5], we conjectured a spectral
bound on the preconditioned system to be of order p2H/(qh); in the present article,
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we now provide a proof of this conjecture. The key aspect of this analysis is the
derivation of an hp–optimal approximation property between the coarse and fine
finite element spaces. With this in mind, we follow the recent analysis presented in
[20] for problems posed within the H2–context to deduce analogous results in the
present setting.

This article is organised as follows. In Section 2 we introduce the model problem,
together with its hp–version DGFEM discretization. Section 3 derives a crucial
result concerning the approximation of discontinuous functions by a conforming
H1-approximant. In Section 4 we recall the additive and multiplicative Schwarz
preconditioners analyzed in [5]. Finally, hp–optimal spectral bounds are deduced
in Section 5 which are explicit with respect to both the fine and coarse mesh sizes
h and H, respectively, as well as the polynomial degrees p and q exploited within
the fine and coarse mesh solvers, respectively. Throughout this article, we use the
notation x . y to signify that there exists a positive constant C, independent of
the discretization parameters, such that x ≤ C y.

2. Discontinuous Galerkin methods

Given a bounded, convex polygonal/polyhedral domain Ω ⊂ Rd, d = 2, 3, and
a function f ∈ L2(Ω), we consider the following model problem: find u ∈ H1

0 (Ω)
such that

(1)

∫
Ω

∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ H1
0 (Ω).

Let Th = {K} be a shape-regular, quasi-uniform, conforming decomposition of
Ω with granularity h = maxK∈Th hK, where hK denotes the diameter of element
K, K ∈ Th. We assume that every element K ∈ Th is the image of a fixed master

element K̂, i.e., K = FK(K̂), where K̂ is either the open unit d-simplex or the open
unit hypercube in Rd, d = 2, 3. We collect all the interior and boundary faces of
Th in the sets FIh and FBh , respectively, and set Fh = FIh ∪ FBh .

Next we introduce standard jump and average trace operators, cf. [8]. To this
end, given an interior face F ∈ FIh , shared by two neighboring elements K± ∈ Th,
we write v± to denote the trace of a (sufficiently regular) function v on the face F ,
taken within the interior of K±, respectively. Similarly, given a (sufficiently regular)
vector-valued function q, q± is defined in an analogous (componentwise) manner.
With this notation, we define

[[q]] = q+ · n+ + q− · n−, [[v]] = v+n+ + v−n−,

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−),

where n± denotes the unit outward normal vector on the boundary of K±, respec-
tively. On a boundary face F ∈ FBh , we set [[q]] = q · n, [[v]] = vn, {{q}} = q, and
{{v}} = v, where n denotes the outward unit normal vector on the boundary ∂Ω of
the computational domain Ω.

Given an integer p ≥ 1, the polynomial degree, the corresponding hp–DGFEM
finite element space is defined by

(2) Vhp = {u ∈ L2(Ω) : u ◦ FK ∈Mp(K̂) ∀ K ∈ Th},

where Mp(K̂) is either the space Pp(K̂) of polynomials of degree at most p on K̂, if

K̂ is the reference d-simplex, or the space Qp(K̂) of all tensor–product polynomials
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on K̂ of degree p in each coordinate direction, if K̂ is the unit reference hypercube
in Rd, d = 2, 3.

Using the convention that∫
Fh

ϕ ds =
∑
F∈Fh

∫
F

ϕ ds,

for a sufficiently regular function ϕ, we introduce the following lifting operators:

(3)

R : [L1(Fh)]d → [Vhp]d,
∫

Ω

R(q) · η dx = −
∫
Fh

q · {{η}} ds ∀η ∈ [Vhp]d,

L : L1(FIh)→ [Vhp]d,
∫

Ω

L(z) · η dx = −
∫
FI

h

z [[η]] ds ∀η ∈ [Vhp]d.

Remark 2.1. For the sake of simplicity we have assumed that the underlying com-
putational mesh Th is both conforming and quasi-uniform and that the polynomial
degree does not vary elementwise. However, we stress that these assumptions can be
relaxed; indeed, our forthcoming analysis naturally extends to the case when non-
uniform, non-matching grids are employed, together with a variable polynomial de-
gree vector, provided that both the mesh size and the polynomial degree distribution
satisfy a local-bounded variation property, cf. [13, 17], for example.

Writing ∇h to denote the elementwise application of the operator ∇, we intro-
duce the bilinear form A : Vhp × Vhp → R defined by

(4) A(w, v) =

∫
Ω

(∇hw +R([[w]]) + L(β · [[w]]) · (∇hv +R([[v]]) + L(β · [[v]]) dx

− θ
∫

Ω

R([[w]]) · R([[w]]) dx+

∫
Fh

σ [[w]] · [[v]] ds.

Here, R(·) and L(·) are the lifting operators defined as in (3), θ,β are parameters
that will be specified later on, and the penalty stabilization function σ is defined as

(5) σ =Cσ p
2h−1,

where Cσ ≥ 1 (at our disposal) is independent of the meshsize and the approxima-
tion order. Then, the hp–DGFEM approximation of (1) is given by: find uh ∈ Vhp
such that

(6) A(uh, vh) =

∫
Ω

fvh dx ∀ vh ∈ Vhp.

For θ = 1 and β = 0, the bilinear form (4) corresponds to the symmetric inte-
rior penalty (SIP) DGFEM formulation [7], whereas for θ = 0 and β a uniformly
bounded (and possibly null) vector in Rd we obtain the local discontinuous Galerkin
(LDG) bilinear form [11].

For a sufficiently regular function v, we adopt the convention that

‖v‖2L2(Fh) =
∑
F∈Fh

‖v‖2L2(F );

with this notation we define the following DGFEM (mesh-dependent) norm

(7) ‖v‖2DG = ‖∇hv‖2L2(Ω) + ‖σ1/2 [[v]] ‖2L2(Fh).
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Equipped with ‖ · ‖DG, it can be shown that the bilinear form A(·, ·) is continuous
and coercive on Vhp × Vhp, i.e.,

A(u, v) . ‖u‖DG‖v‖DG ∀u, v ∈ Vhp,(8)

A(u, u) & ‖u‖2DG ∀u ∈ Vhp,(9)

respectively, cf. [5, 15, 17] and the references cited therein. We point out that
coercivity of the SIP formulation requires that the constant Cσ appearing in the
definition (5) of the penalty stabilization function σ must be chosen sufficiently
large.

Given a particular (fixed) basis for the discrete space Vhp, problem (6) can be
recast as the following linear system of equations: find U ∈ Rm, m = dim(Vhp),
such that

(10) AU = f ,

where A is an m × m symmetric, positive definite matrix. We recall from [5,
Corollary 2.9] that for a given set of basis functions, which are orthonormal on the

reference element K̂, the spectral condition number κ(A) of the stiffness matrix A
can be bounded by

(11) κ(A) . Cσ p
4h−2.

In the next section, we discuss the efficient preconditioning of the underlying
DGFEM matrix problem (10); first, however, we recall the following standard re-
sults.

Given a face F ∈ Fh of an element K ∈ Th, i.e., F ⊂ ∂K, the following inverse
inequality holds:

(12) ‖v‖2L2(F ) .
p2|F |
|K|
‖v‖2L2(K) ∀v ∈Mp(K),

cf. [18, 19]. Given that the elements K, K ∈ Th, are shape-regular and that the
mesh Th is conforming, the diameter of the faces of each element K ∈ Th are of
comparable size to the diameter of the corresponding element. In particular, we
have that

hd−1
K . |F | . hd−1

K ;

thereby, exploiting the quasi-uniformity of the mesh, the inverse inequality (12) can
be rewritten in the following manner:

‖v‖2L2(F ) .
p2

h
‖v‖2L2(K) ∀v ∈Mp(K).

Employing the above inverse estimate, together with the arguments presented
in [5], we deduce the following stability bounds for the lifting operators R and L.

Lemma 2.1. For any v ∈ Vhp we have that

‖R([[v]])‖L2(Ω) . ‖σ1/2 [[v]] ‖L2(Fh),

‖L(β · [[v]])‖L2(Ω) . ‖σ1/2 [[v]] ‖L2(Fh).

Finally, we recall the following interpolation estimates. To this end, for any real
number s ≥ 0, we write Hs(Th) to denote the broken Sobolev space of piecewise Hs

functions with norm and semi-norm denoted by ‖·‖Hs(Th) and |·|Hs(Th), respectively.
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Then, for any function v ∈ Hs(Th), there exists Πhv ∈ Vhp such that, for any
element K ∈ Th, we have

(13)

‖v −Πhv‖Hr(K) .
hmin(s,p+1)−r

ps−r
‖v‖Hs(K) ∀r, 0 ≤ r ≤ s,

‖Dα(v −Πhv)‖L2(∂K) .
hmin(s,p+1)−|α|−1/2

ps−|α|−1/2
‖v‖Hs(K) ∀α, 0 ≤ |α| ≤ k,

where α ∈ Nd0 is a multi-index of length |α|. Here, the second inequality holds
provided s > 1/2 and k is the greatest non-negative integer strictly less than s−1/2.

3. Approximation of Vhp functions by H1-functions

The main result of this section is an approximation result which demonstrates
that any vh ∈ Vhp can be approximated by an H1-function. We remark that results
of this type have been exploited within the context of a posteriori error estimation
of DGFEMs; see, in particular, [14] and [16]. In this section, we present a bound
for the L2(Ω)-norm of the error between vh ∈ Vhp and its conforming approximant
based on exploiting the analysis presented in [20]. To this end, we introduce the
discrete operator

(14) Gh : Vhp −→ [Vhp]d, Gh(vh) = ∇hvh +R([[vh]]) + L(β · [[vh]]),

where the lifting operators R and L are as defined in (3). With this notation, we
consider the following problem: for a given vh ∈ Vhp, find H(vh) ∈ H1

0 (Ω) such
that

(15)

∫
Ω

∇H(vh) · ∇w dx =

∫
Ω

Gh(vh) · ∇w dx ∀w ∈ H1
0 (Ω).

Note that in general H(vh) is not an element of Vhp; however, we shall demon-
strate that the function H(vh) possesses good approximation properties in terms of
providing an H1-conforming approximant of the discontinuous function vh.

Theorem 3.1. Let Ω be a bounded convex polygonal/polyhedral domain in Rd,
d = 2, 3. Given vh ∈ Vhp, we write H(vh) ∈ H1

0 (Ω) to be the approximation defined
in (15). Then, the following approximation and stability results hold:

‖vh −H(vh)‖L2(Ω) .
h

p
‖σ1/2 [[vh]] ‖L2(Fh),(16)

|H(vh)|H1(Ω) . ‖vh‖DG,(17)

where the constant is independent of vh.

Proof. First we present the proof of (16); to this end, since Ω is convex, there exists
z ∈ H2(Ω) ∩H1

0 (Ω) such that

(18)
−∆z = vh −H(vh) in Ω,

z = 0 on ∂Ω;
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morover, z satisfies the bound ‖z‖H2(Ω) . ‖vh −H(vh)‖L2(Ω). Employing integra-
tion by parts, we deduce that

‖vh −H(vh)‖2L2(Ω) = −
∫

Ω

(vh −H(vh)) ∆z dx

=
∑
K∈Th

∫
K

(∇vh −∇H(vh)) · ∇z dx−
∫
Fh

∇z · [[vh]] ds

=
∑
K∈Th

∫
K

(Gh(vh)−∇H(vh)) · ∇z dx+

∫
Fh

∇z · [[vh]] ds

−
∫

Ω

(R([[vh]]) + L(β · [[vh]])) · ∇z dx.

Using the definition of H(vh) in (15) and the definition of the lifting operators R
and L given in (3), for any zh ∈ Vhp, we get

‖vh −H(vh)‖2L2(Ω) = −
∫

Ω

(R([[vh]]) + L(β · [[vh]])) · ∇z dx−
∫
Fh

∇z · [[vh]] ds

= −
∫

Ω

(R([[vh]]) + L(β · [[vh]])) · (∇z −∇zh) dx

+

∫
Fh

[[vh]] · {{∇zh}} ds+

∫
FI

h

β · [[vh]] [[∇zh]] ds

−
∫
Fh

∇z · [[vh]] ds.(19)

Given that z ∈ H2(Ω), we deduce that the jump [[∇z]] = 0 for all faces F ∈ FIh .
Thereby, (19) may be written in the following equivalent form

‖vh −H(vh)‖2L2(Ω) = −
∫

Ω

(R([[vh]]) + L(β · [[vh]])) · (∇z −∇zh) dx

−
∫
Fh

[[vh]] · {{∇z −∇zh}} ds

−
∫
FI

h

β · [[vh]] [[∇z −∇zh]] ds,

for any zh ∈ Vhp. We now select zh to be the projection of z, i.e., zh = Πhz. Then,
exploiting the interpolation bounds given in (13), together with the stability of the
lifting operators R and L, cf. Lemma 2.1, we deduce that

(20) ‖vh −H(vh)‖2L2(Ω) .
h

p
‖z‖H2(Ω)‖σ1/2 [[vh]] ‖L2(Fh).

The approximation result stated in (16) now immediately follows from (20), based
on employing the inequality ‖z‖H2(Ω) . ‖vh − H(vh)‖L2(Ω). Finally, to prove the
stability estimate given in (17), we first note that by selecting w = H(vh) in (15),
upon application of the Cauchy–Schwarz inequality, we get

|H(vh)|H1(Ω) ≤ ‖Gh(vh)‖L2(Ω).

Employing the definition of Gh(vh) given in (14), together with Lemma 2.1, and the
definition of DGFEM norm, cf. (7), we immediately deduce the desired result. �
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4. Nonoverlapping domain decomposition preconditioners

In this section we define the nonoverlapping domain decomposition precondi-
tioners analyzed in [5]. To this end, we assume that the fine partition Th has been
obtained after successive uniform refinements of a given shape regular and quasi-
uniform coarse mesh TH with granularity H. We then agglomerate the coarse
elements to obtain a subdomain partition TS = {Ωi}Ni=1 consisting of N nonover-
lapping star-shaped subdomains. Next we introduce the local and coarse solvers,
which represent the key ingredients in the definition of the underlying precondi-
tioners.
Local solvers. The local spaces are defined as the restriction of the DGFEM finite
element space Vhp, cf. (2), to the subdomain Ωi, i.e.,

Vihp = {v ∈ L2(Ωi) : v ◦ FK ∈Mp(K̂) ∀ K ∈ Th,K ⊂ Ωi},

i = 1, . . . , N . The local bilinear forms are defined by

Ai : Vihp × Vihp −→ R, Ai(ui, vi) = A(R>i ui, R
>
i vi) ∀ui, vi ∈ Vihp,

i = 1, . . . , N , where R>i : Vihp −→ Vhp, i = 1, . . . , N , denotes the classical injection

operator from Vihp to Vhp.
Coarse solver. The DGFEM finite element space associated to the coarse partition
TH is defined by

VHq = {v ∈ L2(Ω) : v ◦ FP ∈Mq(K̂) ∀ P ∈ TH},

where the integer q is chosen so that 1 ≤ q ≤ p. Notice that with the above choice
of TH and q, the following inclusion holds: VHq ⊆ Vhp. The coarse bilinear form is
defined by

(21) A0 : VHq × VHq −→ R, A0(u0, v0) = A(R>0 u0, R
>
0 v0) ∀u0, v0 ∈ VHq,

where R>0 : VHq −→ Vhp is the classical injection operator from VHq to Vhp.
Introducing the projection operators Pi = R>i P̃i : Vhp −→ Vhp, i = 0, 1, . . . N ,

where

P̃i : Vhp −→ Vihp, Ai(P̃ivh, wi) = A(vh, R
>
i wi) ∀wi ∈ Vihp, i = 1, . . . , N,

P̃0 : Vhp −→ VHq, A0(P̃0vh, w0) = A(vh, R
>
0 w0) ∀w0 ∈ VHq,

the additive and multiplicative Schwarz operators are defined, respectively, by

(22) Pad =

N∑
i=0

Pi, Pmu = I − Emu,

where the error propagation operator Emu is given by

Emu = (I − PN )(I − PN−1) · · · (I − P0).

Then, the Schwarz method consists of solving, by a suitable Krylov iterative solver,
the system of equations

Puh = g,

for a suitable right hand side g, where P is either Pad or Pmu.
Algebraically, by fixing a given basis for the discrete space Vhp, the Schwarz

operators Pad and Pmu can be written as products of suitable preconditioners,
namely Bad or Bmu, respectively, with the matrixA. Thereby, the Schwarz method
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consists of solving the preconditioned system of equations: find U ∈ Rm, m =
dim(Vhp), such that

BAU = Bf,

where B is either Bad or Bmu.

5. Analysis of nonoverlapping preconditioners

The main result of this section is to establish spectral bounds for the Schwarz
operators introduced in the previous section. To this end, it is easy to see that the
additive Schwarz operator is self-adjoint (with respect to the inner-product induced
by A(·, ·)) and positive definite. Therefore, we can define its spectral condition
number κ(Pad) by

κ(Pad) =
λmax(Pad)

λmin(Pad)
,

where

λmax(Pad) = sup
vh∈Vhp

vh 6=0

A(Padvh, vh)

A(vh, vh)
, λmin(Pad) = inf

vh∈Vhp

vh 6=0

A(Padvh, vh)

A(vh, vh)
.

On the other hand, in general, the multiplicative Schwarz operator Pmu is not self-
adjoint. Thereby, we consider a Richardson iteration applied to the multiplicative
preconditioned system and show that it converges. This, will be undertaken by
proving that the A–norm of the error propagation operator Emu defined by

‖Emu‖A = sup
vh∈Vhp

vh 6=0

A(Emuvh, Emuvh)

A(vh, vh)

is strictly less than one, which indeed represents a sufficient condition for the con-
vergence of the Richardson scheme.

Before proceeding, we first derive a result concerning the approximation of any
function vh ∈ Vhp, by an approximant vH ∈ VHq; the proof is an extension of [20,
Theorem 6].

Lemma 5.1. For any vh ∈ Vhp, there exists vH ∈ VHq such that

‖vh − vH‖L2(Ω) .
H

q
‖vh‖DG,(23)

|vh − vH |H1(Th) . ‖vh‖DG.(24)

Proof. For any vh ∈ Vhp, let H(vh) ∈ H1
0 (Ω) be defined as in (15), and let vH =

ΠHH(vh), where ΠH is the projection operator onto the coarse space VHq satisfying
(13). Firstly, we establish the approximation result stated in (23); to this end,
employing the triangle inequality we get

‖vh − vH‖L2(Ω) ≤ ‖vh −H(vh)‖L2(Ω) + ‖H(vh)−ΠHH(vh)‖L2(Ω).

Exploiting the interpolation estimates stated in (13), the Poincaré–Friedrichs in-
equality, together with Theorem 3.1, we obtain

‖vh − vH‖L2(Ω) .
h

p
‖σ1/2 [[vh]] ‖L2(Fh) +

H

q
‖H(vh)‖H1(Ω) .

h

p
‖vh‖DG +

H

q
‖vh‖DG.
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Using the fact that q ≤ p and h ≤ H, we deduce that

‖vh − vH‖L2(Ω) .
H

q
‖vh‖DG,

as required. Finally, we consider the proof of (24); as before, employing the triangle
inequality and the definition of the DGFEM norm, gives

(25) |vh − vH |H1(Th) ≤ |vh|H1(Th) + |vH |H1(Th) ≤ ‖vh‖DG + |vH |H1(Th) .

Hence, to prove (24), it is sufficient to show that |vH |H1(Th) . ‖vh‖DG. To this end,

exploiting the triangle inequality, the interpolation estimate (13), the Poincaré–
Friedrichs inequality, together with (17), we get

|vH |H1(Th) ≤ |vH −H(vh)|H1(Th) + |H(vh)|H1(Ω)

. ‖H(vh)‖H1(Ω) + |H(vh)|H1(Ω)

. |H(vh)|H1(Ω) . ‖vh‖DG.(26)

The approximation result stated in equation (24) immediately follows by inserting
(26) into (25).

�

Next we recall the following preliminary result which will be utilized in the
forthcoming analysis, cf. [5].

Lemma 5.2. [5, Lemma 4.2]. Any vh ∈ Vhp can be decomposed (uniquely) as

vh =
∑N
i=1R

>
i vi, with vi ∈ Vihp, i = 1, . . . , N , and the following identity holds:

(27) A(vh, vh) =

N∑
i=1

Ai(vi, vi) +

N∑
i,j=1
i 6=j

A(R>i vi, R
>
j vj).

Moreover, the second term on the right hand side can be bounded as∣∣∣∣∣∣∣∣
N∑

i,j=1
i 6=j

A(R>i vi, R
>
j vj)

∣∣∣∣∣∣∣∣ . ‖vh‖
2
DG + σ

∑
P∈TH

‖vh‖2L2(∂P),

where σ = Cσp
2h−1 is the penalty stabilization function defined in (5).

We also require the following trace inequality derived in [20]; the result is an
extension of the trace inequality proved in [12].

Lemma 5.3. For any vh ∈ Vhp, the following trace inequality holds∑
P∈TH

‖vh‖2L2(∂P) . |vh|H1(Th) ‖vh‖L2(Ω) +
1

H
‖vh‖2L2(Ω)

+

 ∑
P∈TH

∑
F∈FI

h
F⊂P

‖σ1/2 [[vh]] ‖2L2(F )


1/2

‖vh‖L2(Ω).

Equipped with Lemma 5.2 and Lemma 5.3, we now prove the following key
result.
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Theorem 5.1 (Stable decomposition). Every vh ∈ Vhp admits a decomposition

of the form vh =
∑N
i=0R

>
i vi, with v0 ∈ VHq and vi ∈ Vihp, i = 1, . . . , N , which

satisfies the bound
N∑
i=0

Ai(vi, vi) ≤ C2
\ A(vh, vh),

where

C2
\ = Cσ

H

h

p2

q
.

Proof. Given vh ∈ Vhp, let v0 ∈ VHq be defined as in Lemma 5.1. Then, we uniquely
decompose vh −R>0 v0 as follows

vh −R>0 v0 =

N∑
i=1

R>i vi.

Thereby, from (27) we can write

A(vh −R>0 v0, vh −R>0 v0) =

N∑
i=1

Ai(vi, vi) +

N∑
i,j=1
i6=j

A(R>i vi, R
>
j vj).

Adding A0(v0, v0) (≡ A(R>0 v0, R
>
0 v0)) to both sides and exploiting the triangle

inequality gives∣∣∣∣∣
N∑
i=0

Ai(vi, vi)

∣∣∣∣∣ ≤ ∣∣A(vh −R>0 v0, vh −R>0 v0)
∣∣+
∣∣A(R>0 v0, R

>
0 v0)

∣∣
+

∣∣∣∣∣∣∣∣
N∑

i,j=1
i 6=j

A(R>i vi, R
>
j vj)

∣∣∣∣∣∣∣∣ .(28)

Exploiting the continuity and coercivity of the DGFEM bilinear form A(·, ·), cf.
(8) and (9), respectively, the first two terms on the right hand side of (28) can be
bounded by
(29)∣∣A(vh −R>0 v0, vh −R>0 v0)

∣∣+
∣∣A(R>0 v0, R

>
0 v0)

∣∣ . |A(vh, vh)|+ ‖vh −R>0 v0‖2DG.

The third term on the right hand side of (28) can be bounded using Lemma 5.2,
with vh replaced by vh −R>0 v0, i.e.,

(30)

∣∣∣∣∣∣∣∣
N∑

i,j=1
i 6=j

A(R>i vi, R
>
j vj)

∣∣∣∣∣∣∣∣ . ‖vh −R
>
0 v0‖2DG + σ

∑
P∈TH

‖vh −R>0 v0‖2L2(∂P).

Inserting the bounds (29) and (30) into (28) gives∣∣∣∣∣
N∑
i=0

Ai(vi, vi)

∣∣∣∣∣ . |A(vh, vh)|+ ‖vh −R>0 v0‖2DG + σ
∑
P∈TH

‖vh −R>0 v0‖2L2(∂P).
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Using the fact that [[R>0 v0]] = 0 on each face F ∈ FIh , such that F 6⊆ ∂P, for any
P ∈ TH , we deduce that

(31)

∣∣∣∣∣
N∑
i=0

Ai(vi, vi)

∣∣∣∣∣ . A(vh, vh)+
∣∣vh −R>0 v0

∣∣2
H1(Th)

+σ
∑
P∈TH

‖vh−R>0 v0‖2L2(∂P).

Employing Lemma 5.1, together with (9), the second term on the right-hand side
of (31) may be bounded as follows:

(32)
∣∣vh −R>0 v0

∣∣2
H1(Th)

. ‖vh‖2DG . A(vh, vh).

To bound the third term on the right-hand side of (31), we employ the trace
inequality stated in Lemma 5.3, together with Lemma 5.1 and (9); thereby, we
deduce that

(33) σ
∑
P∈TH

‖vh −R>0 v0‖2L2(∂P) . σ
H

q

(
1 +

1

q

)
A(vh, vh).

The statement of the theorem now immediately follows upon inserting (32) and
(33) into (31) and employing the definition of the penalty stabilization function
given (5). �

Writing NS to denote the maximum number of adjacent partitions that any given
subdomain in the partition TS might possess, utilizing the stable splitting given in
Theorem 5.1, together with the abstract framework for the analysis of Schwarz
methods [21, 22], we now state the main result of this article.

Theorem 5.2. Given C\ is defined as in Theorem 5.1, i.e., C2
\ = CσHp

2/(hq),
then, the condition number of the additive Schwarz operator satisfies

κ(Pad) ≤ C2
\ (NS + 2) .

Moreover, the error propagation operator Emu = (I − PN ) · · · (I − P0) of the mul-
tiplicative Schwarz operator satisfies

‖Emu‖2A ≤ 1− 1

(2(NS + 1)2 + 1)C2
\

.

Remark 5.1. We point out that the expression derived in Theorem 5.1 for C\ leads
to the optimal spectral bounds stated in Theorem 5.2; these bounds are in agreement
with the numerical experiments presented in our previous article [5]. However,
the analogous spectral bounds presented in [5] were not explicit with respect to the
polynomial degree q employed in the coarse grid solver; indeed, Proposition 4.3 in
[5] only provided the estimate C2

\ = CσHp
2/h. As a final remark, we note that

while the case q = 0 is not directly covered in this article, this has already been
treated in [5].
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