
HAL Id: hal-01429756
https://hal.inria.fr/hal-01429756

Submitted on 9 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Computer Animation as a Vehicle for Teaching
Computational Thinking

Leonel Morales Díaz, Laura Gaytán-Lugo

To cite this version:
Leonel Morales Díaz, Laura Gaytán-Lugo. Computer Animation as a Vehicle for Teaching Compu-
tational Thinking. 6th IFIP World Information Technology Forum (WITFOR), Sep 2016, San José,
Costa Rica. pp.53-59, �10.1007/978-3-319-44447-5_6�. �hal-01429756�

https://hal.inria.fr/hal-01429756
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Computer Animation as a Vehicle for Teaching

Computational Thinking

Leonel Morales Díaz1 and Laura S. Gaytán-Lugo2,

1 Universidad Francisco Marroquín, 6ta Calle Final Zona 10, Guatemala, Guatemala 01010
2 Universidad de Colima, Km. 9 Carretera Colima – Coquimatlán, Colima, México 28300

Abstract. Several platforms and programming languages exist nowadays de-

signed and built to help educators introduce kids and youngsters into computa-

tional thinking. Some of them employ visual elements as the primary output of

code in order to provide an immediate and engaging feedback for students. Com-

puter animations, digital drawings and videogames are common products in these

environments. With the rising popularity of animated films, children and teenag-

ers may find more attractive to enroll in computer animation courses than in com-

puter programming ones. Based in our own experience conducting computer an-

imation workshops, we believe that this interest can be combined with the afore-

mentioned introductory programming environments to introduce students to both

computational thinking and computer animation as complementary subjects. In

this paper we will present a general strategy to accomplish this based on what we

call animation patterns.

Keywords: computational thinking, computer animation, programming lan-

guages, animation patterns.

1 Introduction

Introductory programming languages often categorized as first programming environ-

ments, like Scratch [11], Alice [3] and others, can be used to produce moving images

and animated stories that range in quality from the rudimentary to highly complex and

elaborated. In fact, children, teenagers and adults enrolled in courses that use these en-

vironments end up creating animations even if the purpose of the course was to merely

teach them how to program.

Producing digital animated films is a task that requires, among others, skills in

graphic design and computer programming among others [15], [16]. Several concepts

and techniques applied in computer animation are employed by users of first program-

ming environments without realizing that fact. Duration of movements, coordination of

several acting agents, change of scenes, interactions between characters, appearance

modification, simultaneity, parallel programming, camera movements and several oth-

ers appear naturally without fancy names in environments like Scratch, Alice, Kodu

Game Lab [14], Stencyl [18], and Snap[20].

If attendants to computer programming courses that use those environments knew in

advance that they would be creating animations and that the skills they learn would

actually be of use in a prospective career in computer animation they would feel more

motivated to enroll. Knowing only the information the course name provides it is diffi-

cult for them to infer that. The importance and effects of choosing a meaningful and

attractive title has been studied in other contexts as presented in [12].

On the other hand, if the name of a course on computer programing is going to be

changed to something like “computer animation” then the teacher has to be sure that

they are is actually teaching the subject. For that purpose, a switch in the emphasis has

to be made from teaching programming structures to practicing animation patterns.

In the following sections we will discuss in more detail these three ideas: animation

patterns instead of programming structures, utility of the approach to acquire skills that

are valuable for the animation industry, and attractiveness of animation in contrast to

that of “pure” computer programming to young audiences. The research paths that can

be followed to develop these approaches will also be portrayed.

The viewpoints presented in this work are rooted in several years of experience con-

ducting computer animation workshops using first programming environments, aimed

precisely to introduce students to computational thinking at the same time. A special

section describing these experiences is included.

Because computational thinking is regarded as a fundamental skill in the 21st century

world [7], instructional approaches that make it more accessible to young audiences are

important to explore and include in the research agenda especially in those countries

and regions where the positive impact of technology is expected to be the greatest.

2 Animation Patterns vs. Programming Structures

Traditional introductory programming courses are based on syllabi that include explain-

ing algorithms and several programming structures like decision, loops, variables and

types, procedures, definition, etc., that are common to many programming languages

[1]. Examples of use are presented with each structure hoping that students will under-

stand the general idea behind each one. First programming environments can be used

to teach programming in that way [13], [17] but also to teach computer animation [21].

If the emphasis is to be switched to computer animation then instead of structures

the syllabus could be based on teaching and practicing animation patterns. Each pattern

represents a technique to create an animated scene and actually provides an opportunity

to employ programming structures, only within the context of animation. The approach

does not guarantee that all programming structures will be covered, although there is

no reason to think that it is not possible, most likely only a subset of them will be con-

stantly used and practiced.

An important difference regards learning the syntax of a programming language. In

the traditional approach the syntax plays an important role. It has to be learned at the

same time that programming structures have to be understood burdening the attention

of students [4], [19]. In introductory programming environments the syntax is much

less demanding or even completely taken care of, like in block programming [17], [21].

2.1 Animation Patterns

An animation pattern involves specific movements and effects that are useful and sig-

nificant in the context of a story told with computer-generated images. The pattern is

abstract and requires programming to be implemented with particular characters or ob-

jects. The animation patterns thus provide the context to make the programming rele-

vant and meaningful.

Patterns range from the most basic frame by frame and loop through images, to

multi-character scenes with interactions among objects that decide in each step what

their next movement will be. To use the patterns in a course they must be previously

collected, classified according to difficulty or relatedness, and exemplified in an ani-

mation that students can build during a class. The goal is to develop in them the ability

to use any pattern with any character or scene whenever is needed, which requires a

flexibility of mind, a competence for abstraction, and of course programming skills. A

suggestion for pattern classification follows:

 Basic patterns with a single character: movement, turns, flips, bouncing, resizing,

sudden appearance, fading, color changing.

 Compound patterns: advancing and jumping, moving and turning, resizing and ap-

pearing-disappearing.

 Interactive patterns between two or more characters: conversation, coordinated

movement, approaching, contact, dancing, contrasting movement, races, collisions.

 Patterns involving backgrounds: switching background, moving background behind

still images, adding elements to background.

 Patterns that use randomness: random movement, random turns, random drawing,

random movement over one axe, random resizing.

 Patterns of interaction with the user: responding to clicks, responding to keypresses,

basic games.

2.2 Programming Structures through Animation Patterns

As students practice with patterns they employ repeatedly the programming structures

needed for the pattern. Advancing a pattern or innovating on it can lead the student to

learn autonomously the new programming structures needed or ask the teacher for guid-

ance. Teachers have to be well versed in how to use the different programming struc-

tures available in the environment being used, and also they have to be ready to use the

questions students make to introduce those structures [8]. Not being properly prepared

for such situations can be detrimental of the educational process [6].

3 Value of Computer Animation Skills

Although some first programming environments are well capable of generating high

quality animations and video effects they are not the tool of choice for professionals in

the industry. It is highly improbable that a person that masters Alice, Scratch or similar,

could be hired in an animation company only on that basis, or at least common job

descriptions in the industry so suggest (confront for example [5]).

On the other hand animation concepts used in professional settings are not that dif-

ferent compared to those that can be learned using first programming environments.

Finding if students that already master animations in first programming environments

are more prepared to learn specialized animation software and tools would provide a

strong argument not only for learning animation with first programming environments

but also to hire young apprentices in animation companies provided they already do

animations in those environments and will complete instruction inside the company.

The proposed animation pattern set is subject to fine-tuning to align with industry re-

quirements [21].

4 Attractiveness of Computer Animation

It is very easy to assume that computer animation would be more attractive for young

learners than computer programming. It seems that the concept of computer animation

is closer to them thanks to the film industry, video games and the pervasiveness of

animation in web pages. Finding if in fact when presented with two options for a course,

one framed as computer animation and the other as computer programming, students

would prefer the first option is a research challenge by itself.

Fig. 1. Computer Animation Workshop for middle school students in Guatemala, using Alice.

Offering courses on computer animation may also have an effect on future enroll-

ment in computer programming because a first contact between students and program-

ming environments would already be made. Confirming or rejecting these hypothesis

would require long term studies. Nevertheless, even if enrollment is not increased the

value of computational thinking instruction is by itself a goal worth seeking especially

in less developed regions because an important portion of current and future require-

ment of every job position is related to that skill [2].

On the other hand we have some experience accumulated after several years offering

free computer animation workshops using Scratch or Alice for middle and high school

students (Fig. 1) and sometimes also for teachers in which case the pedagogical ap-

proach is emphasized.

These workshops have been successful in providing an enjoyable first experience

with computer programming through computer animation. In the case of Alice work-

shops, we have recently started paying special attention to how students engage with

the language and found that they do in one of four possible ways – as described in

previously published works [9], [10] and shortly described in the following subsections.

4.1 Alice Styles of Use

The styles of use or styles of interaction with Alice are particular and distinct ways in

which students engage with the platform after an introductory lesson. They become

especially apparent when participants are invited to explore freely the environment and

build the animation of their choice. The identified styles are four: instruction follower,

scene designer, dialogue storyteller and action animator.

Instruction Followers. Students that prefer to follow instructions and copy the actions

and choices of the instructor through all the workshop. They tend to use the same char-

acters and to place them as similarly as possible as the instructor is doing on her screen.

When they are told to explore and work freely they keep working on the same animation

in order to make it a better copy of the model. Usually all students start the workshop

following instructions but instruction followers persevere for most time. In fact they

seem to enjoy achieving the perfect copy.

Scene Designers. Some students seem less interested in adding movement to their an-

imation and prefer to use Alice as a kind of artist composition tool to create beautiful

scenes. These are scene designers. They enjoy adding elements and decorations, chang-

ing colors, rearranging components and moving the point of view of the scene using

camera movements.

Dialogue Storytellers. A popular style among girls although not limited to them. Dia-

logue storytellers enjoy placing characters in the scene and making them chat using the

“say” and “think” commands. Their code usually includes long sequences of those in-

structions. They like to modify the dialogues and watch the resulting story.

Action Animators. Some students seem to have a special ability to understand the pro-

gramming model in Alice and start using advanced commands to create complex ani-

mations in which the story is not the central element but the intensity of the action.

These are the action animators.

4.2 A Reflection on Styles of Use and Computer Animation

The study of the different styles of use is still a work in progress, although it allows a

brief reflection: would such styles have become noticeable in a setting in which com-

puter programming is emphasized instead of computer animation? If a computer ani-

mation course teaches computational thinking as well as a computer programming

course but also adds the benefit of being friendlier with different mindsets of students

then the computer animation approach seems to be more beneficial. Once again, this

idea deserves a specific research effort.

5 Conclusions

This paper has outlined the general idea of using first programming environments like

Alice, Scratch, Kodu Game Lab and others, to teach computer animation instead of

computer programming but at the same time introduce many concepts and practice

structures that are usually part of a computer programming course. One of the points of

the article is that computer animation leads to learn computational thinking at the same

time.

Three ideas were discussed: animation patterns in computer animation courses re-

place programming structures as the component units of the syllabus, the expected

value of skills and concepts learned with first animation environments for the computer

animation industry, and how the attractive of computer animation courses could be

greater than that of pure computer programming courses. Each of these ideas induces

questions and opens paths of research.

The different styles of use in the particular case of Alice were briefly explained as a

first result after some years offering free computer animation workshops with that en-

vironment. A computer animation perspective seems to be better suited to accommo-

date the spontaneous apparition of those styles leading to a more pleasant experience

for a wider audience, but at the present time this remains a hypothesis pending valida-

tion.

There could be other approaches to teach computer animation that do not require

first programming environments but the high availability and the increasing familiarity

with them that schools and teachers have, makes them an option worth considering.

Additionally the introduction and exposure to computational thinking that is possible

with first programming environments seems to make them a better choice in regard of

the requirements of modern world technology and labor market.

References

1. A. f. C. M. (. a. I. C. S. Joint Task Force on Computing Curricula, Computer Science Cur-

ricula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Sci-

ence, ACM, 2013.

2. C. Hu. “Computational thinking: what it might mean and what we might do about it.” Pro-

ceedings of the 16th annual joint conference on Innovation and technology in computer sci-

ence education (ITiCSE '11). ACM, New York, NY, USA, 223-227, 2011.

3. Carnegie Mellon University, "Alice.org," 2015. [Online]. Available: http://www.alice.org/.

[Accessed 6 June 2016].

4. E. Lahtinen, K. Ala-Mutka, and H.M. Järvinen. "A study of the difficulties of novice pro-

grammers." In ACM SIGCSE Bulletin, vol. 37, no. 3, pp. 14-18. ACM, 2005.

5. https://www.prospects.ac.uk/job-profiles/animator [Accessed 6 June 2016].

6. J. B. Bayón, “Formación del profesorado con scratch: análisis de la escasa incidencia en el

aula,” Opción, 31(1), 164-182, 2015.

7. J.M. Wing, “Computational Thinking,” Communications of the ACM, vol. 49, no. 3, pp 33-

35, March 2006.

8. K. Assiter, and C. Wiseman. "Exploratory learning with Alice: experiences leading a com-

puter science workshop for girl scouts." Journal of Computing Sciences in Colleges 31, no.

4 (2016): 21-27.

9. L. Morales Diaz, L. S. Gaytan-Lugo, and L. Fleck. "Interaction Styles in Alice: Notes and

Observations from Computer Animation Workshops." Proceedings of the Latin American

Conference on Human Computer Interaction. ACM, 2015.

10. L. Morales Diaz, L. S. Gaytan-Lugo, and L. Fleck. "Profiling styles of use in Alice: Identi-

fying patterns of use by observing participants in workshops with Alice." Blocks and Be-

yond Workshop (Blocks and Beyond), 2015 IEEE. IEEE, 2015.

11. Lifelong Kindergarten Group at the MIT Media Lab, "Scratch - Imagine, Program, Share,"

2015. [Online]. Available: https://scratch.mit.edu/. [Accessed 6 June 2016].

12. M. Hairston and Michael Keene. Successful Writing. 5th ed. New York: Norton, 2003.

13. M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K. Brennan, A.

Millner, E. Rosenbaum, J. Silver, B. Silverman and Y. Kafai, "Scratch: Programming for

All," Communications of the ACM, vol. 52, no. 11, pp. 60-67, November 2009.

14. Microsoft Research, "Kodu Home," [Online]. Available: http://www.kodugamelab.com/.

[Accessed 6 June 2016].

15. R. Hegg, "The Art of Programming in Computer Animation," IEEE Spark, no. 4, pp. 2-3,

December 2014.

16. R. Parent, Parent, Rick. Computer animation: algorithms and techniques. Newnes, 2012.,

Morgan-Kaufmann, 2012.

17. S. Flanagan, "Introduce Programming in a Fun, Creative Way," Tech Directions, vol. 74,

no. 6, pp. 18-20, 2015.

18. Stencyl, LLC, "Stencyl: Make iPhone, iPad, Android & Flash Games without code,"

[Online]. Available: http://stencyl.com/. [Accessed 6 June 2016].

19. T. Jenkins, "On the difficulty of learning to program." In Proceedings of the 3rd Annual

Conference of the LTSN Centre for Information and Computer Sciences, vol. 4, pp. 53-58.

2002.

20. University of California at Berkeley, “Snap!”, 2016. [Online]. Available: http://snap.berke-

ley.edu/ [Accessed 6 June 2016].

21. W. Dann and S. Cooper, "Education: Alice 3: concrete to abstract," Communications of the

ACM, vol. 52, no. 8, pp. 27-29, August 2009.

https://www.prospects.ac.uk/job-profiles/animator
http://snap.berkeley.edu/
http://snap.berkeley.edu/

