Switching Linear Inverse-Regression Model for Tracking Head Pose

Vincent Drouard 1 Sileye Ba 1 Radu Horaud 1
1 PERCEPTION - Interpretation and Modelling of Images and Videos
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We propose to estimate the head-pose angles (pitch, yaw, and roll) by simultaneously predicting the pose parameters from observed high-dimensional feature vectors, and tracking these parameters over time. This is achieved by embedding a Gaussian mixture of linear inverse-regression model into a dynamic Bayesian model. The use of a switching Kalman filter (SKF) enables a principled way of carrying out this embedding. The SKF governs the temporal predic-tive distribution of the pose parameters (modeled as continuous latent variables) conditioned by the discrete variables associated with the mixture of linear inverse-regression formulation. We formally derive the equations of the proposed switching linear regression model, we propose an approximation that is both identifiable and computation-ally tractable, we design an EM procedure to estimate the SKF parameters in closed-form, and we carry out experiments and comparisons with other methods using recently released datasets.
Type de document :
Communication dans un congrès
IEEE Winter Conference on Applications of Computer Vision, Mar 2017, Santa Rosa, CA, United States. 2017, 〈10.1109/WACV.2017.142〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger


https://hal.inria.fr/hal-01430727
Contributeur : Team Perception <>
Soumis le : mardi 10 janvier 2017 - 10:58:02
Dernière modification le : jeudi 11 janvier 2018 - 06:22:00
Document(s) archivé(s) le : mardi 11 avril 2017 - 14:04:15

Fichiers

submission_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Vincent Drouard, Sileye Ba, Radu Horaud. Switching Linear Inverse-Regression Model for Tracking Head Pose. IEEE Winter Conference on Applications of Computer Vision, Mar 2017, Santa Rosa, CA, United States. 2017, 〈10.1109/WACV.2017.142〉. 〈hal-01430727〉

Partager

Métriques

Consultations de la notice

747

Téléchargements de fichiers

198