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Abstract feature space — a parameterization of the head-pose mani-
fold. Not surprisingly, some of the best performing head-

W 1o estimate the head | itch V\)oose estimation methods rely either on dimensionality re-
e propose to estimate the head-pose angles (pitch, ya tluction followed by regression, [35, 32, 16, 19, 4, 12, 36],

and roll) by S|mu_ltane_ously _predmtmg the pose parameters or on high-dimensional-to-low-dimensional regressiaug,
from observed high-dimensional feature vectors, and track- [28, 22, 8, 10]

ing these parameters over time. This is achieved by embed-
ding a Gaussian mixture of linear inverse-regression model  Nevertheless, these feature-based approaches estimate
into a dynamic Bayesian model. The use of a switching the head-pose parameters from one image and are not de-
Kalman Iter (SKF) enables a principled way of carrying signed to track the parameters over an image sequence. The
out this embedding. The SKF governs the temporal predic-observed feature vectors contain more than just head pose
tive distribution of the pose parameters (modeled as contin-information, e.g variabilities in illumination, appearance,
uous latent variables) conditioned by the discrete variables shape, identity, background, clutter, etc. Moreover, errors in
associated with the mixture of linear inverse-regression for- face localization are inhererite. the bounding-box needed
mulation. We formally derive the equations of the pro- to extract the feature vector is not always correctly aligned
posed switching linear regression model, we propose anwith the face itself. All these time-varying phenomena may
approximation that is both identi able and computation- induce large oscillations and inconsistencies in the estima-
ally tractable, we design an EM procedure to estimate the tion of the parameter values, yielding non-smooth temporal
SKF parameters in closed-form, and we carry out experi- trajectories.

ments and comparisons with other methods using recently

released datasets. In this paper we propose to simultaneously predict head-

pose parameters from observed feature vectors and to track
these parameters over time, based on embedding regression
into a dynamic Bayesian model. Without loss of generality,
1. Introduction we adopt a HOG-based description of faces, hence we need
to predict a low-dimensional output (head-pose parameters)

Recent advances in computer vision have demonstratedrom a high-dimensional input (HOG vectors). To solve the
the relevance of representing images and image regiondatter we train the regression of [8] which is a generative
with feature vectors lying in high-dimensional feature Gaussian mixture of linear regression model. The proposed
spaces,e.g SIFT [20], HOG [7], SURF [3], and any dynamic model is based on the switching Kalman lter
of their variants, or CNN-based features which may be (SKF) formulation. The proposed SKF governs the tempo-
used in conjunction with regression [15, 34] and tracking ral predictive distribution of the pose parameters (which are
[21]. The rationale of representing image regions with continuous latent variables) conditioned by the state vari-
high-dimensional feature vectors is that the latter suppos-ables (the discrete latent variables associated with the mix-
edly embed hidden information, such as identity or pose. ture of linear regression formulation). The rationale of plug-
For example, in the case of face analysis, one can inferding regression into a dynamic Bayesian model is that the
both face recognition and face orientation from such fea- latter Iters the prediction of the former while taking full
tures. In the case of face orientation, or head pose, theddvantage of the rich generative regression formulation.
task consists of extracting a low-dimensional parameteri-

: ) . : . We formally derive a switching dynamic Bayesian
zation,i.e. pitch, yaw and roll, from the high-dimensional y g oy y

model, we devise an approximation of this model that is
Funding from the European Union FP7 ERC Advanced Grant VHIA DOth identi able and com.putatlonally tractable, we design
(#340113) is greatly acknowledged. an EM procedure that estimate the parameters, and we carry




out experiments and comparisons with other methods. Thedimensional mapping is linear (which may not be the case)
principle of the tracker is summarized in Fig. 1 and an ex- and it does not guarantee that the PCA output contains pose
ample is shown in Fig. 2. information. Particle Itering can also be combined with

The remainder of the paper is organized as follows. Sec-2 3D deformable model and with facial landmariesg

. . . : 9, 37]. As already outlined, landmark extraction is not al-
tion 2 discusses the related work. Section 3 summarizes th .

. . . . ways possible. The advantage of the proposed method over
mixture of linear regression method used to predict pose

parameters form the observed data. Section 4 describeéhese particle- Iter trackers is both theoretical and method-

in detail the proposed dynamic Bayesian model and Sec_ologlcaI: the feature-space to parameter-space mapping is

. : I combined with a dynamic model, and the estimation of
tion 5 formally derives closed-form formulas for estimating :

: - . the model parameters yields closed-form EM procedures.
the model parameterise. model training. Experiments and

comparisons with other methods are described in Section 6_Moreover, the propo;ed SKF approximation, which makg S
) . the model computationally tractable, amounts to a varia-
Section 7 draws some conclusions. ) L L .
tional approximation, thus yielding an extremely ef cient
runtime method.

2. Related Work -
Switching state space models have also been used to
Head-pose tracking has been an actively investigatedsmve fracking problemg. Eor e_xample, [14], [30] and [1.8]
topic; head-pose estimation and tracking methods were sur-ShOW that Fhe use of switching "”ea.’ models hel_ps tracking.
veyed [29]. Many approaches rely on extracting facial !n [31] switching models are applied for tracking people

landmarks, on tracking these landmarks over the image se" videos in order to obtain motion-capture data, and three

guence and on estimating a rigid transformation betweend'ﬁrerdenrt1 aﬁpjoiﬁhe\;tforrblinf?rrlrr;tgh;[:evp?iri:nﬁteirisn farre rtl:om-
consecutive image®.g [13, 39], or between consecutive pared, hamely the Viteroi aigo » Variational interence,

image pairse.g [41]. Similarly, [24] builds a face graph and the generalized pseudo Bayesian algorithm of order 2

based on the landmarks and tracks this graph over the im—(GPBZ)' The reporte.d r_esults obtgined with these three ap-
age sequence. Another landmark-based approach [42] Con.proaches are quite similar. Viterbi has the lowest complex-

sists of using a 3D model of a generic face that embeds'ttg/’ (?/P:?Ztiylglﬁs;r:?ersrr?oothisit\p/)arametergrajenc;tirnrensi, Whgle_
model-centered coordinates of facial landmarks, nose € variational Inference achieves a good compromise be

tip, eyes, lip corners, etc. The modelis rst tted to the face tween low complexity and smooth trajectories.

detected in the rstimage and then tted to the subsequent The proposed method combines high-dimensional to
faces by tracking the landmarks. These methods heavilylow-dimensional mixture of linear regressions with a
rely on landmark detection and tracking as well as on the switching state-space model. In practice we adopt the GPB2
robust estimation of the 2D-landmark-to-3D-landmark rigid  algorithm which, in combination with the generative regres-
transformation,.e. the pose parameters. Therefore these sjon model, yields closed-form expressions for the estima-
methods are limited to frontal views of faces, because thetion of the tracked parameters. Hence, it is more ef cient
landmarks are partially or totally occluded in side views of than sampling techniques which are often used in conjunc-
faces. Moreover, they track the facial landmarks instead of tion with generative tracking methods.

the pose parameters, hence they do not yield smooth pose

trajectories. The advantage of the proposed method is that it ) ) )

relies neither on facial landmark detection nor on landmark 3- Mixture of Linear Inverse Regressions

tracking. The proposed method, once trained based on pairs

of HOG descriptors and pose parameters, can deal with side In this section we summarize the mixture of lineas
views of faces, unlike landmark-based methods. verseregressions of [8], which is named Gaussian locally
linear mapping (GLLiM). GLLiM interchanges the roles of
Fhe input (high dimensional) and of the output (low dimen-
sional), such that bow-to-highregression is being learned.
The immediate consequence of this inverse regression strat-
egy is a dramatic reduction in the number of model param-
eters, thus facilitating the task of training.

Head-pose tracking was also addressed using samplin
methods based on particle lters, which allow to sam-
ple the temporal predictive distributioag [2]. A prin-
cipled way of combining a latent-variable temporal Iter
with the observed data is an important issue. In [38] it
is proposed to extract a high-dimensional feature vector
from a face and then to apply PCA to reduce its dimen- Let X andY be two random variables, and betand
sionality. This assumes that the high-dimensional to low- y denote their realizations, whed¢ 2 R‘ is the low-

1Supplementary material for this paper can be found at d|m_enS|on§I OUtPUt (p(_)SG pe_lrameters) ane R (©
https://team.inria.fr/perception/research/ L) is the high-dimensional input (feature vectors). Once
head-pose-tracking/ trained, the goal is to prediet given both annputy and




Figure 1. The method starts by learning a mixture of linear regression that allows the prediction of a head-pose from a HOG vector estimated
from the bounding box of a face. Hence, Eq. (4) (Section 3) is applied at (top) and at (bottom) and head poses are thus predicted,

they are denoted A on the gure. Notice that, because of various perturbations in the data and of inherent aws in face detection, the two
predictions use two different af ne transformations and hence they are associated with two different Gaussian components in the mixture,
e.g magenteandgreenon the gure. The proposed dynamic model combines the temporal prediction of the Itertfromto t, denoted

B on the gure, with the pose predicted gtto yield a Itered pose estimate, denoted C on the gure. The mixture of linear regression is
plugged in the SKF model in a principled way.

Figure 2. Yaw angles predicted with the mixture of linear regression method [10] (top sequence and red plot) and with the proposed method
(bottom sequence and green plot). The ground-truth yaw trajectory is shown in blue.

the model parameters, i.e. p(xjy; ). We consider an- cator functionZ is a missing-data variable such tzat= k
verse low-to-higtregression, from the output variable if and only if Y is the image oK by the af ne transforma-

to the input variabley , i.e. a generative model, which is tiony = Agx + by, with Ay 2 R® b andb, 2 RP, and
descgbed by a mixture of locally-linear transformations, wheree, 2 RP is an error vector capturing both the high-
y = Ezl 1(Z = K)(Akx + by + eg), wherel is the indi- dimensional observation noise and the reconstruction error



due to the piecewise approximation of a non-linear func- 4. The Dynamic Bayesian Model

tion. The missing-data variabl& allows one to write the

joint probability of X andY as the following mixture: The main difference between the probabilistic regres-
sion model outlined in Section 3 and the proposed temporal
model is that the conditional distributiqx jy) is replaced

ply;x; )= plyix;Z =k; ) with p(x¢jy1.), Wheret is the time index. The proposed
k=1 ) graphical model is shown on Fig. 3, whetgis the discrete
p(xjz = k; )p(Z =k; ); (D) latent variable associated with the Gaussian mixture of lin-

ear regressior ; andY ; are the latent head pose and the
observed high-dimensional feature vectot,atspectively.
GUsing Bayes rule and marginalization we obtain:

where denotes the model parameters. Assumingehas
a zero-mean Gaussian variable with a diagonal covarianc
matrix 2 RP P we obtain that

P(Yix;Z = k; )= N(y;AX + b, «): 2

If we further assume thag¢ follows a mixture of Gaussians
via the same assignment= k, we can write that

P(XjZ = k; )= N(X;ck; «); P(Z=Kk; )= «; (3

P K
whereck 2 RY, ¢ 2 Rt Yand .., « = 1. Note
that this representation induces a partitionRdf into K
regionsRy, whereR is the region where the transfor-
mation (Ag; bx) is most likely invoked,e.g Fig. 1. This
model is described by théwverse parameter set =
few: k: ki Ak bk kgE:l . The model parameters can be
estimated via an EM algorithm. The expectation step com-
putes the responsibilities, nameiZ, = kjxn;y,; ©%),
given the old parameter value$®?, while the maximiza- Figure 3. Proposed graphical model
tion step computes new parameter values via maximiza-
tion of the expected complete-data log-likelihood function,

namely ("™ = argmax E[logp(x;y;Zj ©°“?)], which % x Z

yields a closed-form solution [8]. Initial responsibilities POX ¢ = XejY 14 = Yo) = 1

are obtained by tting ak -component GMM to the low- ' e (YY)
j=1i=1 t1

; . =

dimensional datéx,gn-; - B(XtiXe 1Zi= (2t 1= Eyiyee DdXe 10 ()
Once the inverse parameter vectds estimated one ob-

tains alow-dimensional to high-dimensionaiverse pre-  Under the Markovian assumption and using the condi-

dictive distribution [8]. Thehigh-dimensional to low- tional independencies associated with the proposed graphi-

dimensionalforward predictive distribution has a closed- cal model of Fig. 3, we can write the term inside the integral

form expression: of (8) as follows:

PXt;Xt 1:Zt = J;Z¢ 1= YY1 1)
N (G AY+bG ) = p(YuxeZe = ) P(Xeixe 1;Zc = )
k=1 . C. . .. . ..
=1 NGOG ) P(Ze=jjZe 1=1)p Xt 1,2y 1= 0)Yqq 1 -
(4) 9)

which is a Gaussian mixture fully de ned by the forward
parameters = fc,; i o AGDbG (oK., that can be
obtained in analytically from the inverse parameters:

):% KN e )

p(Xjy;

The rst probability on the right hand side of this equation,
p(y:jxt;Z¢ = j) is the Gaussian distribution introduced in
(2). The main difference between thtatic model and the
= A+ b o= kA KADL =« (5) dynamicmodel is that (3) is replaced with:

O
=~
|

Ac= KA Bibe= o tee AR th); (6) p(xijXe 1;Z¢=j)= N(X{Cix¢ 1;Q);  (10)
k= PP AL A T @) D(Zi = jjzi 1=0)= (11)



The parameters of the temporal model will be jointly de- wherePij 1 d!

Gt 1 arldS't‘Ajt , are de ned by:

noted by :
. - . 1
=1C;Qp; i) =1::Kg (12) Pl 1= Q+CVy ,C : (21)
By substituting (2), (10), and (11) into (9), by using basic ditjjt =Y A(C I (22)
properties of Gaussian distributions (Gaussian product and i B i .
Gaussian integral), e.g. [6], and after some derivations, one Sit 1= i FAQ + GV ACHATT (29)

can show that (8) can be written a&&-component GMM:
Eq. (21) de nes the covariance of the prediction variable

o _ i i i _ dynamics, Eq. (22) is the difference between the observa-
P(XtiY1ts e 1) = R (N g Wy 1) tion and the predicted observation, given ;, and Eq. (23)
=1j=1 (13) de nes the associated covariance matrix.

The mean (19) can be seen as a “weighted” linear com-
bination of the dynamical predictio®; | ; and of the
prediction based on observationy, + b;, where the
) o “weights” are covariance matrices. Thus the con dence re-
P(XtjY 1.5 1) tN (X 15 Vi): (14) lated to the covariance matrices de nes the weights of the

j=1 dynamical prediction and the observation prediction in the
The parameters of the these two Gaussian mixtures are de-n_al est_|ma_t|on. I_Eq. (18) is the associated covarlance ma-
noted with trix, which is the inverse of the sum of the precision matrix

of the temporal predictioR} ; and precision matrix ; *

which in turn can be approximated with anothkr-
component GMM, namely:

g 1= 1 Pjt ¥ ‘tijt 1;Witjjt shj =1::Kg (15) of the observatiory,. The GMM proportions in Eq. (20)
_ are de ned as a product between three terms: the propor-
and with tions of thei!" components at 1, | ;, the switching
S " Hitiac . ij A al
c=f1 bvij=1:Kg (16) Iter transition probabilities ; , andN (dtjt [ox Stjt -

Using the mixture reduction scheme explained in [33],
the parameters of th€ -component GMM ; can now be
evaluated from the parameters of #ié-component GMM

tjt 1, with the following formulas:

TheK -component GMM approximation (13) of tie?-
component GMM (14) is necessary in order to avoid an ex-
ponential grow of the number of components, hence it guar-
antees the computational tractability of the temporal model.
As discussed in [27], three approaches have been proposed
to avoid the number of components to explode. Our ap- | _ i i (24)
proximation is based on the generalized pseudo Bayesian '~ ) tjt 1 tjt 1
algorithm (GPBa) of order 2 (GPB2) which, according to
[31], yields a smooth output. Vjt

X%

i Wi +( ij j X ij j )
] ) ) ) tit 1 "Vt 1 tjt 1 t tit 1 t '

One interesting consequence of replacing (3) with (10) i=1
is that the parameter setin Section 3 is replaced with a re- (25)
duced parameter set = fA;;b;; ;d<,. Consequently, S i . y

. . L . _ i R i — i — .

the formulae in (5) and (6) are simpli ed: V= t‘jt 1, with ~t'jt L= tth = tht . (26)

_ > 1. _ . _(a> 1 1. =1 k=1
A= A T b= A=A A

17)

5. Estimating the Model Parameters
It can be shown that the parameter set (15) can be written as 9

afunctionof ; ; 1 and
This section describes the estimation of the parameters

wi = 1y pi L (18) in (12) via learning (please consult [27] for a detailed de-
tjt 1 i t 1 ) L . . . .
) ) ) ’ scription). We remind that the estimation of the regression
Lljt L= W;th L 1 Ay + b+ PGty paramgters is described in detail in [8] and s_ummarized
(19) in Section 3. We use an EM procedure to estimate the pa-

rameters Cj; Q; J.K:l . During the E-step we compute the

ij ij — i . i i0- Qi .
tjt 1! Mje 1= ¢ 1 N(dtjt 110'Sltjt W (20) complete-data expected log-likelihood. First, we express



the complete-data log-likelihodd as follows:

L =log p(Xv:1:Z:T5 Y075 )

XX _
= (ti)Iog N (Y Ajxe + by5 )
t=1 j=1
X X .
+ (t:j)log N (x¢;Cijxt 1;Q;)
t=2 j=1
XX X . .
+ (tj) (t Li)log j +log p(X1;Z1);
t=2 j=1 i=1

(27)

where (t;q) is equal to 1 ifZ; = g and 0 otherwise. To

The rstterm of (31)p (X¢jZt = j; ¥41.¢) is the forward re-

cursion and is de ned in Section 4 & x.j 1;Vl . The
second ternp Yi,1. 7jZt+1 = i; Xt de nes the backward
recursion:

pgﬁl:TjZHl =0xy) =

P(Xt+1)Xt; Zte1 = 1)
X t+1

P Vs iXts1:Ztsr =1 P Yy Xt dX a1 (32)

wherep Vi 1iXts1 = N X1 2 i VP . The sec-

ond term of Eq. (30) can be decomposed as follows, using
[17]:

complete the E-step we evaluate the above expected 10g- p(Z; = j;Z 41 = ijy,7) "

likelihood. The M-step maximizes it with respect to the
parameters that must be estimated. Thus we obtain the fol- p(Zt+1 = ijy1.7)

lowing formulas for the estimation of the parameters
!

% .. T
G = P(Zt = jjy) E XeX¢
t=2 '
X 3 . !
P(Zt = jiy) E Xt 1X{ 4 ; (28)
t=2
1
Q. =p
L L, Pz = iy |
X ; T T .
P(Zijy) E XiXq C E Xt 1X¢ ;
t=2
(29)
where:
E xeX{ 1 =V 1+ ¢ ¢ 1
E Xt aX{ 1 =Via+ (14

Parameters,,  ;, Vi 1 andV. 1 are obtained using
the smoothing statistics(x:jy,.t) which is expressed as
follows:

. % % . .
P(Xtjy17) = P(Xt;Zt = i Z 1 = ijY17)
i=1i=1
= P(XtJZt = i Zt+1 = 1, ¥Y1.7)
j=1i=1
P(Zt = j;Zt+1 = 0jy11)s (30)
where

P(XtjZt = j;Z+1 = ;Y 17)

=p(XtJZe = [ Y1) P Yeer: 71Zt+1 = 1 X
(31)

P(Ztv1 = 1jZe = ])p(Ze = JJylt)
P(Zi+1 = ijyq4)

(33)
where:
P(Ze = jiyr)= | (34)
e % e . ..
P(Zts1 = 1jy1) = P(Ztwr = 1jZe = J)p(Zt = JiY 1)
j=1
(35)
X

P(Zi+1 = ijy17) = P(Zts1 = 1, Z1s2 = jjY17)
i=1
(36)

As outlined in Section 4, the number of component in-
creases (30), hence we merge the Gaussians twice: rst
over Z{,; to obtain a mixture ofK Gaussian compo-
nents with mean {b, covanancev' and proportions
P(Zi = jjy17) = {b, second oveZ; and thus we obtain

a single Gaussian component, with mearand covariance

Vi.

To estimate the transition matrik j gI j=1 We em-
ploy the Lagrange multiplier method to maximize the log-
likelihood with respect to;; , hence we obtain the following
expression for the transition probabilities:

P+ .
_ =2 p(,Zt—lelT)p(Zt 1= 0jy17)

t o P(Zy 1= ijy17)

(37)

6. Experiments

To gauge the performance of the proposed method we
used two datasets: the Biwi-Kinect head-pose dataset [11]
and the EYEDIAP dataset [25]. Biwi-Kinect comprises
24 videos of 20 different people (16 men and 4 women)



recorded with a Kinect camera. During the recordings peo-
ple were asked to move their heads freely in front of the
camera. 3D head pose (pitch, yaw, and roll angles) anno-
tations are automatically and accurately provided for each
video frame using the face-shift software. The angle values
range from 60 to60 for pitch, 75 to75 for yaw and
20 to 20 for roll. The dataset provides RGB and depth
images as well as the calibration matrices. The 3D nose po-
sitions are provided as well. EYEDIAP is a dataset for gaze
and head-pose estimation. It provides 94 videos of 16 peo-
ple recorded using different con gurations, such as static
and turning heads. The dataset provides RGB videos (in
both HD and GVA quality) and depth videos with the asso- ) _ ]
ciated calibrations matrices. For each video, annotations ofFE'i%\‘/Jraen‘;'lecc(’&?gﬁ)ocvgﬁ“t"r’]‘?gg Z};;Z?}Tfﬁg?hgzcsh ?g;ﬁel_ﬁ\;’p) and
both head-pose and gaze are prowded_ for each frame. Th red), Kalman Filter (blue), and the proposed HBEF (green)
angle values range from40 to 40 for pitchand 50 to for the Biwi-Kinect dataset.
50 for yaw. In our experiments we only used the RGB im-

ages where people are looking at a moving object (hamed

A_FT_M in the dataset). run a face tracker using particle Itering to extract a face at
each frames of the videos. Nevertheless, the obtained face

The proposed model, referred to as HBEF (head-  (qgions are noisyi.e. the bounding boxes are not always

pose estimation based on SKF) is compared to the follow- icely aligned onto the faces. This yields extremely realis-

ing methods: (i) a landmark-based approach that uses thgjc input data for the tested methods, unlike other head-pose

facial landmark localization method of [39] (Flandmarks) penchmarks that use manually extracted bounding boxes,

combined with 2D-to-3D landmark-based pose estimation e.g using the nose tip as the bounding box center. From

method, namely the PnP (perspective n-point) algorithm gach face region thus detected, we extract HOG features
available with OpenCV, (i) a depth head model based on it gifferent cell resolutions (in a pyramid-like fashion),
method [26] that learns a 3D head model using 16 manu-namely32 32,16 16and8 8 pixels, with block size of

ally annotated facial landmarks on multiple frames to learn 5 5 ¢a|is and8 bins to quantize the gradient orientation.
the model, and ICP (iterative closest point algorithm) to es- s results in feature vectors of sipe= 1888.

timate the transformation (rotation and translation) of the

head pose between two consecutive frames in order to track 1 Ne regression parameterg¢Section 3) and the SKF pa-
the pose over time, (iii) the regression-based method of [10]fameters  Eq. (12) are learned separately. First, the re-
which is referred to as HPE-GLLiM, and (iv) the regression 9ression parametersare estimated using the EM algorithm
method [10] combined with a standard Kalman Iter [1, 6]. described in [8]. Second, the ltering parameterare es-
Both (i) and (i) perform tracking. For evaluation, on the timated using the method described in Section 5. The co-
Biwi-Kinect dataset we used the leave-one-out protocol: all variances are initialized with identity matrices and the tran-

the data related to one person are put aside and the remairsition matrixf  g;; _, is initialized with the Battacharrya

ing data of the other persons are used to train the model. distance [5] between two subspaces obtained using the pa-
rameters of the low dimensional space de ned By.
Using the EYEDIAP dataset, we compared our method

against the baseline method of [26] which requires to learn aTable 1. Average (Avg.) and standard deviation (Std.) of the ab-
person based on his/her 3D head model. In this case we digolute error (in degrees) for the pitch, yaw and roll angles (when
not apply the leave-one-out protocol but instead we learnegapplicable) on the BlWl-Klnec_t dataset_. Head bounding boxes are
a person based head-pose regression mojieh(a subsam- ~ €xtracted using a face detection algorithm.
ple of the frames associated with each person. Then, for Pitch Yaw Roll
each person we estimate the tracking parametereier

. . . Methods Avg. Std. Avg. Std. Avg. Std.
the whole video. Thus, we obtain a person-based tracking 9 g g
model for head pose. As a measure of performance, we use [39] 1312 1079 211 1416
the mean absolute deviation between the ground-truth and [10] 1435 1373 1252 1352 1089 982

the estimated pose.
. . . [1, 6] 2743 1761 1513 1209 1462 994
Face regions are extracted from images with a face de-

tector [40]. This detector is ef cient and robust with both HPESKF 10.03 8.73 8.6 7.21 848 8.01
frontal- and side-views of faces. Using the detection we




Table 2. Average (Avg.) and standard deviation (Std.) of the ab-
solute error (in degrees) for the pitch and yaw angles on the EYE-

DIAP dataset. Head bounding boxes are extracted using a face

detection algorithm combined with a face tracker.

Pitch Yaw
Methods Avg. Std.  Avg.  Std.
Funes Moraetal. [26] 4.17 559 6:89 1442
HPEGLLIM [10] 794 923 1062 1195
Kalman lter[1, 6] 2317 1867 2555 2122
HPE_SKF 534 830 6.68 9.76

The results obtained with the Biwi-Kinect and EYE-

DIAP datasets are summarized in Table 1 and Table 2, re-

spectively, namely the average and standard deviations of

the absolute error between the head-pose estimated values

the temporal model, once properly trained, does not allow
oscillations between consecutive estimations. Furthermore,
our approach does not only reduce both the estimation er-
ror and the standard deviation, it smoothes the estimation
of head poses over the whole video. This is very useful for
other temporal tasks, such as the estimation of eye gaze or
of the visual focus of attention [23].

The method presented in this paper is very general and
it is limited neither to head pose nor to HOG features. It
can be applied to estimate and track the pose parameters of
objects of all kinds, provided that their image appearance
varies as a function of their 3D orientation in a consistent
way. Therefore, one can combine our tracker with other
types of features, such as features obtained by training a
neural network and by substituting the last layer of the latter
with the generative regression model used above.
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