M. R. Amer, P. Lei, and S. Todorovic, HiRF: Hierarchical Random Field for Collective Activity Recognition in Videos, ECCV, 2014.
DOI : 10.1007/978-3-319-10599-4_37

M. R. Amer and S. Todorovic, A chains model for localizing participants of group activities in videos, 2011 International Conference on Computer Vision, 2011.
DOI : 10.1109/ICCV.2011.6126317

N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, SMOTE: Synthetic minority over-sampling technique, JAIR, 2002.

W. Choi, Y. Chao, C. Pantofaru, and S. Savarese, Discovering Groups of People in Images, ECCV, 2014.
DOI : 10.1007/978-3-319-10593-2_28

W. Choi and S. Savarese, A unified framework for multitarget tracking and collective activity recognition, ECCV, 2012.

W. Choi and S. Savarese, Understanding collective activities of people from videos, IEEE TPAMI, 2013.

W. Choi, K. Shahid, and S. Savarese, What are they doing?: Collective activity classification using spatio-temporal relationship among people, ICCV Workshops, 2009.

F. Cupillard, F. Brémond, and M. Thonnat, Group behavior recognition with multiple cameras, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings., 2002.
DOI : 10.1109/ACV.2002.1182178

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), 2005.
DOI : 10.1109/CVPR.2005.177

URL : https://hal.archives-ouvertes.fr/inria-00548512

Z. Deng, M. Zhai, L. Chen, Y. Liu, S. Muralidharan et al., Deep Structured Models For Group Activity Recognition, Procedings of the British Machine Vision Conference 2015, 2015.
DOI : 10.5244/C.29.179

URL : http://arxiv.org/abs/1506.04191

A. Gupta, A. Kembhavi, and L. S. Davis, Observing humanobject interactions: Using spatial and functional compatibility for recognition, IEEE TPAMI, 2009.

H. Hajimirsadeghi, W. Yan, A. Vahdat, and G. Mori, Visual recognition by counting instances: A multi-instance cardinality potential kernel, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298875

D. Hoiem, A. A. Efros, and M. Hebert, Putting objects in perspective, 2008.
DOI : 10.1007/s11263-008-0137-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat, and G. Mori, A Hierarchical Deep Temporal Model for Group Activity Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI : 10.1109/CVPR.2016.217

M. Jain, J. C. Van-gemert, and C. G. Snoek, What do 15,000 object categories tell us about classifying and localizing actions?, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
DOI : 10.1109/CVPR.2015.7298599

URL : http://hdl.handle.net/11245/1.479323

S. Khamis, V. I. Morariu, and L. S. Davis, Combining perframe and per-track cues for multi-person action recognition, ECCV, 2012.
DOI : 10.1007/978-3-642-33718-5_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

H. Kjellström, J. Romero, D. Martínez, and D. Kragi´ckragi´c, Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects, ECCV, 2008.
DOI : 10.1007/978-3-540-88688-4_25

T. Lan, Y. Wang, G. Mori, and S. N. Robinovitch, Retrieving Actions in Group Contexts, Trends and Topics in Computer Vision, 2010.
DOI : 10.1007/978-3-642-35749-7_14

T. Lan, Y. Wang, W. Yang, and G. Mori, Beyond actions: Discriminative models for contextual group activities, NIPS, 2010.

T. Lan, Y. Wang, W. Yang, S. N. Robinovitch, and G. Mori, Discriminative latent models for recognizing contextual group activities Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition, CVPR, 2012.

R. Li, R. Chellappa, and S. K. Zhou, Learning multi-modal densities on discriminative temporal interaction manifold for group activity recognition, CVPR, 2009.

M. Marszalek, I. Laptev, and C. Schmid, Actions in context, 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009.
DOI : 10.1109/CVPR.2009.5206557

URL : https://hal.archives-ouvertes.fr/inria-00548645

K. Murphy, A. Torralba, and W. Freeman, Using the forest to see the trees: a graphical model relating features, objects and scenes, NIPS, 2003.

K. P. Murphy, Machine learning: a probabilistic perspective, 2012.

M. Nabi, A. Del-bue, and V. Murino, Temporal Poselets for Collective Activity Detection and Recognition, 2013 IEEE International Conference on Computer Vision Workshops, 2013.
DOI : 10.1109/ICCVW.2013.71

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. Odashima, M. Shimosaka, T. Kaneko, R. Fukui, and T. Sato, Collective Activity Localization with Contextual Spatial Pyramid, ECCV, 2012.
DOI : 10.1007/978-3-642-33885-4_25

R. Poppe, A survey on vision-based human action recognition, Image and Vision Computing, vol.28, issue.6, 2010.
DOI : 10.1016/j.imavis.2009.11.014

URL : http://doc.utwente.nl/70470/1/poppe_%282010%29_a_survey_on_vision-based_human_action_recognition.pdf

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie, Objects in Context, 2007 IEEE 11th International Conference on Computer Vision, 2007.
DOI : 10.1109/ICCV.2007.4408986

M. Ryoo and J. Aggarwal, Stochastic representation and recognition of high-level group activities. IJCV, 2011.

M. S. Ryoo and J. K. Aggarwal, Recognition of Composite Human Activities through Context-Free Grammar Based Representation, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (CVPR'06), 2006.
DOI : 10.1109/CVPR.2006.242

M. S. Ryoo and J. K. Aggarwal, Spatio-temporal relationship match: Video structure comparison for recognition of complex human activities, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459361

J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, Image Classification with the Fisher Vector: Theory and Practice, International Journal of Computer Vision, vol.73, issue.2, 2013.
DOI : 10.1007/s11263-013-0636-x

C. Schuldt, I. Laptev, and B. Caputo, Recognizing human actions: a local SVM approach, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., 2004.
DOI : 10.1109/ICPR.2004.1334462

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Sun, H. Ai, and S. Lao, Activity Group Localization by Modeling the Relations among Participants, ECCV, 2014.
DOI : 10.1007/978-3-319-10590-1_48

P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, Machine Recognition of Human Activities: A Survey, IEEE Transactions on Circuits and Systems for Video Technology, vol.18, issue.11, 2008.
DOI : 10.1109/TCSVT.2008.2005594

H. Wang and C. Schmid, Action Recognition with Improved Trajectories, 2013 IEEE International Conference on Computer Vision, 2013.
DOI : 10.1109/ICCV.2013.441

URL : https://hal.archives-ouvertes.fr/hal-00873267

B. Yao and L. Fei-fei, Recognizing human-object interactions in still images by modeling the mutual context of objects and human poses, IEEE TPAMI, 2012.

S. X. Yu and J. Shi, Multiclass spectral clustering, Proceedings Ninth IEEE International Conference on Computer Vision, 2003.
DOI : 10.1109/ICCV.2003.1238361

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=