P. Andrews, BEHAVE: Fire Behavior Prediction and Fuel Modeling System ? BURN Subsystem, 1986.

D. Butry, J. Prestemon, K. Abt, and R. Sutphen, Economic optimisation of wildfire intervention activities, International Journal of Wildland Fire, vol.19, issue.5, pp.659-672, 2010.
DOI : 10.1071/WF09090

D. Calkin, M. Thompson, M. Finney, and K. Hyde, A real-time risk assessment tool supporting wildland fire decision making, Journal of Forestry, vol.109, issue.5, pp.274-280, 2011.

J. Figueras-jove, A. Guasch-petit, P. Fonseca-casa, and J. Casanovas-garcia, Simulation and optimization for an experimental environment to wildfire resource management and planning: Firefight project modeling and architecture, Proceedings of the Winter Simulation Conference, pp.1950-1960, 2013.

M. Finney, FARSITE: A fire area simulator for fire managers, Proceedings of the Biswell Symposium: Fire Issues and Solutions in Urban Interface and Wildland Ecosystems, pp.55-56, 1995.

J. Fried, J. Gilless, and J. Spero, Analysing initial attack on wildland fires using stochastic simulation, International Journal of Wildland Fire, vol.15, issue.1, pp.137-146, 2006.
DOI : 10.1071/WF05027

O. Gul and E. Uysal-biyikoglu, A randomized scheduling algorithm for energy harvesting wireless sensor networks achieving nearly 100% throughput, 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp.2456-2461, 2014.
DOI : 10.1109/WCNC.2014.6952774

R. Haight and J. Fried, Deploying Wildland Fire Suppression Resources with a Scenario-Based Standard Response Model, INFOR: Information Systems and Operational Research, pp.31-39, 2007.
DOI : 10.1016/S0966-8349(98)00049-7

J. Hall, The Total Cost of Fire in the United States, National Fire Protection Association, 2014.

B. Homchaudhuri, GENETIC ALGORITHM BASED SIMULATION???OPTIMIZATION FOR FIGHTING WILDFIRES, International Journal of Computational Methods, vol.10, issue.06, 2010.
DOI : 10.1142/S0219876213500357

X. Hu and L. Ntaimo, Integrated simulation and optimization for wildfire containment, ACM Transactions on Modeling and Computer Simulation, vol.19, issue.4, 2009.
DOI : 10.1145/1596519.1596524

X. Hu, Y. Sun, and L. Ntaimo, DEVS-FIRE: design and application of formal discrete event wildfire spread and suppression models, SIMULATION, vol.88, issue.3, pp.259-279, 2012.
DOI : 10.1177/0037549711414592

Z. Huang, W. Van-der-aalst, X. Lu, and H. Duan, Reinforcement learning based resource allocation in business process management, Data & Knowledge Engineering, vol.70, issue.1, pp.127-145, 2011.
DOI : 10.1016/j.datak.2010.09.002

C. Isbell, C. Shelton, M. Kearns, S. Singh, and P. Stone, A social reinforcement learning agent, Proceedings of the fifth international conference on Autonomous agents , AGENTS '01, pp.377-384, 2001.
DOI : 10.1145/375735.376334

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Keeley, Fire intensity, fire severity and burn severity: a brief review and suggested usage, International Journal of Wildland Fire, vol.18, issue.1, pp.116-126, 2009.
DOI : 10.1071/WF07049

K. Research and S. Petrochemical, Trade with Caution, Kuala, 2013.

J. Kober, J. Bagnell, and J. Peters, Reinforcement learning in robotics: A survey, The International Journal of Robotics Research, vol.32, issue.11, pp.1238-1274, 2013.
DOI : 10.1177/0278364913495721

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Lee, J. Fried, H. Albers, and R. Haight, Deploying initial attack resources for wildfire suppression: spatial coordination, budget constraints, and capacity constraints, Canadian Journal of Forest Research, vol.43, issue.1, pp.56-65, 2013.
DOI : 10.1139/cjfr-2011-0433

URL : http://ir.library.oregonstate.edu/xmlui/bitstream/1957/37532/1/LeeYohanForestEcosystemsSocietyDeployingInitialAttack.pdf

D. Martell, A review of operational research studies in forest fire management, Canadian Journal of Forest Research, vol.12, issue.2, pp.119-140, 1982.
DOI : 10.1139/x82-020

J. Marti, Multisystem simulation: Analysis of critical infrastructures for disaster response, in Networks of Networks: The Last Frontier of Complexity, pp.255-277, 2014.

J. Marti, J. Hollman, C. Ventura, and J. Jatskevich, Dynamic recovery of critical infrastructures: real-time temporal coordination, International Journal of Critical Infrastructures, vol.4, issue.1/2, pp.17-31, 2008.
DOI : 10.1504/IJCIS.2008.016089

E. Mihailidou, K. Antoniadis, and M. Assael, The 319 major industrial accidents since 1917, International Review of Chemical Engineering, vol.4, issue.6, pp.529-540, 2012.

M. Morais, Comparing Spatially Explicit Models of Fire Spread Through Chaparral Fuels: A New Algorithm Based Upon the Rothermel Fire Spread Equation, 2001.

L. Ntaimo, X. Hu, and Y. Sun, DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and Containment, SIMULATION, vol.84, issue.4, pp.137-155, 2008.
DOI : 10.1177/0037549708094047

A. Ollero, J. Martinez-de-dios, and B. Arrue, Integrated systems for early forest-fire detection, Proceedings of the Fourteenth Conference on Fire and Forest Meteorology, pp.1977-1988, 1998.

N. Petrovic, D. Alderson, and J. Carlson, Dynamic resource allocation in disaster response: Trade-offs in wildfire suppression, PLOS ONE, vol.7, issue.4, p.2012

A. Sadeghi-naini and A. Asgary, Modeling number of firefighters responding to an incident using artificial neural networks, International Journal of Emergency Services, vol.2, issue.2, pp.104-118, 2013.
DOI : 10.1108/IJES-03-2012-0001

C. Tymstra, M. Flannigan, O. Armitage, and K. Logan, Impact of climate change on area burned in Alberta's boreal forest, International Journal of Wildland Fire, vol.16, issue.2, pp.153-160, 2007.
DOI : 10.1071/WF06084

W. Zhang and T. Dietterich, A reinforcement learning approach to jobshop scheduling, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp.1114-1120, 1995.