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Chapter 5

INDUSTRIAL CONTROL SYSTEM
FINGERPRINTING AND
ANOMALY DETECTION

Yong Peng, Chong Xiang, Haihui Gao, Dongqing Chen and Wang Ren

Abstract Industrial control systems are cyber-physical systems that supervise
and control physical processes in critical infrastructures such as elec-
tric grids, water and wastewater treatment plants, oil and natural gas
pipelines, transportation systems and chemical plants and refineries.
Leveraging the stable and persistent control flow communications pat-
terns in industrial control systems, this chapter proposes an innovative
control system fingerprinting methodology that analyzes industrial con-
trol protocols to capture normal behavior characteristics. The method-
ology can be used to identify specific physical processes and control
system components in industrial facilities and detect abnormal behav-
ior. An experimental testbed that incorporates real systems for the
cyber domain and simulated systems for the physical domain is used to
validate the methodology. The experimental results demonstrate that
the fingerprinting methodology holds promise for detecting anomalies
in industrial control systems and cyber-physical systems used in the
critical infrastructure.

Keywords: Industrial control systems, fingerprinting, anomaly detection

1. Introduction
Industrial control systems (ICSs), which include supervisory control and data

acquisition (SCADA) systems, distributed control systems (DCSs) and pro-
grammable logic controllers (PLCs), supervise and control physical processes
in critical infrastructure assets such as electric grids, water and wastewater
treatment plants, oil and natural gas pipelines, transportation systems and
chemical plants and refineries [15, 18]. With the increasing use of commercial-
off-the-shelf (COTS) information technology products, TCP/IP-based indus-
trial control protocols and connectivity with other networks, industrial control
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systems have become attractive targets for cyber attacks. Malware such as
Stuxnet [9], Duqu [3] and Flame [17] have demonstrated the enhanced cyber
threats to critical infrastructure assets.

In the information technology field, fingerprinting techniques usually exploit
information in TCP/IP protocol headers to automatically identify devices and
software; these techniques are used in attacks as well as for protection purposes.
Caselli et al. [5] have noted that industrial control system characteristics make
device fingerprinting more challenging compared with conventional information
technology networks due to device heterogeneity, proprietary protocols, device
computational power and long-standing TCP sessions. On the other hand,
from the system perspective, industrial control systems – unlike conventional
information technology networks – tend to have stable and persistent control
flow communications patterns, including characteristics such as long lifecycles,
static topologies, periodic behavior and a limited number of applications and
protocols [1, 16]. At the same time, every industrial control system is a unique
cyber-physical system that is customized to its controlled physical process,
control software and hardware.

For these reasons, a methodology is required to discriminate against specific
industrial control systems. The fundamental questions are: Can the concept of
a fingerprint from the information technology networking field that is used at
the component level be translated to the industrial control system field where
it is used at the system level? Furthermore, can the system-level fingerprint
that represents an industrial control system that is operating normally be used
to detect anomalous behavior in the control system?

This chapter attempts to answer these questions. Inspired by device finger-
printing as used in information technology networks, it is argued that industrial
control protocol based behavior analysis can derive system-level characteristics
of industrial control systems that may be used to discriminate between indus-
trial control systems used in the critical infrastructure. Unlike pure simulation
approaches described in the literature, an experimental testbed that incorpo-
rates real systems for the cyber domain and simulated systems for the physical
domain is employed for validation; such an experimental setup is well suited to
analyzing the characteristics of industrial control systems. The experimental
results demonstrate that the proposed industrial control system fingerprinting
methodology can discriminate between normal system behavior and abnormal
behavior.

2. Related Work
Unlike conventional information technology systems that are versatile and

variable at the system level, industrial control systems are production systems
that are somehow more fixed and regular for long periods of time at the system
level. This is one of the characteristics that can be leveraged to extract control
system fingerprints. A number of researchers (see, e.g., [6, 15, 18]) have noted
that industrial control systems (and cyber-physical systems) have long lifecy-
cles, hierarchical and structural architectures, relatively static topologies and



Peng et al. 75

less variability than information technology systems. Barbosa et al. [1] and
Pleijsier et al. [16] have demonstrated that control traffic has characteristics
such as periodicity, time-series nature, and static and stable topologies (with
stable connections).

With regard to fingerprinting information technology systems, Caselli et
al. [5] observe that the most widely adopted fingerprinting technique uses a 67-
bit signature from TCP/IP protocol headers to identify an operating system
on a machine in a standard network. Caselli and colleagues also describe the
challenges involved in fingerprinting industrial control devices. Crotti et al. [8]
have proposed the concept of a protocol fingerprint and have demonstrated its
utility in discriminating between different network protocols. Their protocol
fingerprint is based on three simple properties of IP packets: (i) size; (ii) inter-
arrival time; and (iii) arrival order. This research has been inspired by their
work, but there is a substantial difference. Crotti and colleagues use IP packet
features to derive two statistical vectors that correspond to the protocol finger-
print. On the other hand, this research uses industrial control protocol packet
features to derive sets of interactive patterns that represent normal industrial
control system behavior and use them to identify anomalous behavior.

Garitano et al. [10] have proposed a method for generating realistic indus-
trial control network traffic. This research is inspired by their observation that
industrial control systems can be uniquely discriminated by their communica-
tions patterns that embody protocol behavior features. However, the research
described in this chapter has different goals and employs a different methodol-
ogy.

Intrusion and anomaly detection in industrial control systems is an emerging
area of research. Cheung et al. [7], Goldenberg et al. [11] and Morris et al. [14]
have developed intrusion detection systems for industrial control networks that
use the Modbus protocol. Barbosa et al. [2] have used flow whitelists to describe
legitimate traffic based on the properties of network packets. However, the
research described in this chapter differs from these and other efforts in that it
focuses on system-level characteristics. In fact, a search of the literature reveals
a lack of research on system-level fingerprinting of industrial control systems
and its use in discriminating between normal and abnormal system behavior.

3. Background
A reference model provides a common framework and terminology for de-

scribing and understanding industrial control systems. The ANSI/ISA-99 [13]
and IEC 62443 [12] standards provide a five-level reference model: (i) level 4 is
the enterprise system; (ii) level 3 is for operations management; (iii) level 2 is
for supervisory control; (iv) level 1 is for local or basic control; and (v) level 0
is the process. Industrial control systems involve levels 3 through 0. As shown
in Figure 1, the reference model used in this chapter is simplified as the process
network, control network and physical process.

The cyber domain of an industrial control system includes the process net-
work and the control network; the physical domain is the controlled physical
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Figure 1. Typical industrial control system architecture.

process (Figure 1). The process network usually hosts human-machine inter-
faces (HMIs), SCADA servers, engineering workstations and historians. The
human-machine interfaces are used by human operators to supervise and con-
trol the physical process.

The control network hosts devices such as programmable logic controllers
(PLCs) and remote terminal units (RTUs) that, on one side, interact with the
physical domain (i.e., the controlled physical process such as a chemical plant)
and, on the other side, provide control interfaces to the process network and
eventually to human operators. Process network components communicate
with control network components using industrial control protocols such as
Modbus and DNP3.

4. Experimental Setup
The availability of experimental environments and real-world data pose ma-

jor barriers to industrial control system security research. Some researchers
have used industrial control system traffic traces captured from real installa-
tions. However, such traffic contains a lot of noise and is too complex for
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Figure 2. Experimental testbed.

the preliminary research described in this chapter. Other researchers use pure
simulations to acquire traffic data, but this data is often inaccurate and the
results may be of limited utility. This research focuses on industrial control
system traffic in the cyber domain, more specifically, network traffic between a
human-machine interface and programmable logic controller. The experimen-
tal testbed used in the research engages real hardware and software for the
cyber domain and a simulation of the physical domain. This approach yields
real control traffic that provides the ground truth of the normal behavior of
the industrial control system without any interference or noise. Figure 2 shows
the experimental testbed that offers the possibility of acquiring realistic and
effective results.

The testbed adheres to the reference architecture presented in Figure 1. It is
a part of the larger Cyber-Physical-System-Based Critical Infrastructure Inte-
grated Experimental Platform (C2I2EP). The testbed incorporates: (i) an in-
dustrial control system that controls a continuous stirred tank reactor (CSTR);
and (ii) an experiment analysis system. The process network contains an In-
touch human-machine interface. The control network incorporates a Siemens
programmable logic controller that communicates with the human-machine in-
terface via the ISO-over-TCP protocol. The physical process is a continuous
stirred tank reactor that is simulated in Matlab. The experiment analysis sys-
tem is used to capture network traffic, perform operations management and
analyze data.

Figure 3 shows the continuous stirred tank reactor model used in the re-
search. The model corresponds to a two-state jacketed continuous stirred tank
reactor with an exothermic irreversible first-order reaction: A → B. The pro-
cess is modeled by two nonlinear ordinary differential equations obtained from
the material and energy balances under the assumptions of constant volume,
perfect mixing and constant physical properties.
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Figure 3. Continuous stirred tank reactor model.

5. Fingerprinting Methodology
The core of an industrial control system is its physical domain, which com-

prises the controlled physical process. The cyber domain of the industrial
control system is used to interactively and/or automatically control the phys-
ical process. From the viewpoint of control system designers, every unique
industrial control system is a combination of control logic and parameter val-
ues [10]. The designers need to specify the control logic and download it to
programmable logic controllers and design human-machine interfaces so that
human operators can interact with the control system and, thus, the physical
system. Specifically, the human-machine interfaces and programmable logic
controllers interact via sensor variable values and control variable values using
an industrial control protocol. Therefore, by analyzing the interactive behavior
characteristics of an industrial control protocol, it is possible to obtain a finger-
print that represents the designers’ understanding of the mission requirements
of the controlled physical process and the characteristics of the industrial con-
trol system components, as long as there are no changes to the physical process
and the industrial control system components.

In the context of this research, an industrial control system fingerprint is a set
of transaction patterns between a human-machine interface and programmable
logic controller. A transaction pattern is, itself, a set of interactive industrial
protocol packets that are characterized by properties such as packet arrival
order, packet size, direction (from the human-machine interface to the pro-
grammable logic controller or from the programmable logic controller to the
human-machine interface) and inter-arrival time.
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Figure 4. Fingerprinting methodology.

Figure 4 presents the methodology for acquiring an industrial control system
fingerprint.

Figure 5. PCAP file of network traffic.

The fingerprinting methodology incorporates four steps:

Step 1: The first step is to capture traffic traces between the human-
machine interface and programmable logic controller. Network traffic
capture software such as Wireshark can be used to passively capture
the traffic. Figure 5 shows the captured PCAP file for the experimental
testbed.

Step 2: The second step is to extract and process the industrial control
protocol features. A custom data analyzer or tool such as Scapy [4] may be
used to extract packet properties such as packet arrival order, packet size,
direction and inter-arrival time. Next, the data is filtered and processed
to obtain a set of industrial control protocol packet feature vectors Pi:

Pi = (si, ∆ti, di) (1)

where i is the sequence number of a packet exchanged between the human-
machine interface and programmable logic controller, si is the size of
the packet, ∆ti is the packet inter-arrival time between packeti−1 and
packeti, and di is the direction of the packet flow (di has a value of +1
for HMI→PLC and –1 for PLC→HMI). Note that ∆ti is a discretized
value that is obtained using a discretization algorithm.
In the experiment, the continuous stirred tank reactor simulation was
run for six hours and the network traffic between the human-machine
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Figure 6. Long-standing TCP connection between the HMI and PLC.

interface and the programmable logic controller was collected. The fol-
lowing interactive industrial control protocol packet characteristics were
discerned from the collected data:

1. The industrial control protocol has a long-standing TCP connection
that spans several hours (Figure 6). This observation matches that
of Caselli et al. [5] and shows that TCP characteristics are not well
suited to industrial control system fingerprinting.

2. Each protocol packet has a limited size si and a limited number of
vectors (si, di). In the experiment, six types of vectors (si, di) were
distinguished from among the millions of packets that were captured:
(i) (60, +1); (ii) (90, +1); (iii) (133, +1); (iv) (60, –1); (v) (76, –1);
and (vi) (227, –1). An analysis of the timescales revealed that almost
fixed numbers of (si, di) vectors were observed each hour (Table 1).

3. The packet inter-arrival times can help discriminate between inter-
active sessions or transaction patterns between the human-machine
interface and programmable logic controller. Figure 7 shows that
∆ti has three orders of magnitude: 100ms, 10ms and 1 ms.

Step 3: The third step is to find the transaction patterns. The obser-
vations in Step 2 imply that certain transaction patterns exist between
the human-machine interface and programmable logic controller. Each
transaction pattern Mj is a set of bi-directional packet feature vectors:

Mj = {P1, P2, . . . , Pm} (2)

where m is the number of feature vectors.



Peng et al. 81

Table 1. Numbers of vectors (si, di) at different timescales.

Arrrival Packet Direction Packet Inter-Arrival
Order Size Vector Time (ms)

1 90 +1 90 0
2 60 –1 –60 1
3 76 –1 –76 20
4 60 +1 60 200
5 133 +1 133 100
6 60 –1 –60 1
7 227 –1 –227 30
8 133 +1 –133 1
9 60 –1 –60 1
10 90 +1 90 10

Figure 7. Orders of magnitude of interactive packet inter-arrival times.

Algorithm 1 specifies the procedure for obtaining the industrial control
system transaction patterns.

Analysis of the data from the continuous stirred tank reactor simulation
revealed exactly eight types of transaction patterns. Figure 8 shows the
transaction patterns.

Step 4: The fourth and final step is to obtain the industrial control
system fingerprint. The fingerprint ΦS is given by:

ΦS = (M1, M2, . . . , Mn) (3)

where n is the number of transaction patterns.

In the case of the continuous stirred tank reactor, it is adequate to use the
set of transaction patterns as the industrial control system fingerprint.
The processing of transaction patterns to obtain a more compact and
more accurate fingerprint is a topic for future research.
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Algorithm 1: Obtaining industrial control system transaction patterns.

Input: Pi = (si, ∆ti, di), i = 1, 2, ... I
Output: ΦS = {M1, M2, . . . Mn}
% After the analysis, each interaction is observed to end with a packet
% of length 60 without any data
function Patterns(Pi = (si,∆ti,di))

i = 1
ΦS = φ
while(i < I)

k = i
while(sk ̸= 60)

k = k + 1
end while

if {(si, di), . . ., (sk, dk)} ∈ ΦS

then Mj = {(si, di), . . ., (sk, dk)}
ΦS = ΦS ∪ Mj

end if
i = k + 1

end while
return ΦS

Figure 8. Continuous stirred tank reactor transaction patterns.
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Figure 9. PCAP file for the ISO-on-TCP protocol.

6. Fingerprint-Based Anomaly Detection
The industrial control system fingerprint that is derived from normal system

behavior can be used to detect anomalous behavior. To detect an anomaly, it
is necessary to repeat Steps 1 through 3 for the industrial control system of
interest and obtain the set of transaction patterns for the new traffic. Each
transaction pattern corresponding to the new traffic is then compared with
the corresponding transaction pattern in the fingerprint; a transaction pattern
mismatch indicates anomalous behavior.

Two examples are presented to demonstrate the utility of the fingerprint-
based anomaly detection methodology. Note that the two examples involve
attack traffic with legitimate protocol messages sent from legitimate sources.
These correspond to highly stealthy and dangerous attacks on an industrial
control system.

The first example involves ISO-on-TCP traffic from a vendor. Figure 9 shows
the PCAP file of the ISO-on-TCP traffic. Although the same protocol is used,
the packet characteristics are different from those in the original experiment.
In particular, packets of length 82 were not seen under normal operating con-
ditions.

Figure 10. PCAP file for a programmable logic controller scanning attack.

The second example involves a programmable logic controller scanning at-
tack. The assumption is that the attacker is sophisticated enough to use a fake
IP address to defeat whitelisting and can adjust the lengths of attack packets.
Figure 10 shows the PCAP file corresponding to the attack. Note that any
fake length of the second attack packet does not match any combination of the
patterns and is, therefore, detected as an anomaly.
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7. Conclusions
The industrial control system fingerprinting methodology presented in this

chapter leverages the stable and persistent control flow communications pat-
terns in industrial control systems to create fingerprints that correspond to
normal behavior of industrial control systems. The fingerprinting methodology
is validated using an experimental testbed that incorporates real systems for the
cyber domain and simulated systems for the physical domain. The experimen-
tal results demonstrate that the fingerprinting methodology holds promise for
detecting anomalies in industrial control systems and cyber-physical systems
used in the critical infrastructure.

Future research will focus on incorporating real-world industrial control
equipment in the Cyber-Physical-System-Based Critical Infrastructure Inte-
grated Experimental Platform (C2I2EP) and evaluating complex attack sce-
narios. Efforts will also be made to acquire and experiment with real traffic
from production environments. Additionally, the industrial control system fin-
gerprinting research will attempt to extend the feature set to incorporate lower-
level TCP/IP characteristics extracted from real traffic using data mining and
statistical analysis techniques.
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