K. Jung, K. C. Morris, K. W. Lyons, S. Leong, and H. Cho, Mapping Strategic Goals and Operational Performance Metrics for Smart Manufacturing Systems, Procedia Computer Science, vol.44, pp.184-193, 2015.
DOI : 10.1016/j.procs.2015.03.051

URL : http://doi.org/10.1016/j.procs.2015.03.051

G. Lanza, N. Stricker, and S. Peters, Ad-hoc Rescheduling and Innovative Business Models for Shock- robust Production Systems, Procedia CIRP, vol.7, pp.121-126, 2013.
DOI : 10.1016/j.procir.2013.05.021

URL : http://doi.org/10.1016/j.procir.2013.05.021

J. Lee, E. Lapira, B. Bagheri, and H. Kao, Recent advances and trends in predictive manufacturing systems in big data environment, Manufacturing Letters, vol.1, issue.1, pp.38-41, 2013.
DOI : 10.1016/j.mfglet.2013.09.005

P. Cowling and M. Johansson, Using real time information for effective dynamic scheduling, European Journal of Operational Research, vol.139, issue.2, pp.230-244, 2002.
DOI : 10.1016/S0377-2217(01)00355-1

Y. Dong and J. Jang, Production rescheduling for machine breakdown at a job shop, International Journal of Production Research, vol.3, issue.3, pp.2681-2691, 2012.
DOI : 10.1016/0305-0548(93)90091-V

K. Katragjini, E. Vallada, and R. Ruiz, Flow shop rescheduling under different types of disruption, International Journal of Production Research, vol.47, issue.24, 2012.
DOI : 10.1080/00207543.2012.666856

URL : https://riunet.upv.es/bitstream/10251/38305/1/KetModRubEva.pdf

H. M. Hashemian and W. C. Bean, State-of-the-Art Predictive Maintenance Techniques*, IEEE Transactions on Instrumentation and Measurement, vol.60, issue.10, pp.3480-3492, 2009.
DOI : 10.1109/TIM.2009.2036347