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Abstract

Many models in Systems Biology are described as a system of Ordinary Differential Equations, which allows for transient,
steady-state or bifurcation analysis when kinetic information is available. Complementary structure-related qualitative
analysis techniques have become increasingly popular in recent years, like qualitative model checking or pathway analysis
(elementary modes, invariants, flux balance analysis, graph-based analyses, chemical organization theory, etc.). They do not
rely on kinetic information but require a well-defined structure as stochastic analysis techniques equally do. In this article,
we look into the structure inference problem for a model described by a system of Ordinary Differential Equations and
provide conditions for the uniqueness of its solution. We describe a method to extract a structured reaction network model,
represented as a bipartite multigraph, for example, a continuous Petri net (CPN), from a system of Ordinary Differential
Equations (ODEs). A CPN uniquely defines an ODE, and each ODE can be transformed into a CPN. However, it is not obvious
under which conditions the transformation of an ODE into a CPN is unique, that is, when a given ODE defines exactly one
CPN. We provide biochemically relevant sufficient conditions under which the derived structure is unique and
counterexamples showing the necessity of each condition. Our method is implemented and available; we illustrate it on
some signal transduction models from the BioModels database. A prototype implementation of the method is made
available to modellers at http://contraintes.inria.fr/,soliman/ode2pn.html, and the data mentioned in the ‘‘Results’’ section
at http://contraintes.inria.fr/,soliman/ode2pn_data/. Our results yield a new recommendation for the import/export feature
of tools supporting the SBML exchange format.
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Introduction

Many models in Systems Biology are described as a system of

Ordinary Differential Equations (ODEs), which allows for

transient and steady-state analysis (for instance using MATLABH),

or bifurcation analysis with tools like XPPAUT [1], but only when

kinetic information is available.

Complementary structure-related qualitative analysis tech-

niques have become increasingly popular in recent years, such

as qualitative model checking or pathway analysis. Qualitative

analysis techniques do not rely on kinetic information, but require

a precisely structured model with well-identified products,

reactants and catalysts (and their stoichiometry, if any) for each

reaction.

The fact that the Systems Biology Markup Language (SBML)

[2] has become a standard for sharing and publishing of models

has helped in making modelers clarify the structure of their

models. Unfortunately, SBML does not enforce that the structure

and underlying ODEs are coherent. Even if the system is specified

by a list of reactions, as supported, e.g., by COPASI [3], modelers

tend to specify their reaction kinetics differently when aiming at

ODEs analysis. The troublemakers are reactions with complex

kinetics. COPASI provides a list of predefined functions; some of

them actually stand for whole building blocks. Thus, the structural

interpretation of models specified in formalisms such as SBML

may vary according to the source of the original model.

Particularly, if the models were originally meant to be ODE-

oriented, a later discrete interpretation as a qualitative or

stochastic model by a naive automatic translation may produce

wrong results; see Figure 1 for an introductory example

demonstrating the problem.

In [4], it is elaborated that structural information hidden in

kinetic laws may affect the results obtained from structural

analysis, such as elementary mode analysis [5], extreme pathway

analysis [6], flux balance analysis [7], chemical organization

theory [8], deficiency analysis or chemical reaction network theory

(CRNT) [9,10]. This perfectly coincides with our own experience,

and applies equally for place and transition invariant analysis to

validate a model, see e.g. [11–13], or to derive automatically an

hierarchically structured network representation [14].

Structural analysis may directly support ODEs-oriented dynamic

analyses; e.g. [15] applies network decomposition for a modular

parameter estimation approach, [16] introduces a structural persisten-

cy criterion, and transition invariants are used in [17] to identify fragile

nodes and the core network responsible for the steady state behaviour,

and in [18] to determine steady state solutions.
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Likewise, the correct structure is mandatory when a reaction

network is meant to be put into a stochastic setting, as it has been

introduced in the Petri net context in the seminal paper [19], and

exercised by applying various stochastic analysis techniques

(standard Markovian transient and steady state analysis, analytical

and simulative model checking) to a running case study in, e.g.,

[12,20].

In [4], the authors present an algorithm that uncovers hidden

structural information for some models already given in SBML.

On the contrary, in our article we discuss conditions for unique

structure inference directly from a given system of ODEs. We

derive from those conditions an algorithm, that has been

implemented and made public. We illustrate the necessity of our

conditions and the result of the inference on some simple

examples. This allows for a correct and automatic translation

from ODE models to structured models suitable for qualitative or

stochastic analysis, which we demonstrate on the very examples of

the BioModels database [21] that were incorrectly transcribed in

SBML as shown by [4].

We model a reaction network by a continuous Petri net (CPN),

see [22]. We define P, the set of places, with n~jPj, and T , the

set of transitions, with m~jT j. F{ and Fz are n|m incidence

matrices describing the weights of the transitions’ input and output

arcs, respectively. The matrix entries are denoted by f z
ij and f {

ij ,

respectively.

Each transition t[T has a rate function vt specifying the

generally state-dependent continuous flow over its input and

output arcs. vt can be an arbitrary function, but its variables are

restricted to the pre-places of t to enforce a close relation between

structure and dynamic behavior. A CPN uniquely defines a system

of ODEs over the variables corresponding to the places pi[P:

dpi

dt
~
Xm

j~1

(f z
ij {f {

ij ):vj ð1Þ

We are interested in mapping a system of ODEs onto a CPN,

such that the reverse operation according to (1) gives an equivalent

system (up to simple algebraic operations obviously ensuring

behavioral equivalence, such as a|v{b|v~(a{b)|v). Thus,

we will assume that the variables of the system of ODEs are:

xi,1ƒiƒn, i.e., each variable is mapped in a unique way to a

place pi of the net, which is required by the reverse mapping.

Such mappings have already been used in the Systems Biology

community, e.g. in the need for a stochastic view of models

originally described by ODEs. For instance in STODE [23],

which was supposed to be included in COPASI, in BlenX [24],

and the Beta Workbench [25]. However, no precise algorithm is

described, and program sources of implementations are not

available. Most importantly, these computational platforms do not

care about our main concern – the uniqueness of the revealed

structure.

Please note that any ODEs can be represented by a CPN simply

by considering the full expression of each dx=dt, i.e. the right-hand

side of the equation, as the vx of a single transition tx with all

variables used in vx (i.e., the domain of vx) as pre-places, and

exactly the same post-places (with the same arc weights), except for

x itself, which should have as weight on tx?x one more than the

weight on x?tx; compare Figure 2. This naive translation always

works and produces a net having an equal number of places and

transitions, with structural information typically hidden in the

generally complex kinetics vx. However, it is not obvious under

which conditions there is exactly one CPN corresponding to a

system of ODEs (even if we assume minimal arc weights), and

especially whether certain biologically reasonable conditions on

the CPN enforce its uniqueness. In the following we discuss ODEs

conditions ensuring that there exists only one CPN; but it will

almost never be the one we get by the naive translation.

Methods

We will first present a restricted form of our results and then

discuss its generalization to other types of kinetics. We will give

examples where even quite simple kinetics leads to ambiguity, i.e.,

several nets can generate the same system of ODEs.

Figure 1. Arbitrary complex kinetics may hide essential
structure. The example is an excerpt from the network model
discussed in [33]. (A) Structure as suggested by the schematic
representation in [33] and the list of reactions in the model’s SBML
format (Created by COPASI version 4.0 (Build 18) on 2006-10-24); (B)
Correct structure, which is hidden in the kinetics of reactions 23 and 25.
The two structures obviously differ in their discrete behaviour.
doi:10.1371/journal.pone.0014284.g001

Figure 2. General principle to construct a CPN for an arbitrary
ODEs. DOM(vx) denotes the domain of the function vx.
doi:10.1371/journal.pone.0014284.g002
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Mass Action Law
In order to obtain uniqueness of the net, we will first restrict

ourselves to the case where our first condition holds.

Condition 1. The CPN has pure mass action law kinetics, i.e.

Vj,1ƒjƒm,vj~kj
: P

n

i~1
x

f {
ij

i

where the parameters kj belong to a finite alphabet K of symbols.

Mass action is the basis of more elaborate rates used in

biological models, like Michaelis-Menten or Hill kinetics, and the

use of symbolic parameters is quite standard in ODEs models since

it allows the modeler to ‘‘play’’ with a system of ODEs in a simple

and coherent way. Mass action kinetics are also necessary for some

stochastic simulation methods or analysis techniques like CRNT

[9].

It is obvious that for arbitrary kinetics there is little hope to find

a unique CPN. Moreover the following examples show that even

quite simple kinetics can lead to ambiguity, i.e., several net

structures can give the same system of ODEs (see Example 1), and

that there is a need for symbolic parameters to ensure uniqueness

(see Example 2).

Example 1. Consider the following ODEs:

dA

dt
~{k:A~{

dB

dt
ð2Þ

If one allows general kinetic expressions, even restricted such that they have

the same variables as they have pre-places, one could obtain the two nets given

in Figure 3.

Note that the second net does not respect Condition 1, since the kinetics

should have been k:A2.

Example 2. Consider the following ODEs:

dA

dt
~{2k:A2~{

dB

dt
ð3Þ

Symbolic parameters are required to avoid that (3) leads to the two nets given

in Figure 4.

We obtain the following system of ODEs by combining

Condition 1 with equation (1):

dxi

dt
~
Xm

j~1

(f z
ij {f {

ij ):vj~
Xm

j~1

(f z
ij {f {

ij ):kj
: P

n

h~1
x

f {
hj

h , Vi,1ƒiƒn

If a system of ODEs can be put in such a form, thanks to basic

algebraic transformations, we will try to extract from it a CPN.

Otherwise, it does obviously not correspond to any model fulfilling

Condition 1.

We thus restrict our study to ODE systems of the form:

dxi

dt
~
X
j[J

sj
:lj : P

n

h~1
x

rih
h ð4Þ

where J is a set of indices and for all j[J it holds sj[Z,lj[K, and all

rih[N; in other words, ODE systems where the right side is a

polynomial over xi, with coefficients being integer linear

combinations of parameters in K.

A reaction which has exactly the same multisets of pre- and

post-places, i.e., reactants and products, will only lead to null

members in any ODE. Thus, we also assume:

Condition 2. The CPN does not contain any void reaction, i.e.,

Vj,1ƒjƒm,Ai,1ƒiƒn,f {
ij 6¼ f z

ij

Finally, we introduce a third purely syntactic condition to

ensure uniqueness of the CPN.

Condition 3. In the CPN, the same parameter is never used for two

different reactions with the same reactants, i.e.,

Vj1j2,1ƒj1,j2ƒm,
either kj1

6¼ kj2

or Ai,1ƒiƒn,f {
ij1
6¼ f {

ij2

(

We illustrate Condition 3 by Example 3.

Example 3. We consider again system (2). Complying with Condition

1, but allowing a single parameter to be used twice for the same reactants, i.e.,

violating Condition 3, one could obtain the net given in Figure 5.

Indeed, for the given system (2) and with the three introduced

conditions, there are necessarily two places (A and B), one single

transition (it has kinetics k:A), a single pre-place (A with weight 1),

and a single post-place (B with weight 1); see the first CPN of

Example 1 in Figure 3.

Before turning to our main result, we introduce two lemmata.

Lemma 1. Under our three conditions, all kinetics vj appear at least

once in the ODEs.

Proof. Let us suppose that vj0 does not appear in the system.

We thus have AJ, Vi, 1ƒiƒn,
X

j[J
(f z

ij {f {
ij ):kj

:Pn
h~1 x

f {
hj

h ~0
with j0[J.

Let us first consider the case where J~fj0g, i.e., the term

(f z
ij0

{f {
ij0

):vj0 amounts to 0 for all i. This would either violate

Condition 1 if vj0~0, or violate Condition 2 if Vi, f z
ij0

{f {
ij0

~0:

Figure 3. Two possible structures for Example 1. This illustrates
the fact that arbitrary kinetic expressions introduce an ambiguity in the
structure inference, even for very simple ODEs. The upper CPN
represents the unique solution if reading equation (2) with the three
established conditions.
doi:10.1371/journal.pone.0014284.g003

Figure 4. Two possible structures for Example 2. This illustrates
the need for symbolic parameters in order to avoid confusion when
inferring the structure.
doi:10.1371/journal.pone.0014284.g004
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Thus there are necessarily some terms compensating for vj0 in

some equations. These ODEs are precisely all the dxi=dt such that

f z
ij0

{f {
ij0
6¼ 0.

However, since parameters are symbolic, only monomials with

the same value of kj and the same degree for all xh can

compensate each other. But under Condition 3 there are no other

j that share these features with j0.

Lemma 2. Conversely, for each term s:l:P xrh

h of the ODEs, there

exists a transition with parameter l, and pre-places xh with the corresponding

arc weights rh.

Proof. The existence is obtained directly from the mapping of

CPNs to ODEs according to (1). Since parameters and variables are

symbolic objects, no term of that form can be created otherwise.

There is only a single such transition in any net agreeing with

Condition 3. Thus, if there are several terms with the same l and

rh: s1
:l:Pxrh

h , . . . ,sq
:l:Pxrh

h , they correspond to the same tran-

sition and can be merged into one single term s:l:Pxrh

h with

s~
Pq

1 si.

We can now proceed to our main result.

Theorem 1. For any system S of ODEs defining dxi=dt,1ƒiƒn

according to Conditions 1–3, there exists at most one CPN, such

that the system S0 obtained from it according to (1) is equivalent to S,

up to basic arithmetic.

Proof. We have seen that the xi uniquely defineP. From Lemma

1 and 2 we obtain the uniqueness of the definition of T and F{.

Now, the post-places and corresponding weights are defined

unambiguously by looking at dxi=dt and imposing the constraint

s~f z
ij {f {

ij , i.e., f z
ij ~szf {

ij with f {
ij already determined to be

equal to some rh in the previous step. If the obtained f z
ij is strictly

negative, there is no CPN that would produce such system under

the assumed conditions.

The theorem states that there is at most one CPN. Indeed lots of

ODEs are not amenable to (4) and thus do not comply with our

first condition. However even for some systems that do comply

with it there exists no model fulfilling our three conditions, as

illustrated by Example 4.

Example 4. An ODE system that can be put in the form of equation

(4), but does not correspond to any CPN fulfilling our three conditions is

dx=dt~{2kx.

In this case, from the ODEs one would obtain a single place for x, a single

transition with parameter k, an input weight of 1, but no possible output

weight: f z~szf {~{2z1~{1.

Beyond Mass Action Law
About 10% of the models of the BioModels database fulfill our

three conditions. However it is quite common to use classical

enzymatic kinetics like Michaelis-Menten or Hill type kinetics.

Actually, one can weaken Condition 1 in order to cope with

Michaelian kinetics of the form: vj~
Vj
:xj

Kjzxj

in addition to the

mass action law case.

Instead of polynomials, the right members of the ODEs will

then be rational fractions. But thanks to the partial fraction

decomposition theorem (see for instance [26]) they can be

decomposed in a unique way into a sum of a polynomial and of

rational fractions, with irreducible polynomials as denominator

and a numerator of strictly smaller degree.

In our case, the simple rational fractions will have degree one

denominator (Kjzxj ) and degree zero numerator, otherwise there

is no CPN corresponding to these ODEs without violating our new

condition. These fractions can be easily and unequivocally

transformed into the above form, the remaining polynomial will

be handled as in the previous section.

Results

We built a prototype implementation of the method outlined

above – the tool ode2pn, which converts XPPAUT files into

SBML (Level 2, Version 1) or APNN (one of the standard Petri net

formats [27]), respectively, by applying directly the constructive

proof of Theorem 1. We built upon an already existing tool,

Nicotine [28], for the output of the structured model and added to

it an XPPAUT parser that uses Lemma 2 to introduce a new

reaction for each corresponding term in the ODEs and Theorem 1

to complete the stoichiometry matrix.

The tool rejects the conversion when no structured model

fulfilling our conditions can be obtained. It is available at http://

contraintes.inria.fr/,soliman/ode2pn.html.

Note that the partial fraction decomposition necessary for the

Michaelian kinetics always exists, but is ‘‘practical’’ only with prior

knowledge of the poles of the denominator’s polynomials. These

are the Kj in the Michaelian case. Actually, our implementation

supposes that the corresponding rational fractions are already in

decomposed form.

In [4], five models from the BioModels database were identified

as having been transcribed in SBML with some structural

information missing: models 44, 93, 94, 143 and 151 (we adopt

the convention to reduce the official model names to at most three

digits). Model 44 involves Hill Kinetics and model 143 even more

complex kinetic laws; so our approach cannot guarantee the

uniqueness of the structure for these two cases. In the following we

discuss our results for the remaining three models.

Contrary to [4], where SBML files are evaluated directly, we

take the auto-generated XPP files (i.e. ODEs, generated from

those SBML models), which we downloaded from the BioModels

database in September 2009, and hand-curated in order to obtain

exactly the ODEs as given in the original articles.

Models 93 and 94 are two models of the JAK/STAT pathway

by [29]. In the original article they are described by a drawing (see

Fig. 6) and a mixture of what the authors call ‘‘chemical reactions’’

and of ODEs (mostly for mRNAs). They are used as ODEs for

simulation and were hand-transcribed to SBML for inclusion in

BioModels database, but missing the ‘‘reversibility’’ of some

reactions. We input the 34 differential equations (in each case) to

our tool, with sometimes more than ten different terms in a single

equation, and obtained the unique structure complying with our

conditions (with the Michaelian extension) and correctly including

reverse reactions when needed.

Model 151 is a model of the regulation of that same JAK/

STAT pathway by IL-6 in hepatocytes [30]. It includes 68

differential equations (see Fig. 7 for an extract) and once again

leads to a unique structure (with mass action and Michaelian

Figure 5. Another possible structure for the same equations as
for Figure 3, as explained in Example 3. Even with symbolic
parameters and pure mass action kinetics, if it is allowed to use the
same parameter for two distinct reactions with the same reactants, one
can obtain several structures for the same ODEs.
doi:10.1371/journal.pone.0014284.g005
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kinetics). The XPPAUT.ode file (BIOMD151.ode) and the

resulting structured SBML file (BIOMD151_new.xml) can be

found at http://contraintes.inria.fr/,soliman/ode2pn_data/

together with the biomodels version (BIOMD0000000151.xml),

which actually contains more errors than found by [4], mostly

concerning parameter names that are quite error-prone when

hand-translated from ODEs to SBML. Note that the XPPAUT

file which we provide corrects two typos from the original article,

namely kr39 instead of kr30 in dx8=dt and x15 instead of x14 in

dx16=dt. These typos still allow extraction of a unique structured

model, but with obvious differences compared to that described in

the article.

The converted models can be further processed by any tool

complying with SBML or APNN, e.g. using Snoopy [31], which

supports both formats and allows for graphical visualization of the

translation results.

Discussion

We have discussed conditions for a unique structure inference

out of a given system of ODEs. For reaction networks fulfilling the

given three conditions, ODEs and a structured formalization by,

e.g., a CPN, are equivalent representations, which can be

transformed into each other without loss of information. Note

that these networks are restricted to mass action or Michaelian

kinetics, which are the most widely used kinetics for biochemical

systems, and prohibit empty reactions which would not have any

biochemical meaning. These conditions forbid models, which were

mathematically correct, but contradict reasonable biochemical

expectations.

We have shown that otherwise the structure is not uniquely

defined by a system of ODEs. We have given examples where

violating our conditions leads to several nets having possibly

different discrete, and thus stochastic behavior, but generating the

same system of ODEs. These counterexamples demonstrate the

Figure 6. Figure 1 of [29] representing a schematic view of the
JAK/STAT pathway. The incorrect structure of the corresponding
SBML models (93 and 94) of the BioModels database can be
automatically fixed by going back to the differential equations and
extracting the unique structure fulfilling our three conditions. It then
correctly includes the reversibility of reactions (1), (2), (3), (6), etc.
highlighted in red, and absent from the BioModels database version.
doi:10.1371/journal.pone.0014284.g006

Figure 7. Beginning of the Appendix II of [30] describing the full ODE model of that article. The 68 ODEs actually allow the extraction of a
unique model fulfilling the three established conditions. It not only correctly reflects the structure described in the article, but also avoids the typos
introduced in the hand-written model 151 of the BioModels database; hand-typing an SBML model for that many ODEs with numerous parameters is
definitely error-prone.
doi:10.1371/journal.pone.0014284.g007
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necessity of each individual condition. We have given a

constructive proof for the translation algorithm, which has been

directly implemented, providing XPP to SBML conversion.

Our conditions are quite restrictive (only Mass-Action and

Michaelian kinetics), but do cover a large part of mathematical

biology models. This should allow, in the future, more and more

modelers to benefit from structural analysis techniques for their

systems, even if done as an afterthought. It also leads to more

precise links between the different formalisms and launches a

bridge betweens different communities of the Systems Biology

field. In those cases where both the ODEs and a reaction diagram

are given, our method allows the check if they are consistent.

Ideally, models are specified with our conditions in mind, be it

as a list of reactions (as, e.g., in COPASI) or some graphical

notation (e.g., continuous Petri nets). In both cases, kinetic

functions should obey the three established conditions. User-

friendly tools might check these conditions while doing export to

SBML files to prevent misleading results by later use. Sophisticated

ODE tools will have no problems in applying adequate algebraic

transformations to optimize the simulation algorithms’ run-time

behavior. Any import of SBML files should check these conditions

if aiming at structure-related qualitative or stochastic analysis

techniques.

We intend to continue in trying to find uniqueness conditions

for more general kinetics, and to devise heuristics for structure

inference when uniqueness cannot be obtained (unwinding

algebraic conservation laws coming from rapid equilibria, for

instance). We also plan to make our algorithm more widely usable,

for instance through a CellDesigner [32] XPP-import plugin.
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