A. Regev, W. Silverman, and E. Y. Shapiro, Representation and simulation of biochemical processes using the pi-calculus process algebra, Proceedings of the sixth Pacific Symposium of Biocomputing, pp.459-470, 2001.

L. Cardelli, Brane calculi -interactions of biological membranes, Proceedings of the second international workshop on Computational Methods in Systems Biology, pp.257-280, 2004.

A. Regev, E. M. Panina, W. Silverman, L. Cardelli, and E. Shapiro, BioAmbients: an abstraction for biological compartments, Theoretical Computer Science, vol.325, issue.1, pp.141-167, 2004.
DOI : 10.1016/j.tcs.2004.03.061

URL : http://doi.org/10.1016/j.tcs.2004.03.061

V. Danos and C. Laneve, Formal molecular biology, Theoretical Computer Science, vol.325, issue.1, pp.69-110, 2004.
DOI : 10.1016/j.tcs.2004.03.065

URL : https://hal.archives-ouvertes.fr/hal-00164591

A. Phillips and L. Cardelli, A correct abstract machine for the stochastic pi-calculus, Transactions on Computational Systems Biology, 2004.

S. Eker, M. Knapp, K. Laderoute, P. Lincoln, J. Meseguer et al., PATHWAY LOGIC: SYMBOLIC ANALYSIS OF BIOLOGICAL SIGNALING, Biocomputing 2002, pp.400-412, 2002.
DOI : 10.1142/9789812799623_0038

N. Chabrier and F. Fages, Symbolic Model Checking of Biochemical Networks, CMSB'03: Proceedings of the first workshop on Computational Methods in Systems Biology, pp.149-162, 2003.
DOI : 10.1007/3-540-36481-1_13

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.2355

G. Bernot, J. P. Comet, A. Richard, and J. Guespin, Application of formal methods to biological regulatory networks: extending Thomas??? asynchronous logical approach with temporal logic, Journal of Theoretical Biology, vol.229, issue.3, pp.339-347, 2004.
DOI : 10.1016/j.jtbi.2004.04.003

G. Batt, D. Bergamini, H. De-jong, H. Garavel, and R. Mateescu, Model Checking Genetic Regulatory Networks Using GNA and CADP, Proceedings of the 11th International SPIN Workshop on Model Checking of Software SPIN, 2004.
DOI : 10.1007/978-3-540-24732-6_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.114.7325

M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton, Analysis of signalling pathways using the prism model checker, CMSB'05: Proceedings of the third international conference on Computational Methods in Systems Biology, 2005.

M. Antoniotti, A. Policriti, N. Ugel, and B. Mishra, Model Building and Model Checking for Biochemical Processes, Cell Biochemistry and Biophysics, vol.38, issue.3, pp.271-286, 2003.
DOI : 10.1385/CBB:38:3:271

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.233

L. Calzone, N. Chabrier-rivier, F. Fages, and S. Soliman, Machine Learning Biochemical Networks from Temporal Logic Properties, CMSB'05 Special Issue, pp.68-94, 2006.
DOI : 10.1007/11880646_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.75.5250

F. Fages, S. Soliman, and N. Chabrier-rivier, Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM, Journal of Biological Physics and Chemistry, vol.4, issue.2, pp.64-73, 2004.
DOI : 10.4024/2040402.jbpc.04.02

URL : https://hal.archives-ouvertes.fr/hal-01431345

L. Calzone, F. Fages, and S. Soliman, BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge, Bioinformatics, vol.22, issue.14, pp.1805-1807, 2006.
DOI : 10.1093/bioinformatics/btl172

URL : https://hal.archives-ouvertes.fr/hal-01431364

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, issue.4, pp.524-531, 2003.
DOI : 10.1093/bioinformatics/btg015

F. Fages, From Syntax to Semantics in Systems Biology Towards Automated Reasoning Tools, Transactions on Computational Systems Biology IV, vol.3939, pp.68-70, 2006.
DOI : 10.1007/11732488_6

S. H. Muggleton, Inverse entailment and progol, New Generation Computing, vol.12, issue.1, pp.245-286, 1995.
DOI : 10.1007/BF03037227

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1630

C. H. Bryant, S. H. Muggleton, S. G. Oliver, D. B. Kell, P. G. Reiser et al., Combining inductive logic programming, active learning and robotics to discover the function of genes, Electronic Transactions in Artificial Intelligence, vol.6, 2001.

N. Angelopoulos and S. H. Muggleton, Machine learning metabolic pathway descriptions using a probabilistic relational representation, Proceedings of Machine Intelligence, 2002.

N. Angelopoulos and S. H. Muggleton, Slps for probabilistic pathways: Modeling and parameter estimation, 2002.

I. Bratko, I. Mozetic, and N. Lavrac, KARDIO: A study in Deep and Qualitative Knowledge for Expert Systems, 1989.

A. Cimatti, E. Clarke, E. Giunchiglia, F. G. Pistore, M. Roveri et al., NuSMV 2: An OpenSource Tool for Symbolic Model Checking, Proceedings of the International Conference on Computer-Aided Verification, CAV'02, 2002.
DOI : 10.1007/3-540-45657-0_29

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.107.8023

N. Chabrier-rivier, M. Chiaverini, V. Danos, F. Fages, and V. Schächter, Modeling and querying biomolecular interaction networks, Theoretical Computer Science, vol.325, issue.1, pp.25-44, 2004.
DOI : 10.1016/j.tcs.2004.03.063

URL : http://doi.org/10.1016/j.tcs.2004.03.063

F. Fages and S. Soliman, Type Inference in Systems Biology, CMSB'06: Proceedings of the fourth international conference on Computational Methods in Systems Biology, 2006.
DOI : 10.1007/11885191_4

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.106

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, Journal of Computational Physics, vol.22, issue.4, pp.403-434, 1976.
DOI : 10.1016/0021-9991(76)90041-3

M. A. Gibson and J. Bruck, A probabilistic model of a prokaryotic gene and its regulation, Computational Methods in Molecular Biology: From Genotype to Phenotype, 2000.

L. Calzone and S. Soliman, Coupling the cell cycle and the circadian cycle, Research Report, vol.5835, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070191

. Fig, BIOCHAM-generated plot of the synchronization in period of the cell cycle by the circadian cycle for different values of kimpf (action of WEE1 on MPF) and kampf (action of CDC25 on MPF) The limit of synchronization computed by BIOCHAM (red crosses) is interpolated by the linear function kampf = 2, pp.44832-44834