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Abstract. Blank Digital Signatures (BDS) [18] enable an originator to
delegate the signing rights for a template, containing fixed and exchange-
able elements, to a proxy. The proxy is then able to choose one of the
predefined values for each exchangeable element and issue a signature
for such an instantiation of the template on behalf of the originator.
In this paper, we propose optimizations for the BDS scheme from [18]
and present a library, integrating this optimized version within the Java
Cryptography Architecture and the keying material into X.509 certifi-
cates. To illustrate the flexibility of the proposed library, we introduce
two proof-of-concept implementations building up on XML and PDF,
respectively. Finally, we give a detailed insight in the performance of the
protocol and our implementation.

1 Introduction

In contrast to conventional digital signatures, involving a signer and a verifier,
proxy-type digital signature schemes are signature schemes involving three par-
ties, namely an originator, a proxy and a verifier. Here, the originator delegates
the signing power (for some particular well defined set of messages) to a proxy.
The proxy can then sign messages on behalf of the originator. Any verifier, given
a message and a corresponding signature, can check whether the proxy has pro-
duced the signature on behalf of the originator (authenticity), the integrity of
the message and whether the given message is one of the “allowed” messages.

Blank Digital Signatures (BDS) [18] are a special instance of proxy-type dig-
ital signatures, allowing an originator to define and issue a signature on a tem-
plate, containing fixed and exchangeable elements. A designated proxy can then
produce signatures for instantiations of this template (messages). More precisely,
given a template signature, the proxy creates an instantiation by choosing one of
the predefined values for each of the exchangeable elements and issues a signa-
ture with respect to the template signature. When verifying this signature, only
the message and the corresponding signature is needed, and it is required that
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the verifier does not learn anything about the unused choices in the exchangeable
elements in the template (privacy property).

Blank Digital Signatures give rise to a lot of interesting applications, and,
accordingly, the question arises how a BDS scheme would perform in a practi-
cal implementation, and to which extent it can be integrated into off-the-shelf
cryptographic frameworks such as the Java Cryptography Architecture [26] and
key infrastructures such as PKIX [8].

1.1 Our Contribution

In this paper, we propose optimizations for the BDS scheme in [18] and present
a full-fledged implementation of this optimized version. Firstly, we briefly revisit
the scheme and discuss possible practical applications. Then, we show how the
scheme can be modified to use Type-3 pairings instead of the originally proposed
Type-1 pairings and introduce optimizations for the encoding of templates. Sub-
sequently, we show how the scheme can be integrated into the Java Cryptography
Architecture and how the keying material can be encapsulated within X.509 cer-
tificates. Moreover, two possible signature formats, namely an XML and a PDF
signature format, are proposed. Finally, timings of our implementation, showing
the practical applicability of the BDS scheme, are provided and discussed.

2 Background

We use additive notation for groups, which are always of prime order p. A func-
tion ε : N → R+ is called negligible if for all c > 0 there is a k0 such that
ε(k) < 1/kc for all k > k0. In the remainder of this paper, we use ε to denote
such a negligible function.

Definition 1 (Bilinear Map:) A bilinear map (pairing) is a map e : G1 ×
G2 → GT , where G1,G2 and GT are cyclic groups of prime order p. Let P and
P ′ generate G1 and G2, respectively. We require e to be efficiently computable
and to satisfy:

Bilinearity: e(aP, bP ′) = e(P, P ′)ab = e(bP, aP ′) ∀a, b ∈ Zp

Non-degeneracy: e(P, P ′) 6= 1GT
, i.e., e(P, P ′) generates GT .

If G1 = G2, e is called symmetric and asymmetric otherwise. Asymmetric pair-
ings can be either Type-2 or Type-3 pairings. The difference between Type-2 and
Type-3 pairings is that an efficiently computable isomorphism Ψ : G2 → G1 exists
for Type-2 pairings, while for Type-3 pairings such an isomorphism is unknown.

Definition 2 (t-SDH assumption [5]) Let p be a prime of bitlength κ, G1

and G2 be finite cyclic groups of order p, generated by P ∈ G1 and P ′ ∈ G2,
respectively, P = Ψ(P ′), α ∈R Z∗p and t > 0. Then, for all PPT adversaries A
it holds that

Pr

[(
c,

1

α+ c
P

)
← A(P, (αiP ′)ti=0)

]
≤ ε(κ), where c ∈ Zp \ {−α}.



In this paper, we concentrate on Type-3 pairings on Barreto-Naehrig curves
[4] with embedding degree 12. Thus, elements in GT have a bitlength of 12 ·
bitlength(p). For our setting, we chose a bitlength of 256 bits, leading to a
bitlength of 3072bit in GT . This choice is ideal w.r.t. the comparable strengths
proposed by NIST [3], since the discrete logarithm problem should be equally
hard in the additive groups G1, G2 and in the multiplicative group GT . In the
Type-3 setting, we can use the natural counterpart of the t-SDH assumption,
i.e., the co-t-SDH assumption [7, 19].

Definition 3 (co-t-SDH assumption [7, 19]) Let p be a prime of bitlength κ,
G1 and G2 be finite cyclic groups of order p, generated by P1 ∈ G1 and P2 ∈ G2,
respectively, α ∈R Z∗p, i ∈ {1, 2} and t > 0. Then, for all PPT adversaries A it
holds that

Pr

[(
c,

1

α+ c
Pi

)
← A((αiP1)ti=0, (α

iP2)ti=0)

]
≤ ε(κ), where c ∈ Zp \ {−α}.

2.1 Digital Signature Schemes

A digital signature scheme DSS is a triple (DKeyGen, DSign,DVerify) of PPT
algorithms. Thereby, DKeyGen is a key generation algorithm that takes a security
parameter κ ∈ N as input and outputs a secret (signing) key sk and a public
(verification) key pk. Further, DSign is a (probabilistic) algorithm, which takes
a message M ∈ {0, 1}∗ and a secret key sk as input, and outputs a signature
σ. Finally, DVerify is a deterministic algorithm, which takes a signature σ, a
message M ∈ {0, 1}∗ and a public key pk as input, and outputs a single bit
b ∈ {true, false} indicating whether σ is a valid signature for M under pk.

A digital signature scheme is required to be correct, i.e., for all security pa-
rameters κ, all (sk, pk) generated by DKeyGen and all M ∈ {0, 1}∗ one requires
DVerify(DSign(M, sk),M, pk) = true. Additionally, for security one requires exis-
tential unforgeability under adaptively chosen-message attacks (EUF-CMA) [16].

2.2 Java Cryptography Architecture

The Java Cryptography Architecture [26] (JCA) constitutes an API, providing
standardized access to cryptographic algorithms. Each library that implements
this API needs to implement a so-called cryptographic Provider, registering the
provided algorithm implementations at the JCA. The desired Provider is then
set by the user of the library, and instances of the algorithm implementations
can be obtained using the JCA-provided factories. The primitives we use in this
paper are implementations of the Signature interface, the KeyPairGenerator

interface and the KeyFactory interface, respectively. The Signature interface
resembles the DSign and DVerify functionality of a digital signature scheme as
discussed above, whereas the KeyPairGenerator interface and the KeyFactory

interface provide methods for conveniently generating and handling keys in gen-
eral. Using the JCA, entire implementations can be easily exchanged by simply
setting another Provider.



3 The Blank Digital Signature Scheme

In this section, we introduce the notion of BDS schemes in general, and then
give a brief overview of the BDS scheme from [18] (further referred to as BDSS).
We discuss the basic building blocks, as well as the principles underlying the
signature generation and verification. Since this paper lays focus on the practical
aspects of the BDSS, we keep this section quite informal and refer the reader
to [18] for more formal definitions.

A BDS scheme allows an originator to designate the signing rights for a
certain template to a proxy. A template T , thereby, is a sequence of non-empty
sets of bitstrings Ti. Depending on the cardinality of the respective set, such
sets are either called fixed or exchangeable elements, i.e., fixed elements contain
exactly one bitstring, whereas exchangeable elements contain k > 1 distinct
bitstrings. More formally, we have:

T = (T1, T2, . . . , Tn), Ti = {Mi1 ,Mi2 , . . . ,Mik}.

The template length is defined as the sequence length n of the template, while
the template size |T | is defined as |T | = ∑n

i=1 |Ti|. Furthermore, each template
is assigned a unique identifier idT . Once the template is defined, the originator
issues a signature on T for a particular proxy. Based on this so called template
signature, the designated proxy can choose concrete values for each exchangeable
element (fixed elements stay fixed) and compute a so called instance signature
on this message M = (Mi)

n
i=1. With the instance signature at hand, anyone is

able to verify the validity of the instance signature and the designation.
Besides the usual correctness property, a BDS scheme provides unforgeability,

immutability and privacy. Informally, these properties are defined as follows. Un-
forgeability requires that, without knowledge of the secret keys, it is intractable
to (existentially) forge template or instance signatures. Immutability essentially
models a stronger adversary in the unforgeability setting, i.e., additionally covers
adversaries knowing the signing key of the proxy. Finally, privacy requires that
it is intractable (for outsiders) to determine template elements (except the ones
revealed by instantiations).

3.1 Applications

Basically, a BDS scheme enables an originator to hand over a signed form (tem-
plate), containing fixed and exchangeable elements, to a proxy being designated
to sign an arbitrary instance of this form, i.e., a filled in form, on behalf of the
originator. Figure 1 illustrates a sample template running through a BDS proto-
col execution. As shown in this figure, it is also possible to encode yes-/no-choices
within a template by simply encoding yes and no in an exchangeable element.

In particular, a BDS scheme is applicable to any contract, which requires to
leave a few choices open to an intermediary party, while the rest of the content
is fixed. For instance, it would be thinkable that a broker makes a business
deal on behalf of a client, using a template, previously defined and signed by
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Fig. 1: Schematic View of the BDS Scheme

the client [18]. Thereby, it can be of importance that the unused choices of the
template do not get revealed upon verification of an instance signature, which is
ensured by the privacy property of BDS schemes. Other applications cover various
fields, among others, any types of digital reports like lab reports in healthcare,
or authorized (public) tender forms, questionnaires and application forms in the
eGovernment field.

3.2 The BDSS

From a technical point of view, the BDSS builds up on standard digital signa-
ture schemes and a modified version of the polynomial commitments proposed
by Kate et al. [24].1 Using these polynomial commitments necessitates a unique
encoding, mapping templates and messages to polynomials in the polynomial
ring Zp[X]. For the rest of this paper, let H : {0, 1}∗ → Zp be a secure cryp-
tographic hash function. The BDSS uses the following (unique) encoding for a
template T , which is denoted by t(X) ∈ Zp[X]:

t(X)←
n∏

i=1

∏
M∈Ti

(X −H(M ||idT ||i)).

An encoding m(X) ∈ Zp[X] of a message M looks as follows:

m(X)←
n∏

i=1

(X −H(Mi||idT ||i)).

Finally, the so-called complementary message polynomial m(X) is defined such
that t(X) = m(X) ·m(X) holds. More precisely, m(X) contains all factors which
are contained in t(X) but not in m(X). For the rest of this paper, we use CT , CM
and CM to denote the (polynomial) commitments to the encodings of templates,
messages and complementary-messages, respectively. The commitments used in

1 Note that this polynomial commitment variant has later been formalized in [19].



the BDSS are unconditionally hiding and computationally binding and due to
the nature of the commitments (they are instantiated within bilinear groups), it
holds that

e(CT , P ) = e(CM, CM).

The BDSS defines five algorithms, which we briefly introduce subsequently. We
assume the public parameters pp generated in KeyGen to be an implicit input to
all other algorithms. Furthermore, we assume that both, the originator and the
proxy are already in possession of a keypair for a conventional DSS.

KeyGen: This algorithm takes a security parameter κ and an upper bound t for
the template size. It chooses two groups G1,GT of the same prime order p
(with log2 p = κ), generated by P , having a bilinear map e : G1×G1 → GT , a
secure cryptographic hash function H : {0, 1}∗ → Zp and a random α ∈ Z∗p.

Finally, it outputs the public parameters pp = (H,G1, e, p, (α
iP )ti=0).2

Sign: This algorithm takes a template T of length n, the signing key of the
originator skO and the verification key of the proxy pkP. It computes the
commitment CT to T , C = e(CT , P ) and τ = DSign(idT ||C||n||pkP, skO) and
outputs σT = (idT , C, n, τ) together with a private instantiation key for the
proxy skTP (required for recomputing the commitment).

VerifyT : This algorithm takes a template T , a template signature σT , the verifi-
cation keys of the originator (pkO) and the proxy (pkP), as well as skTP . It com-
putes CT and C = e(CT , P ), and outputs the result of DVerify(σT , idT ||C||n||
pkP, pkO).

Inst: This algorithm takes a template T with corresponding message M, a
template signature σT , the signing key of the proxy skP and the instan-
tiation key skTP . It computes CM and µ = DSign(τ ||CM||M, skP) and returns
σM = (µ, CM,M, σT ).

VerifyM: This algorithm takes M, σM and the verification keys of the origina-
tor (pkO) and the proxy (pkP) and computes CM from M. Then, it checks
whether DVerify(τ, idT ||C||n||pkP, pkO) = true and DVerify(µ, τ ||CM||M,
pkP) = true holds. If so, it checks whether the number of elements in the
message is equal to n, whether there is exactly one element at each position
in the message and whether e(CM, CM) = C. On success it returns true and
false otherwise.

4 Tweaks and Optimizations

Since the BDSS is designed for Type-1 pairings, we need to modify the scheme to
make it compatible with much more efficient Type-3 pairings. In this section we
discuss these modifications, together with an optimization regarding the encod-
ing of templates and messages to reduce the degree of the encoding polynomials.

2 Note that these parameters are required for computing the polynomial commitments.



4.1 Using Type-3 Pairings

The authors of [18] informally suggested that the scheme can be used with Type-
3 pairings by duplicating some of the points in the system-wide parameters, i.e.,
some points in G1 also have to be mapped to points in G2. In the following,
we discuss the necessary modifications in detail. For all these modifications it
is crucial that the counterpart Q′ in G2, of a point Q in G1, contains the same
discrete logarithm as the point Q, i.e., Q = aP and Q′ = aP ′ for a ∈ Zp.

Currently, the system-wide parameters pp of the BDS scheme contain a se-
quence P = (αiP )ti=0 of multiples of a point P , with t being the maximal
template size. For Type-3 pairings, the sequence has to be extended with the
same multiples of a point P ′ ∈ G2, i.e., P ′ = ((αiP )ti=0, (α

iP ′)ti=0).
In the subsequent protocol steps, one has to choose the appropriate represen-

tative of the required point, i.e., the representative in G1 or G2. Additionally, in
the verification step of the message (VerifyM) the pairing e(CM, CM) is evaluated.
Thus, in the instantiation step (Inst), the commitment to the complementary
message polynomial CM needs to be computed in G2.3 Using this modification,
the computation of CM is the only remaining computation which requires oper-
ations in G2. Thus, it seems to be impossible to find further optimizations based
on moving computations from one group to the other.

It is easy to see that switching to the Type-3 setting does not influence
the security of the scheme. The original BDSS [18] was proven secure under
the t-SDH assumption. Using the co-t-SDH assumption, the security proof of
the modified BDSS is (up to the extended problem instance) equivalent to the
original proof in [18], and, thus, using Type-3 pairings does not influence the
security of the scheme.

4.2 Aggregating Fixed Elements

An important optimization can be based on the reduction of the degree of the
encoding polynomials by aggregation. The idea behind the aggregation of the
fixed elements is the observation that in the originally proposed BDSS encoding,
each fixed element corresponds to one factor in the encoding polynomials. The
scheme does, however, not require this separate encoding. Thus, we can simply
aggregate the fixed elements within one factor of the encoding polynomials by
concatenating the identifier of the template, the messages and the positions of
the messages in the template as follows:

mi = Mi||i, M = m1||m2||...||mu

mfixed(X) = X −H(idT ||M).

This reduces the degree of the encoding polynomials, and, thus, also the compu-
tation times. Note that this optimization also enables the reduction of the size

3 We note that it would also be possible to compute CM in G2 and evaluate the pairing
e(CM, CM) upon VerifyM. Then, CM would still be computed in G1. However, our
goal is to make VerifyM as fast as possible, and, thus opt for the former option
(observe that computations in G2 are more expensive than computations in G1).



of the system parameters pp, i.e., pp is no longer dependent on the number of
fixed elements. Subsequently, we analyze the security of these modification.

Proof. In the original construction [18], every fixed element represents a factor
in the template encoding polynomial and in further consequence in every mes-
sage encoding polynomial. The modification proposed here integrates all fixed
elements into a single factor, which reduces the degree of the respective poly-
nomials. Now, we have to show that this has no impact on the security of the
construction. Our argumentation is as follows. Using one factor for the fixed ele-
ments in the modified version can be seen as the original construction using only
a single fixed element in the template. Therefore, the construction as such still
remains secure. What remains to show, however, is that the modified encoding
does not influence the correctness (signature soundness) and the unforgeability
as well as immutability, respectively.

In this context, signature soundness essentially says that, given a template
signature σT for some template T , the probability that this signature will verify
for any T ′ 6= T is negligible in the security parameter κ. To achieve this (for
fixed elements), one would need to find

H(idT ‖mi1‖i1‖ . . . ‖miu‖iu) = H(idT ′‖m′i′1‖i
′
1‖ . . . ‖m′i′

u′
‖i′u′),

which is clearly intractable if H is collision resistant. The same argumentation
holds for unforgeability and immutability (cases T1, M1 [18]), where the prob-
lem is to find a second preimage for H(idT ‖mi1‖i1‖ . . . ‖miu‖iu). ut

5 Implementation in JAVA and Integration into the JCA

In this section, we provide an in-depth description of the implementation related
aspects of the optimized BDSS. Our design is based on the observation that the
signing and verification algorithms for both, templates and messages, can be
interpreted as conventional signature algorithms with special types of messages.
This means that one can use a standard signature API, such as the one provided
by the Java Cryptography Architecture (JCA) [26], to obtain an easy to use
implementation. Furthermore, X.509 provides, among others, a convenient and
well-established method to ensure key authenticity and integrity. Besides, also
methods for revocation checking are provided [8]. Thus, we follow this approach
and integrate the keying material within X.509 certificates.

Finally, we propose two container formats, i.e., XML and PDF, encapsulat-
ing the templates and messages, respectively, together with their corresponding
signatures.

5.1 Overview

Figure 2 links the BDSS algorithms to the parties performing the respective
computations and provides an overview of the required interaction during a
usual workflow (note that all algorithms are non-interactive). The gray boxes in
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the figure logically group consecutive computation steps to units with defined
input and output. For the sake of simplicity, we omitted the visualization of the
distribution of the system parameters pp by the trusted third party (TTP). We,
however, assume that the TTP provides means for retrieving pp in an authentic
manner. For instance, our default implementation encapsulates pp within an
X.509 certificate (cf. Section 5.2). To provide maximum flexibility, the library
relies on a generic interface for accessing the TTP, and, consequently, our library
is not bound to one fixed TTP implementation. From a JCA point of view, the
generation of pp is wrapped in a KeyPairGenerator implementation and is, thus,
conveniently usable by arbitrary TTP implementations.

The subsequent steps, i.e., Step 2-5 in Figure 2, are packed into two JCA
Signature implementations, namely the BDSSTemplateSignature (Step 2 and
3) and the BDSSInstanceSignature (Step 4 and 5). To be compatible with the
JCA Signature interface, we override the engineSetParameter method. This
way, it is possible to supply so called AlgorithmParameterSpec implementations
containing the additionally required parameters for executing the protocol. Fur-
thermore, the API assumes that the signing and verification algorithms operate
on arrays of bytes. Thus, we (de-)serialize the respective inputs to preserve their
structure (cf. Section 5.2). Listing 1 provides an example for obtaining a BDSS
signature on a template. The BDSSInstanceSignature can be used in a similar
way and is therefore omitted.

1 Signature signature = Signature.getInstance("BDSSTemplateSignature");
2 TemplateSignParamSpec p = new TemplateSignParamSpec(pp, pkP);
3 signature.setParameter(p);
4 signature.initSign(skO); // set sign mode
5 signature.update(template.serialize ()); // add data
6 byte[] templateSignature = signature.sign(); // sign
7

8 TemplateVerifyParamSpec pv = new TemplateVerifyParamSpec(pp, pkP);
9 signature.setParameter(pv);

10 signature.initVerify(pkO); // set verify mode
11 signature.update(template.serialize ()); // add data
12 boolean success = signature.verify(templateSignature); // verify

Listing 1: Java Code to Obtain a BDS Template Signature



Note that the returned template signature also contains the instantiation key
skTP , which needs to be removed when a use case requires to publish the template.

Also note that if the privacy property of the BDSS is required, a secure
transmission of the output of Step 2 in Figure 2 is inevitable. Thus, our library
provides means for ECIES (see e.g., [22]) encryption and decryption.

5.2 Encoding and Key Representation in X.509

As mentioned before, it is required to (de-)serialize the templates and mes-
sages with corresponding signatures to be compatible with the API of the JCA.
Consequently, a compact encoding with minimal overhead is desired to keep the
transmission times low. We use a unique encoding, similar to the BER/DER [21]
encoding of ASN.1 [20] and provide means for serialization and deserialization.

It also turns out that this encoding is useful to integrate the keying material
as public key info into X.509 certificates [8]. To (re-)extract the serialized keys
from the public key info, our Java cryptographic provider provides the appro-
priate KeyFactory implementations (performing the deserialization).

To bring the (signed) templates and messages into a user friendly form, e.g.,
to support users to conveniently fill in a templates, we introduce two container
formats in the remainder of this section. For both formats, we follow the approach
that the templates and messages are included in a human readable form, whereas
the signatures are serialized using our encoding from above.

5.3 Defining an XML Signature Format

To use XML, we added Java annotations for XML binding (JAXB), as defined
in [13], to the classes serving as input-/output-containers. These annotations,
together with the appropriate XML schema allow to conveniently marshal/un-
marshal Java objects to/from XML using the routines provided by the Java
platform. Listing 2 and Listing 3 show the proposed signature format, with “?”
and “+” denoting the multiplicity of the tags, i.e., “?” means at most once,
whereas “+” means at least once.

1 <template id="...">
2 (<templateentry >
3 (<message type="exch"|"fix" length="[Integer]">
4 <text>[String]</text>
5 </message >)+
6 </templateentry >)+
7 (<signature >
8 <signaturevalue >[Base64 encoded string]</signaturevalue >
9 (<keyId>[String]</keyId >)?

10 (<ttpcert >[Base64 encoded string]</ttpcert >)?
11 (<originatorcert >[Base64 encoded string]</originatorcert >)?
12 (<proxycert >[Base64 encoded string]</proxycert >)?
13 </signature >)?
14 </template >

Listing 2: BDS Template Format



1 <instance id="...">
2 (<message type="exch"|"fix" length="[Integer]">
3 <text>[String]</text>
4 </message >)+
5 (<signature >
6 <signaturevalue >[Base64 encoded string]</signaturevalue >
7 (<keyId>[String]</keyId >)?
8 (<ttpcert >[Base64 encoded string]</ttpcert >)?
9 (<originatorcert >[Base64 encoded string]</originatorcert >)?

10 (<proxycert >[Base64 encoded string]</proxycert >)?
11 </signature >)?
12 </instance >

Listing 3: BDS Message Format

5.4 Using PDF as Signature Format

Signable PDF forms seem to be an essential application of BDSS. Thus, a proof-
of-concept implementation using PDF as container format is introduced sub-
sequently. Thereby, our library provides means to create, sign and verify tem-
plates and messages in PDF format. Furthermore, signed templates can directly
be filled in in the same way as conventional PDF forms using a standard PDF
reader. Figure 3 shows a sample template and a corresponding message, both
containing a signature.

(a) Signed Template (b) Signed Message

Fig. 3: BDS PDF Signature Format

6 Performance Evaluation

In this section, we provide an overview of the performance of our proof-of-concept
implementation. For the timings, we use the BNPairings library [15] for comput-
ing the optimal Ate pairing [30] on BN curves [4] with 256 bit group size and an



embedding degree of 12. As conventional digital signatures we use ECDSA [14,17]
with the NIST P-224 curve [14]. The timings were performed using a single core
on a Lenovo ThinkPad T420s with an Intel Core i5 2540M with 2.6/3.3 GHz
and 8 GB of RAM. On the software side Java 1.7.0 55 was used on top of Ubuntu
14.04/amd64.

We measure the execution time of the four protocol steps (Step 2-5 in Figure
2) for different template sizes and template compositions. To isolate timing-
related influences, e.g., the garbage collector, each timing represents the mean
of 100 consecutive runs. Table 1 shows the computation times for template sizes
ranging from 3 to 1000. To illustrate the influence of the distribution of the
element types on the timing, we provide timings for two different element type
distributions. Note that it does not make sense to choose a template with less
than 50% of exchangeable elements, since templates are always chosen minimal,
i.e., there are no two fixed elements next to each other.4 The used element type
distribution is indicated by the percentage values in the top row of Table 1.
Figure 4 gives an overview of the computation time with increasing template
size. As expected, the computation times depend heavily on the degree of the

50% fixed 33% fixed
Template Message Template Message

|T | Sign Verify Inst Verify Sign Verify Inst Verify

3 20 19 18 17 18 18 16 14
5 21 20 16 17 23 22 23 17

10 23 23 24 17 28 27 31 19
15 28 27 31 19 31 30 38 20
30 38 37 48 23 43 42 59 24
50 56 55 79 29 63 62 94 30
70 82 80 124 40 77 78 122 35

100 105 104 164 48 105 107 171 45

150 136 135 220 56 150 148 248 59
300 279 277 469 103 289 289 483 103
500 400 395 666 137 490 489 811 163

1000 759 755 1219 241 1053 1050 1656 322

Table 1: Timings for Various Template Sizes in Milliseconds

encoding polynomials. Consequently, having more fixed elements, for the same
size |T |, results in a lower degree polynomial – using our trick from Section 4.2
– and corresponding shorter computation times.

4 For some applications it could make sense to place two or more exchangeable ele-
ments next to each other, which would allow to encode ranges. For instance, all three
digit numbers could be modeled by three exchangeable elements, each containing the
numbers from 0 to 9.



In practice, most forms will contain less than 100 elements, which leads to
computation times of less than 180ms for each step. This is perfectly acceptable
for practical use.
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Fig. 4: Computation Times in Relation to the Template-Size and the Element
Type Distribution.

Finally, observe that BDS allow to quite straightforwardly define the template
in a way, which enables similar functionalities as redactable/sanitizable signa-
tures [2, 6, 23,25,29]. Although, such an application of BDS is not considered in
this paper (it has been done in [28] as a replacement for redactable signatures as
used in [31]), we conclude that – due to its good performance – our BDSS imple-
mentation might also be an alternative to implementations of redactable/saniti-
zable signatures (e.g., [27]) in certain settings.

7 Conclusion and Future Work

In this paper, we proposed an optimization regarding the template and message
encoding of the BDSS and modified it to use much more efficient Type-3 pairings.
We introduced a JCA-based interoperable framework for the BDSS, providing
an easy to use API. To illustrate the capabilities, concerning the integration into
other applications, two signature formats were proposed. Moreover, we gave an
overview of the performance of the scheme and our implementation. Meanwhile,
our implementation based on the XML signature format has been integrated into
the FutureID eSignServices framework [1] – a flexible framework for signature
generation and validation.

The execution times presented in Section 6 are totally practical, since in
most scenarios it can be expected that templates will have a template-size of
less than 100, leading to computation times of less than 180ms for arbitrary



template constellations. This shows that the BDSS is fully feasible for practical
use. For further details on our BDSS implementation and optimization, we refer
the reader to [9].

Finally, there are some points we leave open for future work. Quite recently, a
black-box construction of BDS from non-interactive anonymous credentials was
presented in [10]. It would, thus, be interesting to compare the performance of
an implementation of this construction to our implementation. Another inter-
esting step would be to increase the practical usability of our implementation by
integrating the BDSS within a plug-in of a PDF reader. Furthermore, we do not
expect any problems when integrating the XML signatures proposed in Section
5.3 into other XML signature formats such as XMLDSig [11] or the various types
of XML Advanced Electronic Signatures [12]. The latter format would, in turn,
enable long term signature validation, which could be of particular interest for
BDSS signed contracts.
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