A Projection Method on Measures Sets

Abstract : We consider the problem of projecting a probability measure π on a set MN of Radon measures. The projection is defined as a solution of the following variational problem: inf µ∈M N h (µ − π) 2 2 , where h ∈ L 2 (Ω) is a kernel, Ω ⊂ R d and denotes the convolution operator. To motivate and illustrate our study, we show that this problem arises naturally in various practical image rendering problems such as stippling (representing an image with N dots) or continuous line drawing (representing an image with a continuous line). We provide a necessary and sufficient condition on the sequence (MN) N ∈N that ensures weak convergence of the projections (µ * N) N ∈N to π. We then provide a numerical algorithm to solve a discretized version of the problem and show several illustrations related to computer-assisted synthesis of artistic paintings/drawings.
Type de document :
Article dans une revue
Constructive Approximation, Springer Verlag, 2017, 45 (1), pp.83 - 111. 〈10.1007/s00365-016-9346-2〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01432720
Contributeur : Philippe Ciuciu <>
Soumis le : jeudi 12 janvier 2017 - 08:23:35
Dernière modification le : lundi 4 juin 2018 - 15:42:02
Document(s) archivé(s) le : vendredi 14 avril 2017 - 14:35:44

Fichier

Measure_Projection.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nicolas Chauffert, Philippe Ciuciu, Jonas Kahn, Pierre Weiss. A Projection Method on Measures Sets. Constructive Approximation, Springer Verlag, 2017, 45 (1), pp.83 - 111. 〈10.1007/s00365-016-9346-2〉. 〈hal-01432720〉

Partager

Métriques

Consultations de la notice

633

Téléchargements de fichiers

102