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Abstract

We consider the problem of projecting a probability measure � on a
set M N of Radon measures. The projection is de�ned as a solution of the
following variational problem:

inf
� 2M N

kh ? (� � � )k2
2 ;

where h 2 L 2(
) is a kernel, 
 � Rd and ? denotes the convolution opera-
tor. To motivate and illustrate our study, we show that this problem arises
naturally in various practical image rendering problems such as stippling
(representing an image with N dots) or continuous line drawing (repre-
senting an image with a continuous line). We provide a necessary and suf-
�cient condition on the sequence ( M N )N 2 N that ensures weak convergence
of the projections ( � �

N )N 2 N to � . We then provide a numerical algorithm
to solve a discretized version of the problem and show several illustrations
related to computer-assisted synthesis of artistic paintings/drawings.

Keywords | Constructive quantization, measure theory, nonconvex opti-
mization, halftoning, continuous line drawing.

1 Introduction

Digital Halftoning consists of representing a grayscale image with only black
and white tones [30]. For example, a grayscale image can be approximated by
a variable distribution of black dots over a white background. This technique,
called stippling, is the cornerstone of most printing digital inkjet devices. A
stippling result is displayed in Figure 1b. The lion in Figure 1a can be recognized
from the dotted image shown in Figure 1b. This is somehow surprising since the
di�erences between the pixel values of the two images are far from zero. One
way to explain this phenomenon is to invoke the multiresolution feature of the
human visual system [8, 24]. Figures 1c and 1d are blurred versions of Figures
1a and 1b respectively. These blurred images correspond to low-pass versions
of the original ones and are nearly impossible to distinguish.

� e-mail: nicolas.chau�ert@gmail.com
ye-mail: philippe.ciuciu@gmail.com
ze-mail: jonas.kahn@math.univ-lille1.fr
xe-mail: pierre.armand.weiss@gmail.com
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(a) (b)

(c) (d)

Figure 1: Explanation of the stippling phenomenon. Images (a) and (b) are
similar while the norm of their di�erence is large. Figures (c) and (d) are
obtained by convolving (a) and (b) with a Gaussian of variance equal to 3
pixels. After convolution, the images cannot be distinguished.

Assuming that the dots correspond to Dirac masses, this experiment suggests
placing the dots at locations p1; : : : ; pN corresponding to the minimizer of the
following variational problem:

min
(p1 ;:::;p N )2 
 N











h ?

 

� �
1
N

NX

i =1

� pi

! 










2

2

(1)

where 
 � R2 denotes the image domain,� pi denotes the Dirac measure at
point pi 2 R2, � denotes the target probability measure (the lion) and h is
a convolution kernel that should depend on the point spread function of the
human visual system. By letting

M (
 N ) =

(

� =
1
N

NX

i =1

� pi ; (pi )1� i � N 2 
 N

)

(2)

denote the set ofN -point measures, problem (1) rereads as a projection problem:

min
� 2M (
 N )

kh ? (� � � )k2
2 : (3)
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This variational problem is a prototypical example that motivates our study. As
explained later, it is intimately related to recent works on image halftoning by
means of attraction-repulsion potentials proposed in [26, 28, 14]. In references
[12, 10, 11] this principle is shown to have far reaching applications ranging from
numerical integration, quantum physics, economics (optimal location of service
centers) or biology (optimal population distributions).

In this paper, we extend this variational problem by replacing M (
 N ) with
an arbitrary set of measures denotedM N . In other words, we want to approx-
imate a given measure� by another measure in the setM N . We develop an
algorithm that is shown to converge to critical points of this projection problem
in a general setting.

To motivate this extension, we consider a practical problem: how to perform
continuous line drawing with a computer? Continuous line drawing is a starting
course in all art cursus. It consists of drawing a picture without ever lifting the
pencil from the page. Figure 2 shows two drawings obtained with this technique.
It is also used in marketing, quilting designs, steel wire sculptures, connect the
dot puzzles,... A few algorithms were already proposed in [20, 33, 15, 5, 32].
We propose an original solution which consists of settingM N as a space of
pushforward measures associated with sets of parameterized curves.

Apart from the two rendering applications discussed above, the proposed
methodology has potential for diverse applications in �elds such as imaging,
�nance, biology,... As an application example, the interested reader can have a
look at our recent preprint on the generation of sampling schemes in magnetic
resonance imaging [6].

(a) (b)

Figure 2: Two examples of continuous line drawing. (a) A sketch of Marylin
Monroe by Pierre Emmanuel Godethttp://pagazine.com/ using a continuous
line. A close inspection reveals that the line represents objects and characters.
(b) Meisje met de Parel, Vermeer 1665, represented using a spiral with variable
width. Realized by Chan Hwee Chonghttp://www.behance.net/Hweechong .

The remaining of this paper is structured as follows. We �rst describe the
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notation and some preliminary remarks in Section 2. We propose a mathemati-
cal analysis of the problem for generic sequences of measures spaces (M N )N 2 N

in Section 3. We propose a generic numerical algorithm in Section 4 and derive
some of its theoretical guarantees. In Section 5, we study the particular prob-
lem of continuous line drawing from a mathematical perspective. Finally, we
present some results in image rendering problems in Section 6.

2 Notation and preliminaries

In this paper, we work on the measurable space (
; �), where 
 = Td denotes
the torus Td = Rd=Zd. An extension to other spaces such asRd or [0; 1]d is
feasible but requires slight adaptations. Since drawing on a donut is impractical,
we will set 
 = [0 ; 1]d in the numerical experiments.

The space of continuous functions on 
 is denotedC(
). The Sobolev space
(W m;p ([0; T]))d, where m 2 N, is the Banach space ofd dimensional curves in

 with derivatives up to the m-th order in L p([0; T]). Let M � denote the space
of probability measures on 
, i.e. the space of nonnegative Radon measuresp
on 
 such that p(
) = 1. Throughout the paper � 2 M � will denote a target
measure. Let M denote the space of signed measures on 
 with bounded total
variation, that is � = � + � � � where � + and � � are two �nite nonnegative
Radon measures andk� kT V = � + (
) + � � (
) < 1 .

Let h : 
 ! R denote a continuous function. Let� 2 M denote an arbitrary
�nite signed measure. The convolution product betweenh and � is de�ned for
all x 2 
 by:

� ? h (x) :=
Z



h(x � y)d� (y) (4)

= � (h(x � � ))

In the Fourier space, the convolution (4) translates to, for all � 2 Zd (see e.g.,
[16]):

[� ? h (� ) = �̂ (� )ĥ(� );

where ^� is the Fourier-Stieltjes series of� . The Fourier-Stieltjes series coe�-
cients are de�ned for all � 2 Zd by:

�̂ (� ) :=
Z



e� 2i� h�;x i d� (x):

We recall the Parseval formula:
Z



jh(x)j2 dx =

X

� 2 Zd

�
�
� ĥ(� )

�
�
�
2

:

Let J : Rn ! R denote a function and @Jits limiting-subdi�erential (or
simply subdi�erential) [22, 1]. Let C � Rn denote a closed subset. The indicator
function of C is denoted i C and de�ned by

i C (x) =
�

0 if x 2 C;
+ 1 otherwise.
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The set of projections of a point x0 2 Rn on C is denotedPC (x0) and de�ned
by

PC (x0) = Arg min
x 2 C

kx � x0k2
2:

The notation Arg min stands for the whole set of minimizers while arg min
denotes one of the minimizers. Note thatPC is generally a point-to-set mapping
except if C is convex closed, since the projection on a closed convex set is unique.
The normal cone at x 2 Rn is denoted NC (x). It is de�ned as the limiting-
subdi�erential of i C at x. A critical point of the function J + i C is a point
x � that satis�es 0 2 @J(x � ) + NC (x � ). This condition is necessary (but not
su�cient) for x � to be a local minimizer of J + i C .

3 Mathematical analysis

Let
Nh (� ) := kh ? � k2: (5)

In this section, we study some basic properties of the following projection prob-
lem:

min
� 2M N

Nh (� � � ); (6)

where (M N )N 2 N denotes an arbitrary sequence of measures sets inM � .

3.1 Norm properties

We �rst study the properties of Nh on the spaceM of signed measures with
bounded total variation. The following proposition shows that it is well de�ned
provided that h 2 C(
).

Proposition 1. Let h 2 C(
) and � 2 M . Then h ? � 2 L 2(
) .

Proof. It su�ces to remark that 8x 2 
, jh ? � (x)j � k � kT V khk1 < + 1 .
Therefore, h ? � 2 L 1 (
). Since 
 is bounded, h 2 L 1 (
) implies that h 2
L 2(
).

Remark 1. In fact, the result holds true for weaker hypotheses onh. If h 2
L 1 (
) , the set of bounded Borel measurable functions,h ? � 2 L 2(
) since

8x 2 
 ; jh ? � (x)j � k � kT V

�
sup
x 2 


jh(x)j
�

< + 1 :

Note that the L 1 -norm is de�ned with an ess supwhile we used asup in the
above expression. We stick toh 2 C(
) since this hypothesis is more usual when
working with Radon measures.

The following proposition gives a necessary and su�cient condition on h
ensuring that Nh de�nes a norm on M .

Proposition 2. Let h 2 C(
) . The mapping Nh de�nes a norm on M if and
only if all Fourier series coe�cients ĥ(� ) are nonzero.
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Proof. Let us assume that ĥ(� ) 6= 0 ; 8� 2 Zd. The triangle inequality and
absolute homogeneity hold trivially. Let us show that � 6= 0 ) N h (� ) 6= 0. The
Fourier series of a nonzero signed measure� is nonzero, so that there is� 2 Zd

such that �̂ (� ) 6= 0. According to our hypothesis ĥ(� ) 6= 0, hence [� ? h (� ) 6= 0
and Nh (� ) 6= 0.

On the contrary, if there exists � 0 2 Zd such that ĥ(� 0) = 0. The non-zero
measure de�ned through its Fourier series by

�̂ (� ) =
�

1 if � = � 0

0 otherwise

satis�es Nh (� ) = 0 and belongs to M .

From now on, owing to Proposition 2, we will systematically assume - some-
times without mentioning - that h 2 C(
) and that ĥ(� ) 6= 0, 8� 2 Zd. Finally,
we show that Nh induces the weak topology onM . Let us �rst recall the
de�nition of weak convergence.

De�nition 1. A sequence of measures(� N )N 2 N is said to weakly converge to
� 2 M , if

lim
N !1

Z



f (x)d� N (x) =

Z



f (x)d� (x)

for all continuous functions f : 
 ! R. The shorthand notation for weak
convergence is

� N *
N !1

�:

Proposition 3. Assume that h 2 C(
) and that ĥ(� ) 6= 0 , 8� 2 Zd. Then for
all sequences(� N )N 2 N in M satisfying k� N kT V � M < + 1 ; 8N 2 N,

lim
N !1

Nh (� N ) = 0 , � N *
N !1

0:

Proof. Let ( � N )N 2 N be a sequence of signed measures inM .
If � N * 0, then �̂ N (� ) = � N (ei 2� h�; �i ) ! 0 for all � 2 Zd. Sincej�̂ N (� )ĥ(� )j �

2M jĥ(� )j for all � 2 Zd and
X

� 2 Zd

j2M ĥ(� )j2 < 1 , dominated convergence yields

that Nh (� N ) ! 0.
Conversely, assume thatNh (� N ) ! 0. Since the� N are bounded, there are

subsequences� N s that converge weakly to a measure� that depends on the
subsequence. We have to prove that� = 0 for all such subsequences. Since
Nh (� N ) ! 0, we have ^� N (� ) ! 0 for all � 2 Zd. Therefore, �̂ (� ) = 0 ; 8� 2 Zd.
This is equivalent to � = 0 (see e.g. [16, p.36]), ending the proof.

3.2 Existence of solutions

The �rst important question one may ask is whether Problem (6) admits a
solution or not. Proposition 4 provides su�cient conditions for existence to
hold.

Proposition 4. If M N is weakly compact, then Problem(6) admits at least
a solution. In particular, if M N is weakly closed and bounded in TV-norm,
Problem (6) admits at least a solution.
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Proof. AssumeM N is weakly compact. Consider a minimizing sequence� n 2
M N . By compacity, there is a � 2 M N and a subsequence (� n k )k2 N such
that � n k *

k ! + 1
� . By Proposition 3, Nh induces the weak topology on any

TV-bounded set of signed measures, so that lim
k !1

Nh (� � � k ) = Nh (� � � ).

Since closed balls in TV-norms are weakly compact, any weakly closed TV-
bounded set is weakly compact.

A key concept that will appear in the continuous line drawing problem is that
of pushforward or empirical measure [4] de�ned hereafter. Let (X; 
 ) denote an
arbitrary probability space. Given a function p : X ! 
, the empirical measure
associated withp is denotedp� 
 . It is de�ned for any measurable setB by

p� 
 (B ) := 
 (p� 1(B )) ;

where 
 denotes the Lebesgue measure on the interval [0; 1]. Intuitively, the
quantity p� 
 (B ) represents the \time" spent by the function p in B . Note
that p� 
 is a probability measure since it is positive andp� 
 (
) = 1. Given a
measure� of kind � = p� 
 , the function p is called parameterization of � .

Let P denote a set of parameterizationsp : X ! 
 and M (P) denote the
associated set of pushforward-measures:

M (P) := f � = p� 
; p 2 Pg:

In the rest of this paragraph we give su�cient conditions so that a projection
on M (P) exists. We �rst need the following proposition.

Proposition 5. Let (pn )n 2 N denote a sequence inP that converges top point-
wise. Then (pn � 
 )n 2 N converges weakly top� 
 .

Proof. Let f 2 C(
). Since 
 is compact, f is bounded. Hence dominated
convergence yields

R
X f (pn (x)) � f (p(x))d
 (x) ! 0.

Proposition 6. Assume that P is compact for the topology of pointwise con-
vergence. Then there exists a minimizer to Problem(6) with M N = M (P).

Proof. By Proposition 4 it is enough to show that M (P) is weakly compact.
First, M (P) is bounded in TV-norm since it is a subspace of probability mea-
sures. Consider a sequence (pn )n 2 N in P such that the sequence (pn � 
 )n 2 N

weakly converges to a measure� . SinceP is compact for the topology of point-
wise convergence, there is a subsequence (pn k )k2 N converging pointwise top 2 P .
By Proposition 5, the pushforward-measurep� 
 = � so that � 2 M (P) and P
is weakly closed.

3.3 Consistency

In this paragraph, we consider a sequence (M N )N 2 N of weakly compact subsets
of M � . By Proposition 4 there exists a minimizer � �

N 2 M N to Problem
(6) for every N . We study conditions on (M N )N 2 N that ensure consistency,
i.e. � �

N *
N !1

� . In the case of image rendering, it basically means that ifN

is taken su�ciently large, the projection � �
N and the target image � will be

indistinguishable from a perceptual point of view.
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In order to evaluate distances between� �
N and � , the most natural met-

ric is the minimized norm Nh (� �
N � � ). However, its analysis is easy in the

Fourier domain, whereas all measures sets in this paper are de�ned in the space
domain. We therefore prefer to use another metrization of weak convergence,
given by the transportation distance. Moreover we will see in Theorem 1 that
the transportation distance de�ned below dominates Nh .

De�nition 2. The L 1 transportation distance, also known as Kantorovitch or
Wasserstein distance, between two measures with same TV norm is given by:

W1(�; � ) := inf
c

Z
kx � yk1 dc(x; y)

where the in�mum runs over all couplings of � and � , that is the measuresc
on 
 � 
 with marginals satisfying c(A; 
) = � (A) and c(
 ; A) = � (A) for all
Borelians A.

Equivalently, we may de�ne the distance through the dual, that is the action
on Lipschitz functions:

W1(�; � ) = sup
f :Lip ( f ) � 1

� (f ) � � (f ): (7)

We de�ne the point-to-set distance as

W1(M N ; � ) := inf
� 2M N

W1(�; � ):

Obviously this distance satis�es:

W1(M N ; � ) � � N := sup
� 2M �

inf
� 2M N

W1(�; � ): (8)

Theorem 1. Assume that h 2 C(
) denote a Lipschitz continuous function
with Lipschitz constant L . Then

Nh (� � � ) � LW 1(�; � ) (9)

and
Nh (� �

N � � ) � LW 1(M N ; � ) � L� N : (10)

Proof. Let � x : h(�) 7! h(x � � ) denote the symmetrization and shift operator.
Let us �rst prove inequality (9):

kh ? (� � � )k2
2 =

Z



[h ? (� � � )(x)]2 dx

=
Z



j� (� x h) � � (� x h)j2 dx

� j 
 jL 2W 2
1 (�; � );

where we used the dual de�nition (7) of the Wasserstein distance to obtain the
last inequality.

Let � N denote a minimizer of inf
� 2M N

W1(�; � ). If no minimizer exists we may

take an � -solution with arbitrary small � instead. By de�nition of the projection
� �

N , we have:

Nh (� �
N � � ) � N h (� N � � ) � W (� N ; � ) � � N : (11)

8



Even though the bound (10) is pessimistic in general, it provides some insight
on which sequences of measures spaces allow a fast weak convergence.

3.4 Application to image stippling

In order to illustrate the proposed theory, we �rst focus on the case ofN -point
measuresM (
 N ) de�ned in Eq. 2. This setting is the standard one considered
for probability quantization (see [13, 18] for similar results). As mentioned
earlier, it has many applications including image stippling. Our main results
read as follows.

Theorem 2. Let h denote anL-Lipschitz kernel. The set ofN -point measures
M (
 N ) satis�es the following inequalities:

� N = sup
� 2M �

inf
� 2M (
 N )

W1(�; � ) �

 p
d

2
+ 1

!
1

N 1=d � 1
(12)

and

sup
� 2M �

inf
� 2M (
 N )

Nh (� � � ) � L

 p
d

2
+ 1

!
1

N 1=d � 1
: (13)

As a direct consequence, we get the following corollary.

Corollary 1. Let M N = M (
 N ) denote the set of N-point measures. Then
there exist solutions � �

N to the projection problem (6). Moreover, for any L-
Lipschitz kernel h 2 C(
) :

i) � �
N *

N !1
� .

ii) Nh (� �
N � � ) = O

�
LN � 1

d

�
:

Proof. We �rst evaluate the bound � N de�ned in (8). To this end, for any given
� , we construct an explicit sequence of measures� 0; : : : ; � N , the last of which
is an N -point measure approximating � .

Note that Td can be thought of as the unit cube [0; 1)d. It may therefore be
partitioned in Cd smaller cubes of edge length 1=C with C = bN 1=dc. We let
(! i )1� i � C d denote the small cubes andx i denote their center. We assume that
the cubes are ordered in such a way that! i and ! i +1 are contiguous.

We de�ne � 0 =
C d
X

i =1

� (! i )� x i . The measure� 0 satis�es

W1(�; � 0) 6
1
2

sup
i

Diameter(! i )

6

p
d

2
bN 1=dc� 1

6

p
d

2
1

N 1=d � 1
;

but is not an N -point measure sinceN� (! i ) is not an integer.
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To obtain an N -point measure, we recursively build� l as follows:

� l (f x l g) =
1
N

bN� l � 1(f x l g)c;

� l (f x l +1 g) = � l � 1(f x l +1 ; x l g) �
1
N

bN� l � 1(f x l g)c

if l � (1=C)d � 1;

� l (f x i g) = � l � 1(f x i g) if i =2 f l; l + 1g:

We stop the process forl = (1 =C)d and let ~� = � (1=C )d . Notice that N� l (x i ) is
an integer for all i 6 l and that � l is a probability measure for all l . Therefore
~� is an N -point measure. Moreover:

W1(� l ; � l +1 ) 6
1
N

kx l � x l +1 k2

6
1

N (N 1=d � 1)
:

Since the transportation distance is a distance, we have the triangle inequality.
Therefore:

W1(�; ~� ) � W1(�; � 0) +
NX

l =1

W1(� l � 1; � l );

=

p
d

2
1

N 1=d � 1
+ N

1
N (N 1=d � 1)

=

 p
d

2
+ 1

!
1

N 1=d � 1
:

The inequality (13) is a direct consequence of this result and Proposition 1.
We now turn to the proof of Corollary 1. To prove the existence, �rst notice

that the projection problem (6) can be recast as (1). Let p = ( p1; � � � ; pN ) 2


 N . The mapping p 7!





 h ?

�
� � 1

N

P N
i =1 � pi

� 






2

2
is continuous. Problem (1)

therefore consists of minimizing a �nite dimensional continuous function over a
compact set. The existence of a solution follows. Point ii) is a direct consequence
of Theorem 1 and bound (13). Point i) is due to the fact that Nh metrizes weak
convergence, see Proposition 3.

4 Numerical resolution

In this section, we propose a generic numerical algorithm to solve the projection
problem (6). We �rst draw a connection with the recent works on electrostatic
halftoning [26, 28] in subsection 4.1. We then recall the algorithm proposed in
[26, 28] whenM N is the set ofN -point measures. Finally, we extend this prin-
ciple to arbitrary measures spaces and provide some results on their theoretical
performance in section 4.3.

4.1 Relationship to electrostatic-halftoning

In a recent series of papers [26, 28, 12, 14], it was suggested to use electrostatic
principles to perform image halftoning. This technique was shown to produce

10



results having a number of nice properties such as few visual artifacts. Motivated
by preliminary results in [26], the authors of [28] proposed to choose theN points
locations p = ( pi )1� i � N 2 
 N as a solution of the following variational problem:

min
p2 
 N

1
2N 2

NX

i =1

NX

j =1

H (pi � pj )

| {z }
Repulsion potential

�
1
N

NX

i =1

Z



H (x � pi ) d� (x)

| {z }
Attraction potential

; (14)

where H was initially de�ned as H (x) = kxk2 in [26, 28] and then extended to
a few other functions in [12]. The attraction potential tends to attract points
towards the bright regions of the image (regions where the measure� has a large
mass) whereas the repulsion potential can be regarded as a counter-balancing
term that tends to maximize the distance between all pairs of points. Deriving
an algorithm to solve problem (14) with good precision can be seen as a general-
ization of Thomson's problem [29], which belongs to Smale's list of mathematical
questions to solve for the XXIst century [27].

Proposition 7 below shows that this attraction-repulsion problem is actually
equivalent to the projection problem (6) on the set ofN -point measures de�ned
in (2). We let P � denote the set of solutions of (14) andM (P � ) = f � =
1
N

P N
i =1 � p�

i
; p� 2 P � g. We also let M � denote the set of solutions to problem

(6).

Proposition 7. Let h 2 C(
) denote a kernel such thatjĥj(� ) > 0; 8� 2 Zd.
De�ne H through its Fourier series by Ĥ (� ) = jĥj2(� ). Then problems (6) and
(14) yield the same solutions set:

M � = M (P � ):

Proof. First, note that since H and h are continuous both problems are well
de�ned and admit at least one solution. Let us �rst expand the L 2-norm in (6):

1
2

kh ? (� � � )k2
2 =

1
2

hh ? (� � � ); h ? (� � � )i

=
1
2

hH ? (� � � ); � � � i

=
1
2

(hH ? �; � i � 2hH ? �; � i + hH ? �; � i ) :

Therefore

Arg min
� 2M N

1
2

kh ? (� � � )k2
2 = Arg min

� 2M N

1
2

(hH ? �; � i � 2hH ? �; � i ) :

To conclude, it su�ces to remark that for a measure � of kind � = 1
N

P N
i =1 � pi ,

1
2

(hH ? �; � i � 2hH ? �; � i )

=
1

2N 2

NX

i =1

NX

j =1

H (pi � pj ) �
1
N

NX

i =1

Z



H (x � pi ) d� (x):

11



Remark 2. It is rather easy to show that a su�cient condition for h to be
continuous is that H 2 C3(
) or H be H•older continuous with exponent� > 2.
These conditions are however strong and exclude kernels such asH (x) = kxk2.

From Remark 1, it is actually su�cient that h 2 L 1 (
) for Nh to be well
de�ned. This leads to less stringent conditions onH . We do not discuss this
possibility further to keep the arguments simple.

Remark 3. Corollary 1 sheds light on the approximation quality of the mini-
mizers of attraction-repulsion functionals. Let us mention that consistency of
problem (14) was already studied in the recent papers [12, 10, 11]. To the best
of our knowledge, Corollary 1 is stronger than existing results since it yields a
convergence rate and holds true under more general assumptions.

Though formulations (6) and (14) are equivalent, we believe that the pro-
posed one (6) has some advantages: it is probably more intuitive, shows that the
convolution kernel h should be chosen depending on physical considerations and
simpli�es some parts of the mathematical analysis such as consistency. However,
the set of admissible measuresM (
 N ) has a complex geometry and this formu-
lation as such is hardly amenable to numerical implementation. For instance,
M (
 N ) is not a vector space, since adding twoN -point measures usually leads
to (2N )-point measures. On the other hand, the attraction-repulsion formula-
tion (14) is an optimization problem of a continuous function over the set 
 N .
It therefore looks easier to handle numerically using non-linear programming
techniques. This is what we will implement in the next paragraphs following
previous works [26, 28].

4.2 The case of N -point measures

In this section, we develop an algorithm speci�c to the projection on the set of
N -point measures de�ned in (2). This algorithm generates stippling results such
as in Fig. 1. In stippling, the measure is supported by a union of discs, i.e., a sum
of diracs convoluted with a disc indicator. We simply have to consider the image
deconvoluted with this disc indicator as � to include stippling in the framework
of N -point measures. We will generalize this algorithm to arbitrary sets of
measures in the next section. We assume without further mention thatĤ (� )
is real and positive for all � . This implies that H is real and even. Moreover,
Proposition 7 implies that problems (6) and (14) yield the same solutions sets.
We let p = ( p1; : : : ; pN ) and set

~J (p) :=
1

2N 2

NX

i =1

NX

j =1

H (pi � pj )

| {z }
F (p)

�
1
N

NX

i =1

Z



H (x � pi ) d� (x)

| {z }
~G(p)

: (15)

The projection problem therefore rereads as:

min
p2 
 N

~J (p): (16)

For practical purposes, the integrals in ~G(p) �rst have to be replaced by numer-
ical quadratures. We let G(p) ' ~G(p) denote the numerical approximation of

12



~G(p). This approximation can be written as

G(p) =
1
N

NX

i =1

nX

j =1

wj H (x j � pi )� j ;

wheren is the number of discretization pointsx j and wj are weights that depend
on the integration rule. In particular, since we want to approximate integration
with respect to a probability measure, we require that

nX

j =1

wj � j = 1 :

In our numerical experiments we use the rectangle rule. We may then take� j

as the integral of � over the corresponding rectangle. After discretization, the
projection problem therefore rereads as:

min
p2 
 N

J (p) := F (p) � G(p): (17)

The following result [1, Theorem 5.3] will be useful to design a convergent
algorithm. We refer to [1] for a comprehensive introduction to the de�nition of
Kurdyka- Lojasiewicz functions and to its applications to algorithmic analysis.
In particular, we recall that semi-algebraic functions are Kurdyka- Lojasiewicz
[19].

Theorem 3. Let K : Rn ! R be C1 function whose gradient isL -Lipschitz
continuous and letC be a nonempty closed subset ofRn . Being given" 2

�
0; 1

2L

�

and a sequence of stepsizes
 (k ) such that " < 
 (k ) < 1
L � " , we consider a

sequence(x (k ) )k2 N that complies with

x (k+1) 2 PC

�
x (k ) � 
 (k ) r K (x (k ) )

�
; with x (0) 2 C (18)

If the function K + i C is a Kurdyka- Lojasiewicz function and if (x (k ) )k2 N is
bounded, then the sequence(x (k ) )k2 N converges to a critical point x � in C.

A consequence of this important result is the following.

Corollary 2. Assume that H is a C1 semi-algebraic function with L-Lipschitz
continuous gradient. Set0 < 
 < N

3L . Then the following sequence converges to
a critical point of problem (17)

p(k+1) 2 P
 N

�
p(k ) � 
 r J (p(k ) )

�
; with p(0) 2 
 N : (19)

If H is convex,0 < 
 < N
2L ensures convergence to a critical point.

Remark 4. The semi-algebraicity is useful to obtain convergence to a critical
point. In some cases it might however not be needed. For instance, in the case
where C is convex and closed, it is straightforward to establish the decrease of
the cost function assuming only thatr J is Lipschitz. Nesterov in [23, Theorem

3] also provides a convergence rate inO
�

1p
k+1

�
in terms of objective function

values.
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Proof. First notice that J is semi-algebraic as a �nite sum of semi-algebraic
functions.

Function J is C1 by Leibniz integral rule. Let @k denote the derivative with
respect to pk . Then, sinceH is even

@k F (p) =
1

N 2

NX

i =1

r H (pk � pi ) (20)

and

@k G(p) = �
1
N

nX

j =1

wj r H (x j � pk )� j : (21)

For any two sets of N points p(1) = ( p(1)
k )16 k6 N ; p(2) = ( p(2)

k )16 k6 N :

kr F (p(1) ) � r F (p(2) )k2
2 =

NX

k=1






 @k F (p(1) ) � @k F (p(2) )








2

2

=
1

N 4

NX

k=1








NX

i =1

r H (p(1)
k � p(1)

i ) � r H (p(2)
k � p(2)

i )







2

2

6
1

N 4

NX

k=1

� NX

i =1

Lkp(1)
k � p(1)

i � (p(2)
k � p(2)

i )k2

� 2

6
L 2

N 4

NX

k=1

� NX

i =1

kp(1)
k � p(2)

k k2 + kp(1)
i � p(2)

i k2

� 2

6
L 2

N 4

NX

k=1

N
� NX

i =1

�
kp(1)

k � p(2)
k k2 + kp(1)

i � p(2)
i k2

� 2
�

6
2L 2

N 3

NX

k=1

NX

i =1

kp(1)
k � p(2)

k k2
2 + kp(1)

i � p(2)
i k2

2

=
4L 2

N 2 kp(1) � p(2) k2
2;

and

kr G(p(1) ) � r G(p(2) )k2
2 =

NX

k=1






 @k G(p(1) ) � @k G(p(2) )








2

2

=
1

N 2

NX

k=1








nX

j =1

wj � j
�
r H (p(1)

k � x) � r H (p(2)
k � x)

� 






2

2

6
1

N 2

NX

k=1

� nX

j =1

wj � j Lkp(1)
k � p(2)

k k
� 2

=
L 2

N 2

� nX

j =1

wj � j

�
kp(1) � p(2) k2

2

=
L 2

N 2 kp(1) � p(2) k2
2:
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Finally,

kr J (p(1) ) � r J (p(2) )k2

6 kr F (p(1) ) � r F (p(2) )k2 + kr G(p(1) ) � r G(p(2) )k2

6
� 2L

N
+

L
N

�
kp(1) � p(2) k2 =

3L
N

kp(1) � p(2) k2:

Now, if we assume thatH is convex andC2 (this hypothesis is not necessary,
but simpli�es the proof). Then F and G are also convex andC2. We let
r 2F denote the Hessian matrix ofF . Given the previous inequalities, we have
0 4 r 2F 4 2L

N Id and 0 4 r 2G 4 L
N Id. Hence, the largest eigenvalue in

magnitude of r 2(F � G) is bounded above by 2L
N .

Moreover, the sequence (x (k ) )k2 N is bounded since 
N is bounded.

4.3 A generic projection algorithm

We now turn to the problem of �nding a solution of (6), where M N denotes our
arbitrary measures set. In the previous paragraph, it was shown that critical
points of J + i 
 N could be obtained with a simple projected gradient algorithm
under mild assumtpions. Although this algorithm only yields critical points,
they usually correspond to point con�gurations that are visually pleasing after
only a few hundreds of iterations. For instance, the lion in Figure 1b was
obtained after 500 iterations. Motivated by this appealing numerical behavior,
we propose to extend this algorithm to the following abstract construction:

1. Approximate M N by a subsetA n of n-point measures.

2. Use the generic Algorithm (18) to obtain an approximate projection � �
n

on A n .

3. When possible, reconstruct an approximation� N 2 M N of a projection
� �

N using � �
n .

To formalize the approximation step, we need the de�nition of Hausdor�
distance:

De�nition 3. The Hausdor� distance between two subsetsX and Y of a metric
space(M; d) is:

H d(X; Y ) := max
�

sup
x 2 X

inf
y2 Y

d(x; y); sup
y2 Y

inf
x 2 X

d(y; x)
�

:

In words, two sets are close if any point in one set is close to at least a
point in the other set. In this paper, the relevant metric space is the space of
signed measuresM with the norm Nh . The corresponding Hausdor� distance
is denotedH N h .

The following proposition clari�es why controlling the Hausdor� distance is
relevant to design approximation setsA n .

Proposition 8. Let A n and M N be two TV-bounded weakly closed sets of
measures such thatH N h (A n ; M N ) � " . Let � �

n be a projection on A n . Then
there is a point � N 2 M N such that Nh (� �

n � � N ) � " and Nh (� � � N ) �
inf

� 2M N

Nh (� � � ) + 2 " .
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Corollary 3. If lim
n !1

H N h (A n ; M N ) = 0 , then (� �
n )n 2 N converges weakly along

a subsequence to a solution� �
N of Problem (6).

Proof. We �rst prove Proposition 8. Since A n and M N are bounded weakly
closed, by Proposition 4, there exists at least one projection� �

n on A n and one
projection � �

N on M N .
Moreover sinceA n and M N are bounded weakly closed, they are also closed

for Nh , so that the in�mum in the Hausdor� distances are attained. Hence there
exists � n 2 A n such that Nh (� n � � �

N ) � H N h (A n ; M N ) � " and � N 2 M N

such that Nh (� N � � �
n ) � " . The proposition follows from the triangle inequality:

Nh (� N � � ) � N h (� N � � �
n ) + Nh (� �

n � � )

� " + Nh (� n � � )

� " + Nh (� n � � �
N ) + Nh (� �

N � � )

� N h (� �
N � � ) + 2 ":

For the corollary, let us consider the sequence (� �
n )n 2 N asn tends to in�nity.

Since all � n are in M � , which is weakly compact, we have a subsequence that
converges to� �

1 . SinceNh is a metrization of weak convergence onM N , this
� �

1 is indeed a solution to Problem (6):

Nh (� �
1 � � ) = lim

n !1
Nh (� �

n � � )

= inf
� 2M N

Nh (� � � ):

To conclude this section, we show that it is always possible to construct an
approximation set A n � M (
 n ) with a control on the Hausdor� distance to
M N . Let M �

N denote an� -enlargement ofM N w.r.t. the Nh -norm, i.e.:

M �
N = [ � N 2M N f � 2 M � ; Nh (� � � N ) � � g: (22)

We may de�ne an approximation set A �
n as follows:

A �
n = M (
 n ) \ M �

N : (23)

For su�cient large n, this set is non-empty and can be rewritten as

A �
n =

(

� =
1
n

nX

i =1

� pi ; with p = ( pi )1� i � n 2 P �
n

)

; (24)

where the parameterization set P �
n depends onM N and � . With this dis-

cretization of M N at hand, one can then apply (at least formally) the following
projected gradient descent algorithm:

p(k+1) 2 PP �
n

�
p(k ) � 
 r J (p(k ) )

�
; with p(0) 2 P �

n : (25)

The following proposition summarizes the main approximation result:

Proposition 9. Assume that h is L -Lipschitz. Set � =
� p

d
2 + 1

�
L

n 1=d � 1 and
A n = A �

n , then

H N h (A n ; M N ) = O
�

Ln � 1=d
�

:
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Proof. By construction, A n satis�es

sup
� n 2A n

inf
� N 2M N

Nh (� n � � N ) � �:

Let � N be an arbitrary measure in M N . By inequality (12), there exists
� n 2 M (
 n ) such that Nh (� n � � N ) � � . Therefore � n also belongs toA �

n .
This shows that

sup
� N 2M N

inf
� n 2A n

Nh (� n � � N ) � �:

The approximation process proposed (23) is non-constructive since it does
not provide any explicit formula for P �

n . Moreover, P �
n can be an arbitrary

set and the projection on P �
n might not be implementable. We will provide

constructive approximations for speci�c measures spaces in Section 5.

5 Application to continuous line drawing

In this section, we concentrate on the continuous line drawing problem described
in the introduction. We �rst construct a set of admissible measures M T that
is a natural representative of artistic continuous line drawings. The index T
represents the time spent to draw the picture. We then show that using this
set in problem (6) ensures existence of a solution and weak convergence of the
minimizers � �

T to any � 2 M � . We �nish by designing a numerical algorithm
to solve the problem and analyze its theoretical guarantees.

5.1 Problem formalization

Let us assume that an artist draws a picture with a pencil. The trajectory of
the pencil tip can be de�ned as a parameterized curvep : [0; T] ! 
. The body,
elbow, arm and hand are subject to non-trivial constraints [21]. The curvep
should therefore belong to some admissible parameterized curves set denoted
PT . In this paper, we simply assume that PT contains curves with bounded
�rst and second order derivatives in L q([0; T]). More precisely, we consider the
following sets of admissible curves:

1. Curves with bounded speed:

P1;1
T =

n
p 2 (W 1;1 ([0; T]))d; p([0; T]) � 
 ; k _pk1 � � 1

o
;

where � 1 is a positive real.

2. Curves with bounded speed and acceleration:

P2;1
T =

n
p 2 (W 2;1 ([0; T]))d; p([0; T]) � 
 ; k _pk1 � � 1;

k•pk1 � � 2

o
;

where � 1 and � 2 are positive reals. This set models rather accurately
kinematic constraints that are met in vehicles. It is obviously a rough
approximation of arm constraints.
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3. The proposed theory and algorithm apply to a more general setting. For
instance they cover the case of curves with derivatives up to an arbitrary
order bounded in L q with q 2 [1; 1 ]. We let

Pm;q
T =

n
p 2 (W m;q ([0; T]))d; p([0; T]) � 
 ;

8i 2 f 1; : : : ; mg; kp( i ) kq � � i

o
:

where (� i ) i =1 :::m are positive reals. This case will be treated only in
the numerical experiments to illustrate the variety of results that can be
obtained in applications.

Note that all above mentionned sets are convex. The convexity property will
help deriving e�cient numerical procedures.

In the rest of this section, we consider the following projection problem:

inf
� 2M (P m;q

T )
Nh (� � � ); (26)

with a special emphasis on the setM (Pm; 1
T ) since it best describes standard

kinematic constraints. This problem basically consists of �nding the \best" way
to represent a picture in a given amount of timeT.

5.2 Existence and consistency

We �rst provide existence results using the results derived in Section 3 forq = 1 .

Theorem 4. For any m 2 N� , Problem (26) admits at least one solution in
M (Pm; 1

T ).

Proof. From Proposition 6, it su�ces to show that Pm; 1
T is compact for the

topology of pointwise convergence.
Let (pn )n 2 N be a sequence inPm; 1

T that converges pointwise top. Sincepn

is in W m; 1 , its (m � 1)-th derivative is Lipschitz continuous. By de�nition of
Pm; 1

T , the p(m � 1)
n are both uniformly bounded by � m � 1 and � m -Lipschitz, hence

equicontinuous. Next, by Ascoli's theorem, up to taking a subsequence,p(m � 1)
n

uniformly converges to a continuousp(m � 1) . Integrating yields that p( i )
n ! p( i )

uniformly for all i � m � 1, so that



 p( i )






1 � � i for i � m � 1. Finally, a
limit of L -Lipschitz functions is alsoL-Lipschitz, so that




 p(m )






1 � � m . Hence
p 2 P m; 1

T , ending the proof.

Let us now turn to weak convergence.

Theorem 5. Let T be an arbitrary positive real. Let � �
T 2 M (Pm; 1

T ) denote
any solution of Problem (26). Then, for any Lipschitz kernel h 2 C(
) :

i) � �
T *

T !1
� ,

ii) Nh (� �
T � � ) = O

�
T � m

m ( d +1) � 1

�
.

Proof. Let us consider a functionu : [0; 1] ! R such that:

� The m-th derivative is bounded by � m , that is



 u(m )






1 � � m .
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� For all integers i 2 f 1; : : : ; m � 1g, endpoint values are zero, that is
u( i ) (0) = u( i ) (1) = 0.

� Start point is zero, that is u(0) = 0.

� Endpoint is positive, that is u(1) = C > 0.

Let x and y in 
, such that kx � yk2 = Cr m , and let � xy be the unit vector
from x to y. Then, for r small enough, the function s[x; y] : t 7! x + � xy u( t

r )
belongs toPm; 1

T , with all its �rst ( m � 1) derivatives zero at its endpoints. The
condition r small enough is for controlling the norm of the i -th derivatives for
i � m � 1, which scale asr m � i .

Now, let us split 
 = [0 ; 1]d in N d small cubes! i . We may order them such
that each ! i is adjacent to the next cube! i +1 . We write x i for the center of ! i .
We now build functions s 2 P m; 1

T by concatenating paths from x i to x i +1 and
waiting times in x i :

0 = t1
1 � � � � � t2

i � 1 � t1
i � t2

i � t1
i +1 � � � � � t2

N d = T;

t2
i � t1

i =
�

1
NC

� 1
m

;

s(t) =
�

x i if t1
i � t � t2

i ;
s[x i ; x i +1 ](t � t2

i ) if t2
i � t � t1

i +1 ;

under the condition T � TN := ( N d � 1)
�

1
NC

� 1
m , that is to say that we have

enough time to loop through all the cube centers.
Let now � 2 M � . We may chooset2

i � t1
i � T � (! i ) for all i . Then, we may

couple � and s� 
 T with c(x i ; ! i ) = t 2
i � t 1

i
T . Since the small cubes have radiusp

d=N and the big one has radius
p

d, we obtain:

W1(�; s � 
 T ) �

p
d

2N

X

i

t2
i � t1

i

T
+

p
d

X

i<N d

t1
i +1 � t2

i

T

=

p
d

2N
T � TN

T
+

p
d

TN

T
:

In particular, taking N = T
m

m ( d +1) � 1 , we �nd that W1 (M (Pm; 1
T ) ; � ) = O

�
T � m

m ( d +1) � 1

�
,

hence
S

T M (Pm; 1
T ) is weakly dense inM � .

5.3 Numerical resolution

We now turn to the numerical resolution of problem (26). We �rst discretize
the problem. We set � t := T

N and de�ne discrete curvess as vectors ofRN �d.
We let s(i ) 2 Rd denote the curve location at discrete timei , corresponding to
the continuous time i � t.

We de�ne D1 : RN �d ! RN �d, the discrete �rst order derivative operator, as
follows:

(D1s)( i ) =
1

� t

�
0 if i = 1 ;
s(i ) � s(i � 1) if i 2 f 2; : : : ; N g:
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In what follows, D i denotes a discretization of the derivative operator of order
i . In the numerical experiments, we setD2 = � D �

1D1.
We de�ne Pm;q

N , a discretized version ofPm;q
T , as follows:

Pm;q
N =

�
s 2 RN �d; such that 8i 2 f 1; : : : N g; s(i ) 2 
 ; (27)

and 8j 2 f 1; : : : ; mg; kD j skq 6 � j
	

: (28)

Here, k � kq is de�ned by: kxkq =

 
N �dX

i =1

kx i k
q
2

! 1
q

for q 2 [1; + 1 ) and kxk1 =

max
16 i 6 N �d

kx i k2.

The measures setM (Pm;q
T ) can be approximated by the set of N -point

measuresM (Pm;q
N ). From Corollary 3, it su�ces to control the Hausdor� dis-

tance H W 1 (M (Pm;q
T ); M (Pm;q

N )), to ensure that the solution of the discrete
problem (6) with M N = M (Pm;q

N ) is a good approximation of problem (26).
Unfortunately, the control of this distance is rather technical and falls beyond
the scope of this paper for generalm and q. In the following proposition, we
therefore limit ourselves to the casem = 1 ; q = 1 .

Proposition 10. H W 1 (M (P1;1
T ); M (P1;1

N )) 6 � 1
T
N .

Proof. 1. Let us show that sup
� 2M (P 1; 1

T )

inf
~� 2M (P 1; 1

N )
W1(�; ~� ) 6

� 1T
N

.

Let � 2 M (P1;1
T ) and denote by p 2 P 1;1

T a parameterization such

that � = p� 
 . De�ne ~� =
1
N

N � 1X

i =0

� p( iT
N ) . Then a parameterization of

~� is de�ned by s(i ) = p
�

iT
N

�
. Moreover, for i 2 f 2; : : : N g, j(D1s)( i )j =

1
� t

�
�
�
�p

�
iT
N

�
� p

�
(i � 1)T

N

� �
�
�
� =

1
� t

�
�
�
�
�

Z iT
N

( i � 1) T
N

_p(t) dt

�
�
�
�
�

6
1

� t

Z iT
N

( i � 1) T
N

j _p(t)j dt 6

� 1. Therefore s 2 P1;1
N .

Let us consider the transportation map coupling the curve arcs between
times (i � 1) T

N and i T
N and the Diracs at p

�
i T

N

�
. Then W1(p� 
; s � 
 ) 6

NX

i =1

1
N

sup
( i � 1) T

N 6 t 6 i T
N








 s(t) � s

�
(i � 1)

T
N

� 






 6 � 1

T
N

.

2. Let us �x � 2 M
�

P1;1
N

�
and let s 2 P1;1

N such that s� 
 = � . We set

p(0) = s(1), and:

p(t)=

(
s(1) for t 2

�
0; T

N

�
;

s(i )+
�

t
� t � i

�
(s(i + 1) � s(i ))for t 2

i
iT
N ; ( i +1) T

N

i

; i 2 f 1; : : : N � 1g:

Since s 2 
 N and 
 is convex, p([0; T]) � 
. Moreover, p is continu-
ous and piecewise di�erentiable. Finally, for i 2 f 1; : : : ; N � 1g and t 2i

iT
N ; ( i +1) T

N

i
, _p(t) = 1

� t (s(i + 1) � s(i )) = D1(s)( i ). Therefore, k _pk1 6
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� 1, ensuring that p 2 P 1;1
T . With the same coupling as above, we have

W1(p� 
; s � 
 ) 6 � 1
T
N , which ends the proof.

To end up, let us describe precisely a solver for the following variational
problem:

inf
� 2M (P 1; 1

T )
Nh (� � � ): (29)

We let M � denote the set of minimizers andP � denote the associated set of
parameterizations.

Algorithm 1 A projection algorithm on M
�

P1;1
T

�
.

Input :

- � : target measure.

- N : a number of discretization points.

- s(0) 2 P1;1
N : initial parameterized curve.

- H : a semi-algebraic function with Lipschitz continuous gra-
dient.

- nit : number of iterations.

Output :

- s(nit ) : an approximation of a curve in P � .

- � (nit ) = ( s(nit ) ) � 
 T : an approximation of an element of
M � .

for 0 � k � nit do

- Compute � (k ) = r J (s(k ) )

- Set s(k+1) = PP 1; 1
N

�
s(k ) � � � (k )

�

Remark 5. The implementation of Algorithm 1 requires computing the gradi-
ents (20) and (21) and computing a projection on P1;1

N . Both problems are
actually non trivial.

The naive approach to compute the gradient ofF consists of using the explicit
formula (20). This approach is feasible only for a small amount of pointsN
(less than 1000) since its complexity is O

�
N 2

�
. In our numerical experiments,

we therefore resort to fast summation algorithms [25, 17] commonly used in
particles simulation. This part of the numerical analysis is described in [28]
and we do not discuss it in this paper.

The set P1;1
N and more generally the setsPm;q

N are convex for q 2 [1; 1 ].
Projections can be computed using �rst-order iterative algorithms for convex
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functions. In our numerical experiments, we use accelerated proximal gradient
descents on the dual problem [3, 23, 31]. A precise description is given in [7].

6 Results

To illustrate the results, we focus on the continuous line drawing problem dis-
cussed throughout the paper. It is performed using Algorithm 1. In the follow-
ing experiments, we setH as a smoothedL 1-norm. This is similar to what was
proposed in the original halftoning papers in [26, 28].

We �rst concentrate on the projection onto P1;1
N . In Figure 3, we show the

evolution of the curve s(k ) across iterations, for di�erent choices ofs(0) . After
30; 000 iterations, the evolution seems to be stabilized. The cost function during
the 400 �rst iterations is depicted in Figure 4 for the three di�erent initializa-
tions. As can be seen, the curve evolves toward a satisfactoryt representation of
the lion, whatever the initialization. This is a very nice feature that is somehow
surprising since our algorithm simply consists of minimizing a highly nonconvex
function with a �rst order method.

In Figure 5, we show the projection ontoP1;1
N of the famous Meisje met de

Parel painting (Girl with a Pearl Earring), after 10 ; 000 iterations. To really see
the precision of the algorithm, we advise the reader to blink the eyes or to take
a printed version of the paper away. From a close distance, the curves or points
are visible. From a long distance, only the painting appears.

To �nish, we consider projections onto more general measure spaces, such as
M (Pm;q

T ). In Fig. 6, we show di�erent behaviours for di�erent m 2 f 1; 2g and
q 2 f 1; 2; 1g . We also show a large scale example with a picture of Marylin
Monroe in Figure 7.

7 Conclusion

We analyzed the basic properties of a variational problem to project a target
Radon measure� on arbitrary measures setsM N . We then proposed a numer-
ical algorithm to �nd approximate solutions of this problem and gave several
guarantees. An important application covered by this algorithm is the projec-
tion on the set of N -point measures, which is often called quantization and
appears in many di�erent areas such as �nance, imaging, biology,... To the best
of our knowledge, the extension toarbitrary measures set is new, and opens
many interesting application perspectives. As examples in imaging, let us men-
tion open topics such as the detection of singularities [2] (e.g. curves in 3D
images) and sparse spike deconvolution in dimensiond [9].

To �nish, let us mention an important open question. We provided necessary
and su�cient conditions on the sequence (M N )N 2 N for the sequence ofglobal
minimizers (� �

N )N 2 N to weakly converge to � . In practice, �nding the global
minimizer is impossible and we can only expect �nding critical points. One may
therefore wonder whether all sequences of critical points weakly converge to� .
An interesting perspective to answer this question is the use of mean-�eld limits
[10].
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Figure 3: Projection of the lion image onto P1;1
N with N = 8 ; 000. The �gure

depicts s(k ) with several values of the iteratek in Algorithm 1.
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Figure 4: Decay of the cost functionJ for the three experiments depicted in
Fig. 3. We represent log10(J (k) � m) for k � 400 wherem is the mimimal value
of J during the �rst 30 ; 000 iterations.
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[1] Hedy Attouch, J�erôme Bolte, and Benar Fux Svaiter. Convergence of de-
scent methods for semi-algebraic and tame problems: proximal algorithms,
forward{backward splitting, and regularized gauss{seidel methods.Math-
ematical Programming, 137(1-2):91{129, 2013.

[2] Gilles Aubert, Jean-Fran�cois Aujol, and Laure Blanc-F�eraud. Detecting
codimension-two objects in an image with Ginzburg-Landau models.In-
ternational Journal of Computer Vision , 65(1-2):29{42, 2005.

[3] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems. SIAM Journal on Imaging Sciences,
2(1):183{202, 2009.

[4] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas.Measure
theory I, volume 1. Springer, 2007.

[5] Robert Bosch and Adrianne Herman. Continuous line drawings via the
traveling salesman problem. Operations Research Letters, 32(4):302{303,
2004.

[6] Claire Boyer, Nicolas Chau�ert, Philippe Ciuciu, Jonas Kahn, and Pierre
Weiss. On the generation of sampling schemes for magnetic resonance
imaging. arXiv preprint , 2016.

24



[7] Nicolas Chau�ert, Pierre Weiss, Jonas Kahn, and Philippe Ciuciu. Gradi-
ent waveform design for variable density sampling in Magnetic Resonance
Imaging. arXiv preprint arXiv:1412.4621 , 2014.

[8] John G Daugman. Two-dimensional spectral analysis of cortical receptive
�eld pro�les. Vision research, 20(10):847{856, 1980.

[9] Vincent Duval and Gabriel Peyr�e. Exact support recovery for sparse spikes
deconvolution. arXiv preprint arXiv:1306.6909 , 2013.

[10] Massimo Fornasier, Jan Ha�skovec, and Gabriele Steidl. Consistency of
variational continuous-domain quantization via kinetic theory. Applicable
Analysis, 92(6):1283{1298, 2013.

[11] Massimo Fornasier and Jan-Christian H•utter. Consistency of probability
measure quantization by means of power repulsion-attraction potentials.
arXiv preprint arXiv:1310.1120 , 2013.

[12] Manuel Gr•af, Daniel Potts, and Gabriele Steidl. Quadrature errors, dis-
crepancies, and their relations to halftoning on the torus and the sphere.
SIAM Journal on Scienti�c Computing , 34(5):A2760{A2791, 2012.

[13] Peter M Gruber. Optimum quantization and its applications. Advances in
Mathematics, 186(2):456{497, 2004.

[14] Pascal Gwosdek, Christian Schmaltz, Joachim Weickert, and Tanja Teu-
ber. Fast electrostatic halftoning. Journal of real-time image processing,
9(2):379{392, 2014.

[15] Craig S Kaplan, Robert Bosch, et al. Tsp art. In Renaissance Ban�:
Mathematics, Music, Art, Culture , pages 301{308. Canadian Mathematical
Society, 2005.

[16] Yitzhak Katznelson. An introduction to harmonic analysis. New York,
1968.

[17] Jens Keiner, Stefan Kunis, and Daniel Potts. Using n�t 3|a software li-
brary for various nonequispaced fast fourier transforms.ACM Transactions
on Mathematical Software (TOMS), 36(4):19, 2009.

[18] Benoit Kloeckner. Approximation by �nitely supported measures. ESAIM:
Control, Optimisation and Calculus of Variations , 18(02):343{359, 2012.

[19] Krzysztof Kurdyka. On gradients of functions de�nable in o-minimal struc-
tures. In Annales de l'institut Fourier , volume 48, pages 769{783. Institut
Fourier, 1998.

[20] Hua Li and David Mould. Continuous line drawings and designs.Interna-
tional Journal of Creative Interfaces and Computer Graphics, 2014.

[21] RG Marteniuk, CL MacKenzie, M Jeannerod, S Athenes, and C Dugas.
Constraints on human arm movement trajectories. Canadian Journal of
Psychology/Revue canadienne de psychologie, 41(3):365, 1987.

25



[22] Boris S Mordukhovich. Variational Analysis and Generalized Di�erentia-
tion I: Basic Theory , volume 330. Springer, 2006.

[23] Yu Nesterov. Gradient methods for minimizing composite functions.Math-
ematical Programming, 140(1):125{161, 2013.

[24] Thrasyvoulos N Pappas and David L Neuho�. Least-squares model-based
halftoning. Image Processing, IEEE Transactions on, 8(8):1102{1116, 1999.

[25] Daniel Potts and Gabriele Steidl. Fast summation at nonequispaced knots
by NFFT. SIAM Journal on Scienti�c Computing , 24(6):2013{2037, 2003.

[26] Christian Schmaltz, Pascal Gwosdek, Andr�es Bruhn, and Joachim Weick-
ert. Electrostatic halftoning. In Computer Graphics Forum, volume 29,
pages 2313{2327. Wiley Online Library, 2010.

[27] Steve Smale. Mathematical problems for the next century.The Mathemat-
ical Intelligencer, 20(2):7{15, 1998.

[28] Tanja Teuber, Gabriele Steidl, Pascal Gwosdek, Christian Schmaltz, and
Joachim Weickert. Dithering by di�erences of convex functions. SIAM
Journal on Imaging Sciences, 4(1):79{108, 2011.

[29] Joseph John Thomson. On the structure of the atom.Philos. Mag., Ser.
6, 7:237{265, 1904.

[30] Robert Ulichney. Digital halftoning . MIT press, 1987.

[31] Pierre Weiss, Laure Blanc-F�eraud, and Gilles Aubert. E�cient schemes for
total variation minimization under constraints in image processing. SIAM
journal on Scienti�c Computing , 31(3):2047{2080, 2009.

[32] Fernando J Wong and Shigeo Takahashi. A graph-based approach to contin-
uous line illustrations with variable levels of detail. In Computer Graphics
Forum, volume 30, pages 1931{1939. Wiley Online Library, 2011.

[33] Jie Xu and Craig S Kaplan. Image-guided maze construction. InACM
Transactions on Graphics (TOG), volume 26, page 29. ACM, 2007.

26



Figure 5: Projection of Meisje met de Parel, Vermeer 1665, ontoP1;1
N with

N = 150; 000. The �gure depicts s(10 ;000) obtained with Algorithm 1.
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m = 1 ; q = 1 m = 1 ; q = 1
(small � 1) (large � 1)

m = 1 ; q = 2 m = 1 ; q = 1

m = 2 ; q = 1 m = 2 ; q = 1
(isotropic norm)

Figure 6: Projection of the lion image onto Pm;q
N with N = 8 ; 000, and m 2

f 1; 2g and q 2 f 1; 2; 1g .
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Figure 7: Projection of Marylin image, onto the set:
C = f p 2 (W 2;1 ([0; T]))2; sup

i 2 [1;N ]
(kD1p(i )k2) � � 1; sup

i 2 [1;N ]
(kD2p(i )k2) � � 2g,

with N = 100; 000. The �gure depicts s(10 ;000) obtained with Algorithm 1.
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