
HAL Id: hal-01432919
https://inria.hal.science/hal-01432919

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Ransomware Steals Your Phone. Formal Methods
Rescue It

Francesco Mercaldo, Vittoria Nardone, Antonella Santone, Corrado Aaron
Visaggio

To cite this version:
Francesco Mercaldo, Vittoria Nardone, Antonella Santone, Corrado Aaron Visaggio. Ransomware
Steals Your Phone. Formal Methods Rescue It. 36th International Conference on Formal Techniques
for Distributed Objects, Components, and Systems (FORTE), Jun 2016, Heraklion, Greece. pp.212-
221, �10.1007/978-3-319-39570-8_14�. �hal-01432919�

https://inria.hal.science/hal-01432919
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Ransomware Steals your Phone. Formal
Methods Rescue it.

Francesco Mercaldo, Vittoria Nardone, Antonella Santone, Corrado Aaron
Visaggio

{fmercaldo, vnardone, santone, visaggio}@unisannio.it

1Department of Engineering, University of Sannio, Italy

Abstract. Ransomware is a recent type of malware which makes inac-
cessible the files or the device of the victim. The only way to unlock the
infected device or to have the keys for decrypting the files is to pay a ran-
som to the attacker. Commercial solutions for removing ransomware and
restoring the infected devices and files are ineffective, since this malware
uses a very robust form of asymmetric cryptography and erases shadow
copies and recovery points of the operating system. Literature does not
count many solutions for effectively detecting and blocking ransomware
and, at the best knowledge of the authors, formal methods were never
applied to identify ransomware. In this paper we propose a method-
ology based on formal methods that is able to detect the ransomware
and to identify in the malware’s code the instructions that implement
the characteristic instructions of the ransomware. The results of the ex-
perimentation are strongly encouraging and suggest that the proposed
methodology could be the right way to follow for developing commercial
solutions that could successful intercept the ransomware and blocking
the infections it provokes.

Keywords: Malware; Android; Security; Formal Methods; Temporal Logic.

1 Introduction and Motivation

Ransomware is a recent kind of malware that spread out mainly in last couple
of years, and it is particularly aggressive for two reasons: on one hand it uses
very effective mechanisms of infection based mainly on techniques of social en-
gineering like sophisticated phishing (by mail or chat), and on the other hand
it makes completely inaccessible the data on the infected machine, as it cyphers
all the files with a strong asymmetric key cryptographic algorithm.

The ransomware is still increasing its capability to harm the victim’s device,
prevent the restore of the data or device, and evade detection. As a matter of
fact, the more recent releases of this malware are able to recognize when they
are executed in a virtual environment, which is often used for creating a sandbox
where safely executing a program for studying its behavior and understanding
if it launches a malicious payload or not. Additionally, recent ransomware is

equipped with anti-debugging techniques, which is another way to evade detec-
tion as hindering the scanning of anti-malware.

Statistics from US governative agencies show that Cryptolocker infected in
2014: 336,856 machines in USA, 4,593 in UK, 25,841 in Canada, 15,427 in Aus-
tralia, 1,832 in India, 100,448 in other countries. At its peak, CryptoLocker, a
kind of ransomware, was infecting around 50,000 computers per month. Accord-
ing to SCMagazine1 the CryptoWall, another ransomware, in a roughly five-
month period infected 625,000 victims worldwide, encrypting 5.25 billion files,
collecting more than $1.1 million in ransoms. The malware tries to delete shadow
copies of the system through vssadmin.exe, so that the victim cannot return to
previous system restore points too.

Moreover ransomware is invading the smartphone world: Kaspersky labs
found 1,113 new ransomware samples targeting Android devices in the first quar-
ter of 2015, which is a 65% increase in the number of mobile ransomware samples
with respect to those collected in 20142. This is a dangerous trend since ran-
somware is designed to extort money, damage personal data, and block infected
devices. Once the device is infected, the attacker asks the victim to pay a ransom
in order to obtain the key for decrypting the files or restoring the control of the
smartphone.

As the evidence of the high infections rate demonstrates, commercial anti-
malware solutions are mainly ineffective to detect ransomware.

For this reason we propose a technique for specifically detecting ransomware
on smartphone devices that is completely based on formal methods. The tech-
nique has been proved to be very effective as the evaluation produced an F-
measure of detection equal to 0.99 on a dataset of 2, 477 samples. Additionally,
the technique is able to localize in the code the peculiar instructions that im-
plement the stages of infection, and the activation of the payload, which pro-
vides fundamental pieces of information to build both effective detectors and
removal systems for ransomware. Moreover, at the best knowledge of the au-
thors, literature counts only two works that propose a method to detect mobile
ransomware [2, 20] and that are compared with ours in the section of related
work.

The paper proceeds as follows: Section 2 describes and motivates our detec-
tion method; Section 3 illustrates the results of experiments; Section 4 discusses
the related work; finally, conclusions are drawn in Section 5.

2 The Methodology

In this section we present our methodology for the detection of Android ran-
somware malware using model checking. While model checking was originally
developed to verify the correctness of systems against specifications, recently it

1 http://www.scmagazine.com/cryptowall-surpasses-cryptolocker-in-infection-
rates/article/368920/

2 https://securelist.com/analysis/quarterly-malware-reports/69872/it-threat-
evolution-in-q1-2015/

has been highlighted in connection with a variety of disciplines see [1,7] Moreover,
great advancements have been made to tackle the limitation of this technique
due to its high time and memory requirements, see [4, 9–11]. In this paper we
present the use of model checking in the security field.

2.1 Formal Methods for Ransomware Detection

The approach is structured in three main sub-processes.
Formal Model Construction. This first sub-process aims at deriving formal

models starting from the Java Bytecode. The Bytecode of the app under study
is parsed and suitable formal models of the system are produced. More precisely,
the bytecode of the analysed app that resides in a class folder or in JAR files is
fed to a custom parser, based on the Apache Commons Bytecode Engineering
Library (BCEL)3. The parsed Java Bytecode of the .class files are successively
translated into formal models. In our approach Calculus of Communicating Sys-
tems (CCS) [15] has been exploited. CCS [15] is one of the most well known
process algebras. A Java Bytecode-to-CCS transforming function has been de-
fined for each instruction of the Java Bytecode. We associate a new CCS process
to each Java Bytecode instruction. This translation has to be performed only one
time for each app to be analysed and it has been completely automated. Each
Java Bytecode instruction that is not a (conditional or unconditional) jump is
represented by a process that, using the operator (“.”), invokes the process cor-
responding to its successive instruction. Conditional jumps are instead specified
as non-deterministic choices. An unconditional jump is represented by a CCS
process that invokes the corresponding process of the jump target.

Temporal Logic Properties Construction. This second sub-process aims to de-
fine the characteristic behaviour of a ransomware by means of the construction
of the temporal logic properties. This step tries to recognize specific and distinc-
tive features of the ransomware behaviour with respect to all the other malware
families and to goodware too. Thus, this specific behaviour is written as a set
of properties. To specify the properties, we manually inspected a few samples
in order to find the ransomware malicious behavior implementation at Bytecode
level. In our approach, the mu-calculus logic [19] is used, which is a branching
temporal logic to express behavioural properties.

Ransomware Family Detection. Finally, a formal verification environment,
including a model checker, is invoked to recognise the ransomware family. This
sub-process checks the sets of logic properties obtained from the ransomware
malware family characterization against the CCS model of the app. In our ap-
proach, we invoke the Concurrency Workbench of New Century (CWB-NC) [8] as
formal verification environment. When the result of the CWB-NC model checker
is true, it means that the app under analysis belongs to the ransomware fam-
ily, false otherwise. Thanks to very detailed CCS model and the logic formulae
we are able to reach a good accuracy of the overall results, as explained in the
following section.

3 http://commons.apache.org/bcel/

To the Authors’ knowledge, model checking has never used before for the
ransomware detection. The main distinctive features of the approach proposed
in this paper are the use of formal methods, the identification of the ransomware
through the Java Bytecode and the definition of a fully static approach. More
precisely, our methodology exploits the Bytecode representation of the analysed
apps. Detecting Android ransomware through the Bytecode and not directly on
the source code has several benefits: (i) independence of the source programming
language; (ii) recognition of malware families without decompilation even when
source code is lacking; (iii) easiness of parsing a lower-level code; (iv) indepen-
dence from obfuscation.

Another important feature of our approach is that we try to reuse existing
model checkers avoiding the design of custom-made model checker. In fact our
goal is to recognise ransomware with the criteria of reusing existing checking
technologies. Model checkers, especially the most widely used ones, are extremely
sophisticated programs that have been crafted over many years by experts in the
specific techniques employed by the tool. A re-implementation of the algorithms
in these tools could likely yield worst performance.

3 Results and Discussion

3.1 Empirical Evaluation Procedure

To estimate the detection performance of our methodology we compute the
metrics of precision and recall, F-measure (Fm) and Accuracy (Acc), defined
as follows:

PR =
TP

TP + FP
; RC =

TP

TP + FN
;

Fm =
2PR RC

PR + RC
; Acc =

TP + TN

TP + FN + FP + TN

where TP is the number of malware that was correctly identified in the right
family (True Positives), TN is the number of malware correctly identified as not
belonging to the family (True Negatives), FP is the number of malware that
was incorrectly identified in the target family (False Positives), and FN is the
number of malware that was not identified as belonging to the right family (False
Negatives).

3.2 Experimental Dataset

The real world samples examined in the experiment were gathered from three
different datasets. The first one is a collection of freely available 672 samples4

and 115 Android ransomware samples. The samples are labelled as ransomware,
koler, locker, fbilocker and scarepackage [2] and appeared from December 2014

4 http://ransom.mobi/
5 http://contagiominidump.blogspot.it/

Table 1: Dataset used in the Experiment

Dataset Original Samples Morphed Samples #Samples for Category

Ransomware 683 594 1,277

Other Malware 600 0 600

Trusted 600 0 600

Total 1,883 594 2,477

to June 2015. The second one is the Drebin project’s dataset [3,18], a very well
known collection of malware used in many scientific works, which includes the
most diffused Android families.

Each malware sample in these datasets is labelled according to the malware
family it belongs to: each family comprehends samples which have in common
the same payload. This collection does not contain ransomware samples: we use
this dataset to check the true positives.

The last one is a dataset of trusted applications crawled from Google Play6,
by using a script which queries a python API7 to search and download apps.
The downloaded applications belong to all the 26 different available categories
(i.e., Books & Reference, Lifestyle, Business, Live Wallpaper, Comics, Media &
Video, Communication, Medical, Education, Music & Audio, Finance & News,
Magazines, Games, Personalization, Health & Fitness, Photography, Libraries
& Demo, Productivity, Shopping, Social, Sport, Tools, Travel, Local & Trans-
portation, Weather, Widgets). The applications retrieved were among the most
downloaded in their category and were free.

The trusted applications were collected between April 2015 and January 2016
and were later analysed with the VirusTotal service8, a service able to run 57
different antimalware software (i.e., Symantec, Avast, Kasperky, McAfee, Panda,
and others) on the app: the analysis confirmed that the crawled applications did
not contain malicious payload. We use this dataset to check the true positives.

Furthermore, we developed a framework9 able to inject several obfuscation
levels in Android applications: (i) changing package name; (ii) identifier renam-
ing; (iii) data encoding; (iv) call indirections; (v) code reordering; (vi) junk code
insertion.

These injections were aimed at generating morphed versions of the appli-
cations belonging to the ransomware dataset. Previous works [6] demonstrated
that antimalware solutions fail to recognize the malware after these transfor-
mations. We applied our method to the morphed dataset in order to verify if
it loses its effectiveness, too, or it keeps on recognizing the malware also after
they have been altered. Table 1 provides the details of the full collection of 2,477
samples used to test the effectiveness of our method. Regarding the ransomware
samples, Table 1 shows the number of original and morphed samples we tested;
in some cases our framework was not able to disassemble some of the selected

6 https://play.google.com
7 https://github.com/egirault/googleplay-api
8 https://www.virustotal.com/
9 https://github.com/faber03/AndroidMalwareEvaluatingTools

Table 2: Families in Drebin dataset with details of the installation method (standalone,
repackaging, update), the kind of attack (trojan, botnet), the events that trigger the
malicious payload and a brief family description.

Family Installation Attack Activation Description

FakeInstaller s t,b server-side polymorphic family

Plankton s,u t,b it uses class loading to forward details

DroidKungFu r t boot,batt,sys it installs a backdoor

GinMaster r t boot malicious service to root devices

BaseBridge r,u t boot,sms,net,batt it sends information to a remote server

Adrd r t net,call it compromises personal data

Kmin s t boot it sends info to premium-rate numbers

Geinimi r t boot,sms first Android botnet

DroidDream r b main botnet, it gained root access

Opfake r t first Android polymorphic malware

samples, this is the reason why we had to discard them and we consider a lower
number of morphed samples if compared with original ones. In order to test the
capacity of our rules to identify exclusively ransomware samples, we include in
the dataset both trusted and malware samples from other families (respectively
Trusted and Other Malware).

Table 2 provides a brief description of the payload brought by the malware
families labelled as Other Malware, i.e., malware that is not ransomware.

We test 60 samples for each family. The malware was retrieved from the
Drebin project [3,18] (we take into account the top 10 most populous families).

3.3 Evaluation

As a baseline for evaluating the performances of our solution, we compare the re-
sults obtained with our method with those produced by the top 10 ranked mobile
antimalware solutions from AVTEST10, an independent Security Institute which
each year provides an analysis of the performances of the antimalware software.
We built this baseline, by submitting our original and morphed samples to the
VirusTotal API11, which allows to run the above mentioned antimalware.

Table 3 shows the evaluation between the top 10 antimalware solutions and
our method with the original ransomware samples and with the morphed ones.

We consider only the samples and the percentage identified in the right family
(column “ident” and the percentage in column “%ident”) in Table 3. We also
report the samples detected as malicious but not identified in the right family
and the samples not recognized as malware (column “unident”).

With regards to Table 3 we notice that BitDefender shows better perfor-
mance in family identification for Ransomware original samples. Instead, with
regards to morphed samples, antimalware performance decreases dramatically,
indeed BitDefender is able to identify only 86 samples. The worst antimalware
in Ransomware identification is Alibaba, able to correctly classify just 3 original
samples and 0 morphed samples.

10 https://www.av-test.org/en/antivirus/mobile-devices/
11 https://www.virustotal.com/

Table 3: Top 10 Signature-Based Antimalware Evaluation Against Our Method.

Antimalware Original Morphed

%ident. #ident. #unident. %ident. #ident. #unident.

AhnLab 13.76% 94 589 5.22% 31 563
Alibaba 0.44% 3 680 0% 0 594
Antiy 13.18% 90 593 4.04% 24 570
Avast 27.52% 188 495 6.4% 38 556
AVG 3.22% 22 661 1.51% 9 585
Avira 19.76% 135 548 12.46% 74 520
Baidu 14.34% 98 585 6.7% 41 553
BitDefender 28.26% 193 490 14.47% 86 508
ESET-NOD32 20.35% 139 544 8.58% 51 543
GData 27.96% 191 492 7.91% 47 547
Our Method 99.56% 680 3 99.49% 591 3

Table 4: Performance Evaluation

Formula # Samples TP FP FN TN PR RC Fm Acc
Ransomware 2,477 1,271 0 6 1,200 1 0.99 0.99 0.99

Due to the novelty of the problem, antimalware solutions are not still spe-
cialized in family identification; this is the reason why most of antimalware are
unskilled to detect families. Another problem is that current antimalware are not
able to detect malware when the signature mutates: their performance decreases
dramatically with morphed samples. On the contrary, the detection done by our
method is barely affected by the code transformations, so it is independent from
the signature.

Table 4 shows the results obtained using our method. We consider the sum
of original and morphed samples: the detail about the number of original and
morphed samples is shown in Table 1.

Results in Table 4 seems to be very promising: we obtain an Accuracy and a
F-measure equal to 0.99. Concerning the ransomware results, we are not able to
identify the malicious payloads of just 6 samples (i.e., 3 originals and 3 morphed)
on 1, 277.

4 Related Work

In this section we review the current literature related to ransomware detection
and formal methods applied to the detection of mobile malware.

As we stated previously, literature counts only two works about the detection
of Android ransomare.

The first one proposes HelDroid [2]: the approach includes a text classifier
based on NLP features, a lightweight Smali emulation technique to detect lock-
ing strategies, and the application of taint tracking for detecting file-encrypting

flows. The main weakness of HelDroid is represented by the text classifier: the
authors train it on generic threatening phrases, similar to those that typically
appear in ransomware or scareware samples. In addiction, like whatever machine
learning approach, HelDroid needs to train the classifier in order to label a sam-
ples as a ransomware: the detection capability of the model is related to the
training dataset.

The other work in literature exploring the ransomare detection in mobile
world is [20]. The authors illustrate a possible design of a static and dynamic
analysis based solution, without implementing it. Their goal is to build a better
performance tool in order to help to understand what should do to approach for
a successful detection of Android ransomware.

Formal methods have been applied for studying malware in some recent pa-
pers, see [12,13,16,17]. Recently, the possibility to identify the malicious payload
in Android malware using a model checking based approach has been explored
in [5, 14]. Starting from payload behavior definition they formulate logic rules
and then test them by using a real world dataset composed by DroidKungFu,
Opfake families and update attack samples. However, as it emerges from the
literature in the last years, formal methods have been applied to detect mobile
malware, but at the best knowledge of the authors they have never been applied
for identifying specifically the ransomware attack on Android malware.

5 Conclusions

Ransomware is a new type of malware that restricts access to the infected smart-
phone and it demands the user to pay a ransom to the attacker in order to remove
the restriction. Ransomware samples are able to encrypt files on the infected de-
vice, which become difficult or impossible to decrypt without paying the ransom
for the encryption key.

In this paper we propose a technique based on formal methods able to detect
ransomware behaviour in Android platform. We obtain encouraging results on
a dataset of 2,477 samples: 1 precision and 0.99 recall, overcoming in terms of
effectiveness the top 10 popolous commercial antimalware.

As future work we are going to extend our solution using a ransomware
dataset for different environment, like Windows Mobile and iOS in order to
experiment the portability of our method.

References

1. Anastasi, G., Bartoli, A., Francesco, N.D., Santone, A.: Efficient verification of a
multicast protocol for mobile computing. Comput. J. 44(1), 21–30 (2001)

2. Andronio, N., Zanero, S., Maggi, F.: Heldroid: Dissecting and detecting mobile ran-
somware. In: Research in Attacks, Intrusions, and Defenses, pp. 382–404. Springer
(2015)

3. Arp, D., Spreitzenbarth, M., Huebner, M., Gascon, H., Rieck, K.: Drebin: Efficient
and explainable detection of android malware in your pocket. In: Proceedings of

21th Annual Network and Distributed System Security Symposium (NDSS). IEEE
(2014)

4. Barbuti, R., Francesco, N.D., Santone, A., Vaglini, G.: LORETO: A tool for re-
ducing state explosion in verification of LOTOS programs. Softw., Pract. Exper.
29(12), 1123–1147 (1999)

5. Battista, P., Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Identification
of android malware families with model checking. In: International Conference on
Information Systems Security and Privacy. SCITEPRESS (2016)

6. Canfora, G., Di Sorbo, A., Mercaldo, F., Visaggio, C.: Obfuscation techniques
against signature-based detection: a case study. In: Proceedings of Workshop on
Mobile System Technologies. IEEE (2015)

7. Ceccarelli, M., Cerulo, L., Ruvo, G.D., Nardone, V., Santone, A.: Infer gene reg-
ulatory networks from time series data with probabilistic model checking. In: 3rd
IEEE/ACM FME Workshop on Formal Methods in Software Engineering, For-
maliSE 2015, Florence, Italy, May 18, 2015. pp. 26–32. IEEE (2015)

8. Cleaveland, R., Sims, S.: The ncsu concurrency workbench. In: Alur, R., Henzinger,
T.A. (eds.) CAV. Lecture Notes in Computer Science, vol. 1102. Springer (1996)

9. De Francesco, N., Lettieri, G., Santone, A., Vaglini, G.: Heuristic search for equiv-
alence checking. Software & Systems Modeling (2014)

10. Francesca, G., Santone, A., Vaglini, G., Villani, M.L.: Ant colony optimization
for deadlock detection in concurrent systems. In: Proceedings of the 35th Annual
IEEE International Computer Software and Applications Conference, COMPSAC
2011, Munich, Germany, 18-22 July 2011. pp. 108–117. IEEE (2011)

11. Francesco, N.D., Santone, A., Vaglini, G.: State space reduction by non-standard
semantics for deadlock analysis. Sci. Comput. Program. 30(3), 309–338 (1998)

12. Jacob, G., Filiol, E., Debar, H.: Formalization of viruses and malware through pro-
cess algebras. In: International Conference on Availability, Reliability and Security
(ARES 2010). IEEE (2010)

13. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code
by model checking. Springer (2005)

14. Mercaldo, F., Nardone, V., Santone, A., Visaggio, C.A.: Download malware? No,
thanks. How formal methods can block update attacks. In: Formal Methods in
Software Engineering (FormaliSE), 2016 IEEE/ACM 4th FME Workshop on. IEEE
(2016)

15. Milner, R.: Communication and concurrency. PHI Series in computer science, Pren-
tice Hall (1989)

16. Song, F., Touili, T.: Pommade: Pushdown model-checking for malware detection.
In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engi-
neering. ACM (2013)

17. Song, F., Touili, T.: Model-checking for android malware detection. Springer (2014)
18. Spreitzenbarth, M., Echtler, F., Schreck, T., Freling, F.C., Hoffmann, J.: Mobile-

sandbox: Looking deeper into android applications. In: 28th International ACM
Symposium on Applied Computing (SAC). ACM (2013)

19. Stirling, C.: An introduction to modal and temporal logics for ccs. In: Yonezawa,
A., Ito, T. (eds.) Concurrency: Theory, Language, And Architecture. pp. 2–20.
LNCS, Springer (1989)

20. Yang, T., Yang, Y., Qian, K., Lo, D.C.T., Qian, Y., Tao, L.: Automated detection
and analysis for android ransomware. In: HPCC/CSS/ICESS. pp. 1338–1343. IEEE
(2015)

