
HAL Id: hal-01432922
https://hal.inria.fr/hal-01432922

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Type-Based Analysis for Session Inference (Extended
Abstract)

Carlo Spaccasassi, Vasileios Koutavas

To cite this version:
Carlo Spaccasassi, Vasileios Koutavas. Type-Based Analysis for Session Inference (Extended Ab-
stract). 36th International Conference on Formal Techniques for Distributed Objects, Components,
and Systems (FORTE), Jun 2016, Heraklion, Greece. pp.248-266, �10.1007/978-3-319-39570-8_17�.
�hal-01432922�

https://hal.inria.fr/hal-01432922
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Type-Based Analysis for Session Inference
(Extended Abstract)?

Carlo Spaccasassi and Vasileios Koutavas

Trinity College Dublin

Abstract. We propose a type-based analysis to infer the session proto-
cols of channels in an ML-like concurrent functional language. Combining
and extending well-known techniques, we develop a type-checking sys-
tem that separates the underlying ML type system from the typing of
sessions. Without using linearity, our system guarantees communication
safety and partial lock freedom. It also supports provably complete ses-
sion inference for finite sessions with no programmer annotations. We
exhibit the usefulness of our system with interesting examples, including
one which is not typable in substructural type systems.

1 Introduction

Concurrent programming often requires processes to communicate according to
intricate protocols. In mainstream programming languages these protocols are
encoded implicitly in the program’s control flow, and no support is available for
verifying their correctness.

Honda [6] first suggested the use of binary session types to explicitly de-
scribe and check protocols over communication channels with two endpoints.
Fundamentally, session type systems guarantee that a program respects the or-
der of communication events (session fidelity) and message types (communi-
cation safety) described in a channel’s session type. A number of session type
systems (e.g., [2, 3, 16]) also ensure that processes fully execute the protocols of
their open endpoints, as long as they do not diverge or block on opening new
sessions (partial lock freedom).

To date, binary session type disciplines have been developed for various pro-
cess calculi and high-level programming languages (see [8] for an overview) by
following one of two main programming language design approaches: using a sin-
gle substructural type system for both session and traditional typing [5, 7, 18, 19],
or using monads to separate the two [13, 16].

In this paper we propose a third design approach which uses effects. Similar to
previous work, our approach enables the embedding of session types in program-
ming languages with sophisticated type systems. Here we develop a high-level
language where intricate protocols of communication can be programmed and
checked statically (Sect. 2). Contrary to both monads and substructural type

? This research was supported, in part, by Science Foundation Ireland grant
13/RC/2094. The first author was supported by MSR (MRL 2011-039).

systems, our approach allows pure code to call library code with communication
effects, without having to refactor the pure code (e.g., to embed it in a monad
or pass continuation channels through it—see Ex. 2.3). We apply our approach
to MLS, a core of ML with session communication (Sect. 3).

Our approach separates traditional typing from session typing in a two-level
system, which follows the principles of typed based analysis [12]. The first level
employs a type-and-effect system, which adapts and extends the one of Amtoft,
Nielson and Nielson [1] to session communication (Sect. 4). At this level the
program is typed against an ML type and a behaviour which abstractly de-
scribes program structure and communication. Session protocols are not consid-
ered here—they are entirely checked at the second level. Thus, each endpoint
is given type Sesρ, where ρ statically approximates its source. The benefit of
extending [1] is that we obtain a complete behaviour inference algorithm, which
extracts a behaviour for every program respecting ML types.

At the second level, our system checks that a behaviour, given an operational
semantics, complies with the session types of channels and endpoints (Sect. 5).
The session discipline realised here is inspired by the work of Castagna et al. [3].
This discipline guarantees that programs comply with session fidelity and com-
munication safety, but also, due to stacked interleaving of sessions, partial lock
freedom. However, one of the main appeals of our session typing discipline is that
it enables a provably complete session types inference from behaviours which,
with behaviour inference, gives us a complete method for session inference from
MLS, without programmer annotations (Sect. 6). The two levels of our system
only interact through behaviours, which we envisage will allow us to develop
front-ends for different languages and back-ends for different session disciplines.

To simplify the technical development we consider only sessions of finite
interactions. However, we allow recursion in the source language, as long as it
is confined : recursive code may only open new sessions and completely consume
them (see Sect. 2). In Sect. 7 we discuss an extension to recursive types. Related
work and conclusions can be found in Sect. 8. Details missing from this extended
abstract can be found in the appendix for the benefit of the reviewers.

2 Motivating Examples

Example 2.1 (A Swap Service). A coordinator process uses the primitive acc-swp
to accept two connections on a channel swp (we assume functions acc-c and req-c
for every channel c), opening two concurrent sessions with processes that want
to exchange values. It then coordinates the exchange and recurs.

let fun coord() =
let val p1 = acc-swp ()

val x1 = recv p1
val p2 = acc-swp ()
val x2 = recv p2

in send p2 x1; send p1 x2; coord ()
in spawn coord;

let fun swap(x) =
let val p = req-swp ()
in send p x; recv p

in spawn (fn => swap 1);
spawn (fn => swap 2);

Each endpoint the coordinator receives from calling acc-swp are used ac-
cording to the session type ?T.!T.end. This says that, on each endpoint, the
coordinator will first read a value type T (?T), then output a value of the same
type (!T) and close the endpoint (end). The interleaving of sends and receives
on the two endpoints achieves the desired swap effect.

Function swap : Int→T ′ calls req-swp and receives and endpoint which is used
according to the session type !Int.?T ′.end. By comparing the two session types
above we can see that the coordinator and the swap service can communicate
without type errors, and indeed are typable, when T = Int = T ′. Our type
inference algorithm automatically deduces the two session types from this code.

Because swp is a global channel, ill-behaved client code can connect to it too:

let val p1 = req-swp () in send p1 1;
let val p2 = req-swp () in send p2 2;
let val (x1, x2) = (recv p1, recv p2) in ecl

This client causes a deadlock, because the coordinator first sends on p2 and then
on p1, but this code orders the corresponding receives in reverse. The interleav-
ing of sessions in this client is rejected by our type system because it is not
well-stacked : recv p1 is performed before the most recent endpoint (p2) is closed.
The interleaving in the coordinator, on the other hand, is well-stacked.

Example 2.2 (Delegation for Efficiency).
In the previous example the coordinator is a bottleneck when exchanged val-

ues are large. A more efficient implementation delegates exchange to the clients:

let fun coord() =
let val p1 = acc-swp ()
in sel-SWAP p1;

let val p2 = acc-swp
in sel-LEAD p2;

deleg p2 p1;
coord()

let fun swap(x) =
let val p = req-swp ()
in case p {

SWAP: send p x; recv p
LEAD: let val q = resume p

val y = recv q
in send q x; y }

Function swap again connects to the coordinator over channel swp, but now
offers two choices with the labels SWAP and LEAD. If the coordinator selects the
former, the swap method proceeds as before; if it selects the latter, swap resumes
(i.e., inputs) another endpoint, binds it to q, and performs a rcv and then a send
on q. The new coordinator accepts two sessions on swp, receiving two endpoints:
p1 and p2. It selects SWAP on p1, LEAD on p2, sends p1 over p2 and recurs.

When our system analyses the coordinator in isolation, it infers the protocol
ηcoord = (!SWAP.η′ ⊕ !LEAD.!η′.end) for both endpoints p1 and p2. When it
analyses swap : T1→ T2, it infers ηp = Σ{?SWAP.!T1.?T2.end, ?LEAD.?ηq.end}
and ηq = ?T2.!T1.end as the protocols of p and q, respectively. The former selects
either options SWAP or LEAD and the latter offers both options.

If the coordinator is type-checked in isolation, then typing succeeds with any
η′: the coordinator can delegate any session. However, because of duality, the
typing of req-swp in the swap function implies that η′ = ηq and T1 = T2. Our
inference algorithm can type this program and derive the above session types.

Example 2.3 (A Database Library). In this example we consider the implemen-
tation of a library which allows clients to connect to a database.

let fun coord() =
let val p = acc-db ()

fun loop() = case p {
QRY: let val sql = recv p

val res = process sql
in send p res; loop ()

END: () }
in spawn coord; loop ()

in spawn coord;

let fun clientinit () =
let val con = req-db ()

fun query(sql) = sel-QRY con;
send con sql;
recv con

fun close () = sel-END con
in (query, close)

in eclient

The coordinator accepts connections from clients on channel db. If a con-
nection is established, after spawning a copy of the coordinator to serve other
clients, the coordinator enters a loop that serves the connected client. In this
loop it offers the client two options: QRY and END. If the client selects QRY, the
coordinator receives an SQL query, processes it (calling process : sql→ dbresult,
with these types are defined in the library), sends back the result, and loops. If
the client selects END the connection with the coordinator closes and the current
coordinator process terminates.

Function clientinit is exposed to the client, which can use it to request a con-
nection with the database coordinator. When called, it establishes a connection
con and returns two functions to the client: query and close. Then, the client
code eclient can apply the query function to an sql object and receive a dbresult
as many times as necessary, and then invoke close to close the connection. Using
our two-level inference system with recursion Sect. 7, we can infer the session
type of the coordinator’s endpoint p: µX.Σ{?QRY.?sql.!dbresult.X, ?END.end},
and check whether the client code eclient respects it.

This example is not typable with a substructural type system because query
and close share the same (linear) endpoint con. Moreover, in a monadic system
eclient will need to be converted to monadic form.

3 Syntax and Operational Semantics of MLS

Fig. 1 shows the syntax and operational semantics of MLS, a core of ML with
session communication. An expression can be one of the usual lambda expres-
sions or spawn e which evaluates e to a function and asynchronously applies it to
the unit value; it can also be case e {Li : ei}i∈I which, as we will see, implements
finite external choice. We use standard syntactic sugar for writing programs. A
system S is a parallel composition of closed expressions (processes).

The operational semantics of MLS are standard; here we only discuss session-
related rules. Following the tradition of binary session types [7], communication
between processes happens over dynamically generated entities called sessions
which have exactly two endpoints. Thus, MLS values contain a countably infinite
set of endpoints, ranged over by p. We assume a total involution (·) over this
set, with the property p 6= p, which identifies dual endpoints.

Exp: e ::= v
∣∣ (e, e)

∣∣ e e ∣∣ letx = e in e
∣∣ if e then e else e

∣∣ spawn e
∣∣ case e {Li : ei}i∈I

Sys: S ::= e
∣∣ S ‖ S

Val: v ::= x
∣∣ k ∈ Const

∣∣ (v, v)
∣∣ fnx⇒ e

∣∣ fun f(x) = e
∣∣ p∣∣ req-c

∣∣ acc-c
∣∣ send

∣∣ recv
∣∣ sel-L

∣∣ deleg
∣∣ resume

ECxt: E ::= [·]
∣∣ (E, e)

∣∣ (v,E)
∣∣ E e ∣∣ v E ∣∣ letx = E in e

∣∣ ifE then e else e∣∣ spawnE
∣∣ caseE {Li : ei}i∈I

RIft if tt then e1 else e2 ↪→ e1 RLet letx = v in e ↪→ e[v/x]
RIff if ff then e1 else e2 ↪→ e2 RFix (fun f(x) = e) v ↪→ e[fun f(x) = e/f][v/x]

RBeta E[e] ‖ S −→ E[e′] ‖ S if e ↪→ e′

RSpn E[spawn v] ‖ S −→ E[()] ‖ v () ‖ S
RInit E1[req-c ()] ‖ E2[acc-c ()] ‖ S −→ E1[p] ‖ E2[p] ‖ S if p, p fresh
RCom E1[send (p, v)] ‖ E2[recv p] ‖ S −→ E1[()] ‖ E2[v] ‖ S
RDel E1[deleg (p, p′)] ‖ E2[resume p] ‖ S −→ E1[()] ‖ E2[p′] ‖ S
RSel E1[sel-Lj p] ‖ E2[case p {Li : ei}i∈I] ‖ S −→ E1[()] ‖ E2[ej] ‖ S if j ∈ I

Fig. 1. MLS syntax and operational semantics.

A process can request (or accept) a new session by calling req-c (resp., acc-c)
with the unit value, which returns the endpoint (resp., dual endpoint) of a new
session. Here c ranges over an infinite set of global initialisation channels. To
simplify presentation, the language contains req-c and acc-c for each channel c.

Once two processes synchronise on a global channel and each receives a fresh,
dual endpoint (RInit reduction), they can exchange messages (RCom), delegate
endpoints (RDel) and offer a number of choices Li∈I , from which the partner
can select one (RSel). Here L ranges over a countably infinite set of choice
labels, and I is a finite set of natural numbers; Li denotes a unique label for
each natural number i and we assume sel-Li for each Li.

The next two sections present the two-level type system of MLS.

4 First Level Typing: ML Typing and Behaviours

Here we adapt and extend the type-and-effect system of Amtoft, Nielson and
Nielson [1] to session communication in MLS. A judgement C; Γ ` e : T . b
states that e has type T and behaviour b, under type environment Γ and con-
straint environment C. The constraint environment relates type-level variables
to terms and enables type inference. These components are defined in Fig. 2.

An MLS expression can have a standard type or an endpoint type Sesρ. Func-
tion types are annotated with a behaviour variable β. Type variables α are used
for ML polymorphism. As in [1], Hindley-Milner polymorphism is extended with
type schemas TS of the form ∀(~γ :C0). T , where γ ranges over variables α, β, ρ, ψ,
and C0 imposes constraints on the quantified variables with fv(C0) ⊆ {~γ}. Type
environments Γ bind program variables to type schemas; we let ∀(∅).T = T .

The rules of our type-and-effect system are shown in Fig. 3 which, as in
[1, Sec. 2.8], is a conservative extension of ML. This system performs both ML

Variables: α(Type) β(Behaviour) ψ(Session) ρ(Region)

T. Schemas: TS ::= ∀(~α~β~ρ~ψ : C). T Regions: r ::= l
∣∣ ρ

Types: T ::= Unit
∣∣ Bool

∣∣ Int
∣∣ T × T ∣∣ T β→ T

∣∣ Sesρ
∣∣ α

Constraints: C ::= T ⊆ T
∣∣ cfd(T)

∣∣ b ⊆ β ∣∣ ρ ∼ r ∣∣ c ∼ η ∣∣ c ∼ η ∣∣ η ./ η ∣∣ C,C ∣∣ ε
Behaviours: b ::= β

∣∣ τ ∣∣ b ; b
∣∣ b⊕ b ∣∣ recβ b

∣∣ spawn b
∣∣ push(l : η)∣∣ ρ!T

∣∣ ρ?T
∣∣ ρ!ρ

∣∣ ρ?l
∣∣ ρ!Li

∣∣ &
i∈I
{ρ?Li ; bi}

Type Envs: Γ ::= x : TS
∣∣ Γ, Γ ∣∣ ε

Fig. 2. Syntax of types, behaviours, constraints, and session types.

type checking (including type-schema inference), and behaviour checking (which
enables behaviour inference). Rules TLet, TVar, TIf, TConst, TApp, TFun,
TSpawn and the omitted rule for pairs perform standard type checking and
straightforward sequential (b1 ; b2) and non-deterministic (b1 ⊕ b2) behaviour
composition; τ is the behaviour with no effect.

Just as a type constraint T ⊆ α associates type T with type variable α, a
behaviour constraint b ⊆ β associated behaviour b to behaviour variable β. In-
tuitively, β is the non-deterministic composition of all its associated behaviours.
Rule TSub allows the replacement of behaviour b with variable β; such replace-
ment in type annotations yields a subtyping relation (C ` T <: T ′). Rules
TIns and TGen are taken from [1] and extend ML’s type schema instantiation
and generalisation rules, respectively. Because we extend Hindley-Milner’s let
polymorphism, generalisation (TGen) is only applied to the right-hand side ex-
pression of the let construct. The following definition allows the instantiation of
a type schema under a global constraint environment C. We write C ` C ′ when
C ′ is included in the reflexive, transitive, compatible closure of C.

Definition 4.1 (Solvability). ∀(~γ :C0). T is solvable by C and substitution σ
when dom(σ) ⊆ {~γ} and C ` C0σ.

In TRec, the communication effect of the body of a recursive function should
be confined, which means it may only use endpoints it opens internally. For
this reason, the function does not input nor return open endpoints or other
non-confined functions (C ` confd(T, T ′)). Although typed under Γ which may
contain endpoints and non-confined functions, the effect of the function body
is recorded in its behaviour. The second level of our system checks that if the
function is called, no endpoints from its environment are affected. It also checks
that the function fully consumes internal endpoints before it returns or recurs.

A type T is confined when it does not contain any occurrences of the endpoint
type Sesρ for any ρ, and when any b in T is confined. A behaviour b is confined
when all of its possible behaviours are either τ or recursive.

To understand rule TEndp, we have to explain region variables (ρ), which are
related to region constants through C. Region constants are simple program an-
notations l (produced during pre-processing) which uniquely identify the textual

TLet
C; Γ ` e1 : TS . b1 C; Γ, x : TS ` e2 : T . b2

C; Γ ` letx = e1 in e2 : T . b1 ; b2

TVar
C; Γ ` x : Γ (x) . τ

TIf
C; Γ ` e1 : Bool . b1 C; Γ ` ei : T . bi (i∈{1,2})

C; Γ ` if e1 then e2 else e3 : T . b1 ; (b2 ⊕ b3)

TConst
C; Γ ` k : typeof (k) . τ

TApp

C; Γ ` e1 : T ′ β→ T . b1 C; Γ ` e2 : T ′ . b2

C; Γ ` e1 e2 : T . b1 ; b2 ;β

TFun
C; Γ, x : T ` e : T ′ . β

C; Γ ` fnx⇒ e : T
β→ T ′ . τ

TMatch
C; Γ ` e : Sesρ . b C; Γ ` ei : T . bi (i∈I)

C; Γ ` case e {Li : ei}i∈I : T . b ; &
i∈I
{ρ?Li ; bi}

TEndp
C; Γ ` pl : Sesρ . τ C ` ρ ∼ l

TSpawn
C; Γ ` e : Unit

β→ Unit . b

C; Γ ` spawn e : Unit . b ; spawnβ

TSub
C; Γ ` e : T . b

C; Γ ` e : T ′ . β

C ` T <: T ′

C ` b ⊆ β

TRec
C; Γ, f : T

β→ T ′, x : T ` e : T ′ . b

C; Γ ` fun f(x) = e : T
β→ T ′ . τ

C ` confd(T, T ′)
C ` recβ b ⊆ β

TIns
C; Γ ` e : ∀(~γ : C0).T . b

C; Γ ` e : Tσ . b

dom(σ) ⊆ {~γ}
∀(~γ : C0). T is solvable by C and σ

TGen
C ∪ C0; Γ ` e : T . b

C; Γ ` e : ∀(~γ : C0).T . b

{~γ} ∩ fv(Γ,C, b) = ∅
∀(~γ : C0).T is solvable by C and some σ

Fig. 3. Type-and-Effect System for MLS Expressions (omitting rule for pairs).

sources of endpoints. We thus type an extended MLS syntax

Values: v ::= . . .
∣∣ pl ∣∣ req-cl

∣∣ acc-cl
∣∣ resumel

If a sub-expression has type Sesρ and it evaluates to a value pl, then it must be
that C ` ρ ∼ l, denoting that p was generated from the code location identified
by l. This location will contain one of req-cl, acc-cl, or resumel. These primitive
functions (typed by TConst) are given the following type schemas.

req-cl : ∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ).Unit
β→ Sesρ

acc-cl : ∀(βρψ : push(l : ψ) ⊆ β, ρ ∼ l, c ∼ ψ).Unit
β→ Sesρ

resumel : ∀(βρρ′ : ρ?l ⊆ β, ρ′ ∼ l). Sesρ
β→ Sesρ

′

An application of req-cl starts a new session on the static endpoint l. To type
it, C must contain its effect push(l : ψ) ⊆ β, where ψ is a session variable,
representing the session type of l. At this level session types are ignored (hence
the use of a simple ψ); they become important in the second level of our typing
system. Moreover, C must record that session variable ρ is related to l (ρ ∼ l)
and that the “request” endpoint of channel c has session type ψ (c ∼ ψ). The

only difference in the type schema of acc-cl is that the “accept” endpoint of c
is related to ψ (c ∼ ψ). Resume receives an endpoint (ρ′) over another one (ρ),
recorded in its type schema (ρ?ρ′ ⊆ β); ρ is an existing endpoint but ρ′ is treated
as an endpoint generated by resumel, hence the constraint ρ′ ∼ l.

The following are the type schemas of the rest of the constant functions.

recv :∀(αβρ : ρ?α ⊆ β, cfd(α)).Sesρ
β→ α

send :∀(αβρ : ρ!α ⊆ β, cfd(α)). Sesρ × α β→ Unit

deleg :∀(βρρ′ : ρ!ρ′ ⊆ β). Sesρ × Sesρ
′ β→ Unit

sel-L :∀(βρ : ρ?L ⊆ β). Sesρ
β→ Unit

These record input (ρ?α), output (ρ!α), delegation (ρ!ρ′), or selection (ρ!Li)
behaviour. For input and output the constraint cfd(α) must be in C, recording
that the α can be instantiated only with confined types.

5 Second Level Typing: Session Types

Session types describe the communication protocols of endpoints; their syntax is:

η ::= end
∣∣ !T.η

∣∣ ?T.η
∣∣ !η.η

∣∣ ?η.η
∣∣ ⊕
i∈I
{Li : ηi}

∣∣ &{Li : ηi}
i∈(I1,I2)

∣∣ ψ
A session type is finished (end) or it can describe further interactions: the input
(?T.η) or output (!T.η) of a confined value T , or the delegation (!η′.η) or resump-
tion (?η′.η) of an endpoint of session type η′, or the offering of non-deterministic
selection (⊕{Li : ηi}i∈I) of a label Li, signifying that session type ηi is to be
followed next.

Moreover, a session type can offer an external choice &{Li : ηi}i∈(I1,I2) to
its communication partner. Here I1 contains the labels that the process must be
able to accept and I2 the labels that it may accept. We require that I1 and I2
are disjoint and I1 is not empty. Although a single set would suffice, the two sets
make type inference deterministic and independent of source code order.

We express our session typing discipline as an abstract interpretation se-
mantics for behaviours shown in Fig. 4. It describes transitions of the form
∆ � b −→C ∆′ � b′, where b, b′ are behaviours. The ∆ and ∆′ are stacks on which
static endpoint labels together with their corresponding session types (l : η)
can be pushed and popped. Inspired by Castagna et al. [3], in the transition
∆ � b −→C ∆′ � b′, behaviour b can only use the top label in the stack to com-
municate, push another label on the stack, or pop the top label provided its
session type is end. This stack principle gives us a partial lock freedom property
(Thm. 5.2).

Rule End from Fig. 4 simply removes a finished stack frame, and rule Beta

looks up behaviour variables in C; Plus chooses one of the branches of non-
deterministic behaviour. The Push rule extends the stack by adding one more
frame to it, as long as the label has not been added before on the stack (see
Ex. 5.2). Rules Out and In reduce the top-level session type of the stack by an
output and input, respectively. The requirement here is that the labels in the

End : (l : end) ·∆ � b −→C ∆ � b

Beta : ∆ � β −→C ∆ � b if C ` b ⊆ β
Plus : ∆ � b1 ⊕ b2 −→C ∆ � bi if i ∈ {1, 2}
Push : ∆ � push(l : η) −→C (l : η) ·∆ � τ if l 6∈ ∆.labels

Out : (l : !T.η) ·∆ � ρ!T ′ −→C (l : η) ·∆ � τ if C ` ρ ∼ l, T ′ <: T

In : (l : ?T.η) ·∆ � ρ?T ′ −→C (l : η) ·∆ � τ if C ` ρ ∼ l, T <: T ′

Del : (l : !ηd.η) · (ld : η′d) ·∆ � ρ!ρd
−→C (l : η) ·∆ � τ if C ` ρ ∼ l, ρd ∼ ld, η′d <: ηd

Res : (l : ?ηr.η) � ρ?lr −→C (l : η) · (lr : ηr) � τ if (l 6= lr), C ` ρ ∼ l
ICh : (l :⊕

i∈I
{Li : ηi}) ·∆ � ρ!Lj −→C (l : ηj) ·∆ � τ if (j ∈ I), C ` ρ ∼ l

ECh : (l : &{Li : ηi}
i∈(I1,I2)

) ·∆ � &
j∈J
{ρ?Lj ; bj}

−→C (l : ηk) ·∆ � bk if k ∈ J, C ` ρ ∼ l,
I1 ⊆ J ⊆ I1 ∪ I2

Rec : ∆ � recβ b −→C ∆ � τ if ε � b ⇓C′ ,
C′ = (C\(recβ b ⊆ β))∪(τ ⊆ β)

Spn : ∆ � spawn b −→C ∆ � τ if ε � b ⇓C
Seq : ∆ � b1; b2 −→C ∆′ � b′1; b2 if ∆ � b1 −→C ∆′ � b′1

Tau : ∆ � τ ; b −→C ∆ � b

Fig. 4. Abstract Interpretation Semantics.

stack and the behaviour match, the usual subtyping [4] holds for the communi-
cated types, and that the communicated types are confined. Note that sending
confined (recursive) functions does not require delegation of endpoints.

Transfer of endpoints is done by delegate and resume (rules Del and Res).
Delegate sends the second endpoint in the stack over the first; resume mimics
this by adding a new endpoint label in the second position in the stack. Resume
requires a one-frame stack to guarantee that the two endpoints of the same
session do not end up in the same stack, thus avoiding deadlock [3]. If we aban-
don the partial lock freedom property guaranteed by our type system, then the
conditions in Res can be relaxed and allow more than one frame.

A behaviour reduces an internal choice session type by selecting one of its la-
bels (ICh). A behaviour offering an external choice is reduced non-deterministically
to any of its branches (ECh). The behaviour must offer all active choices (I1 ⊆ J)
and all behaviour branches must be typable by the session type (J ⊆ I1 ∪ I2).

As we previously explained, recursive functions in MLS must be confined.
This means that the communication effect of the function body is only on end-
points that the function opens internally, and the session type of these endpoints
is followed to completion (or delegated) before the function returns or recurs.
This is enforced in Rule Rec, where recβ b must have no net effect on the stack,
guaranteed by ε � b ⇓C′ . Here C ′ = (C\(recβ b ⊆ β))∪(τ ⊆ β) is the original
C with constraint (recβ b ⊆ β) replaced by (τ ⊆ β) (cf., Def. 5.1). This update

(a) let val (p1, p2) = (req-cl1 , req-dl2)
val p3 = if e then p1 else p2

in send p3 tt

(b) let fun f = req-cl

val p1 = f ()
in send p1 1;

let val p2 = f () in send p1 2;

Fig. 5. Examples of aliasing

of C prevents the infinite unfolding of recb β. Spawned processes must also be
confined (Spn). We work with well-formed constraints:

Definition 5.1 (Well-Formed Constraints). C is well-formed if:

1. Type-Consistent: for all type constructors tc1, tc2, if (tc1(~t1) ⊆ tc2(~t2)) ∈ C,
then tc1 = tc2, and for all t1i ∈ ~t1 and t2i ∈ ~t2, (t1i ⊆ t2i) ∈ C.

2. Region-Consistent: if C ` l ∼ l′ then l = l′.
3. Behaviour-Compact: behaviour constraints cycles contain a (recβ b ⊆ β) ∈ C;

also if (recβ b ⊆ β′) ∈ C then β = β′ and ∀(b′ ⊆ β) ∈ C, b′ = recβ b.
4. Well-Confined: if C ` confd(T) then T 6= Sesρ; also if C ` confd(b) then

b 6∈ {ρ!T, ρ?T, ρ!ρ, ρ?l, ρ!Li, &
i∈I
{ρ?Li ; bi}}.

The first and fourth conditions are straightforward. The third condition dis-
allows recursive behaviours through the environment without the use of a recβ b
effect. All well-typed MLS programs contain only such recursive behaviours be-
cause recursion is only possible through the use of a recursive function. The sec-
ond part of the condition requires that there is at most one recursive constraint
in the environment using variable β. This is necessary for type preservation and
decidability of session typing. The second condition of Def. 5.1 requires that
only endpoints from a single source can flow in each ρ, preventing aliasing of
endpoints generated at different source locations.

Example 5.1 (Aliasing of Different Sources). Consider the program in Fig. 5 (a).
Which endpoint flows to p3 cannot be statically determined and therefore the
program cannot yield a consistent session type for channels c and d. The program
will be rejected in our framework because p3 has type Sesρ and from the constrain
environment C ` ρ ∼ l1, ρ ∼ l2, which fails Def. 5.1.

Because endpoints generated from the same source code location are iden-
tified in our system, stacks are treated linearly : an endpoint label l may only
once be pushed onto a stack. Every stack ∆ contains an implicit set of the labels
∆.labels to record previously pushed labels.

Example 5.2 (Aliasing From Same Source). Consider the program in Fig. 5 (b)
where endpoint p1 has type Sesρ, with C ` ρ ∼ l. The program has behaviour
push(l : η); ρ!Int; push(l : η); ρ!Int; τ . Label l is pushed on the stack twice and the
behaviour complies with the session type η = !Int.end. However the program
does not respect this session type because it sends two integers on p1 and none
on p2. Our system rejects this program due to the violation of stack linearity.

Our system also rejects the correct version of the program in Fig. 5 (b), where
the last send is replaced by send p2 2. This is because the label l associated with
the variable ρ of a type Sesρ is control flow insensitive. Existing techniques can
make labels control flow sensitive (e.g., [14, 15]).

Using the semantics of Fig. 4 we define the following predicate which requires
behaviours to follow to completion or delegate all (l : η) frames in a stack.

Definition 5.2 (Strong normalization). ∆ � b ⇓C ~∆′ when for all b′, ∆′

such that ∆ � b −→∗C ∆′ � b′ 6→C we have b′ = τ and ∆′ ∈ { ~∆′}. We write
∆ � b ⇓C when ∆ � b ⇓C ε, where ε is the empty stack.

Lastly, session types on dual session endpoints (c ∼ η, c ∼ η′) must be dual
(C ` η ./ η′) The definition of duality is standard, with the exception that
internal choice is dual to external choice only if the labels in the former are
included in the active labels in the latter.

Definition 5.3 (Valid Constraint Environment). C is valid if there exists
a substitution σ of variables ψ with closed session types, such that Cσ is well-
formed and for all (c ∼ η), (c ∼ η′) ∈ Cσ we have C ` η ./ η′.

Combining the Two Levels

The key property here is well-stackedness, the fact that in a running system
where each process has a corresponding stack of endpoints, there is a way to
repeatedly remove pairs of endpoints with dual session types from the top of
two stacks, until all stacks are empty.

Definition 5.4 (Well-stackedness). C ws S is the least relation satisfying:

C ws ε

C ws S,
(
∆ � b, e

)
,
(
∆′ � b′, e′

)
C ` η ./ η′ p, p] ∆,∆′,S

C ws S,
(
(pl : η) ·∆ � b, e

)
,
(
(pl

′
: η′) ·∆′ � b′, e′

)
Note that this does not mean that programs are deterministic. Multiple pairs

of endpoints may be at the top of a set of stacks. Duality of endpoints guaran-
tees that communications are safe; the ordering of endpoints in removable pairs
implies the absence of deadlocks.

We let P , Q range over tuples of the form
(
∆ � b, e

)
and S over sequences of

such tuples. In this section stack frames (pl : η) store both endpoints and their

labels. We write C
−−−−−−−→(
∆ � b, e

)
if C is well-formed and valid, (C; ∅ `

−−−−−→
e : T . b),

and (
−−−→
∆ � b ⇓C), for some

−→
T . We write C ws S if

−→
∆ is well-stacked. Well-typed

systems enjoy session fidelity and preserve typing and well-stackedness.

Theorem 5.1. Let S =
−−−−−→
∆ � b, e and C S and C ws S and −→e −→−→e ′; then

there exist
−→
∆ ′,
−→
b ′ such that S ′ =

−−−−−−−−→(
∆′ � b′, e′

)
and:

1. C S ′ (Type Preservation)

2.
−−−→
∆ � b→∗C

−−−−→
∆′ � b′ (Session Fidelity)

3. C ws S ′ (Well-Stackedness Preservation)

Session fidelity and well-stackedness preservation imply communication safety,
since the former guarantees that processes are faithful to session types in the
stacks, while the latter that session types are dual for each pair of open end-
points p and p̄. Moreover, well-stackedness implies deadlock freedom. P depends
on Q if the endpoint at the top of P ’s stack has dual endpoint in Q.

Lemma 5.1 (Deadlock Freedom). C ws S; dependencies in S are acyclic.

Type soundness is more technical. We divide system transitions to communi-
cation transitions between processes (−→c) and internal transitions (−→i). Let
S −→c S ′ (S −→i S ′) when S−→S′, derived by Rule RInit, RCom, RDel or
RSel of Fig. 1 (resp., any other rule); S =⇒c S

′ when S −→∗i −→c−→∗i S′.

Theorem 5.2 (Type Soundness). Let C S and C ws S. Then

1. S =⇒c S ′, or
2. S −→∗i (F ,D,W,B) such that:

Finished processes, F : ∀P ∈ F . P =
(
ε � τ, v

)
, for some v;

Diverging processes, D: ∀P ∈ D. P −→∞i ;
Waiting proc., W: ∀P ∈ W. P =

(
∆ � b, E[e]

)
and e ∈ {req-cl, acc-cl};

Blocked processes, B: ∀P ∈ B. P =
(
∆ � b, E[e]

)
and e ∈ {send v, recv v,

deleg v, resume v, sel-Lv, case v {Li ⇒ ei}i∈I} and P transitively depends
on a process in D ∪W.

A well-typed and well-stacked MLS system will either be able to perform a com-
munication, or, after finite internal steps, it will reach a state where some pro-
cesses are values (F), some internally diverge (D), some are waiting for a partner
process to open a session (W), and some are blocked on a session communica-
tion (B). Crucially, in states where communication is not possible, B transitively
depends on D ∪ W. Thus, in the absence of divergence and in the presence of
enough processes to start new sessions, no processes can be blocked; the system
will either perform a communication or it will terminate (partial lock freedom).

Corollary 5.1 (Partial Lock Freedom). If C S, C ws S, and S 6=⇒c and
S −→∗i (F , ∅, ∅,B) then B = ∅.

6 Inference Algorithm

We use three inference algorithms, W, SI and D. The first infers functional
types and communication effects and corresponds to the first level of our type
system. The other two infer session types from the abstract interpretation rules
of Fig. 4 (SI) and the duality requirement of Def. 5.3 (D), corresponding to the
second level of the type system.

Algorithm W is a straightforward adaptation of the homonymous algorithm
from [1]: given an expression e, W calculates its type t, behaviour b and con-
straints set C; no session information is calculated. W generates pairs of fresh
constraints c ∼ ψ and c ∼ ψ′ for each global channel c in the source program; ψ
and ψ′ are unique. Results of W’s soundness and completeness follow from [1].

For all constraints (c ∼ ψ) ∈ C, Algorithm SI infers a substitution σ and a
refined set C ′ such that ε � bσ ⇓C′ ε. The substitution only maps ψ variables to
session types. The final C ′ is derived from C by applying σ and possibly adding
more type constraints of the form (T ⊆ T ′). The core of this algorithm is the
abstract interpreter MC, which explores all possible transitions from ε � b.

Algorithm MC is designed in a continuation-passing style, using a continu-
ation stack K ::= ε

∣∣ b ·K.

As transition paths are explored, previously discovered branches of internal
and external choices in session types may need to be expanded. For example,
if Algorithm MC encounters a configuration (l : ⊕{Li : ηi}i∈I) � l!Lj where
j 6∈ I, the inference algorithm needs to add the newly discovered label Lj to the
internal choice on the stack.

To do this, internal and external choices are removed from the syntax of
sessions, and replaced with special variables ψin and ψex. These variables are
bound by unique choice constraints, extending the syntax of constraints (Fig. 2):

C ::= . . .
∣∣ ⊕{Li : ηi}i∈I ∼ ψin

∣∣ &{Li : ηi}i∈(I1,I2) ∼ ψex

MC updates ψin and ψex constraints in C with newly discovered branches. For
example it may add new labels to an internal choice, or move active labels to
inactive in an external choice.

We now give more detail for some inference steps of AlgorithmMC. The full
algorithm can be found in an online technical report1. AlgorithmMC terminates
successfully when all sessions on the stack have terminated, the input behaviour
is τ and the continuation stack is empty:

MC
(
∆ � τ, C, ε

)
= (σ, Cσ)

if σ = finalize ∆

When this clause succeeds, ∆ may be empty or it may contain frames of the
form (l : ψ) or (l : end). The helper function finalise ∆ returns a substitution σ
that maps all such ψ’s to end. If this is not possible (i.e., a session on ∆ is not
finished) finalise raises an error.

New frames are pushed on the stack when the behaviour is push(l : η):

MC
(
∆ � push(l : η), C, K

)
= (σ2σ1, C2)

if (σ1,∆1) = checkFresh(l,∆)
and (σ2, C2) = MC

(
(l : ησ1) ·∆1 � τ, Cσ1, Kσ1

)
where checkFresh checks that l has never been in ∆.

When the behaviour is an operation that pops a session from the stack, such
as a send (l!T), MC looks up the top frame on the stack, according to the
stack principle. There are two cases to consider: either the top frame contains a
fresh variable ψ, or some type has been already inferred. The algorithm here is:

1 Spaccasassi, C., Koutavas, V.: Type-Based Analysis for Session Inference. ArXiv
e-prints (Oct 2015), http://arxiv.org/abs/1510.03929v3.

http://arxiv.org/abs/1510.03929v3

MC
(
(l :ψ) ·∆ � ρ!T, C, K

)
= (σ2σ1, C2)

if C ` l ∼ ρ
and σ1 = [ψ 7→ !α.ψ′] where α,ψ′ fresh
and (σ2, C2) =MC

(
(l :ψ′) ·∆σ1 � τ, Cσ1 ∪ {T ⊆ α}, Kσ1

)
MC

(
(l : !α.η) ·∆ � ρ!T, C, K

)
=MC

(
(l : η) ·∆ � τ, C ∪ {T ⊆ α}, K

)
if C ` l ∼ ρ

In the first case,MC checks that ρ in the behaviour corresponds to l at the top
of the stack. It then produces the substitution [ψ 7→ !α.ψ′], where α and ψ′ are
fresh, and adds (T ⊆ α) to C. The second case produces no substitution.

The clauses for delegation are similar:

MC
(
(l :ψ) · (ld : ηd) ·∆ � ρ!ρd, C, K

)
= (σ2σ1, C2)

if C ` l ∼ ρ and C ` ld ∼ ρd
and σ1 = [ψ 7→ !ηd.ψ

′] where ψ′ fresh
and (σ2, C2) =MC

(
(l :ψ′) ·∆σ � τ, Cσ1, Kσ1

)
MC

(
(l : !ηd.η) · (ld : η′d) ·∆ � ρ!ρd, C, K

)
= (σ2σ1, C2)

if C ` l ∼ ρ and C ` ld ∼ ρd
and (σ1, C1) = sub(η′d, ηd, C)
and (σ2, C2) =MC

(
(l : η) ·∆σ � τ, C1, Kσ1

)
The main difference here is that, in the second clause, the sub function checks
that C ` η′d <: ηd and performs relevant inference. Moreover, the input ∆ must
contain at least two frames (the frame below the top one is delegated).

The cases for receive, label selection and offer, and resume are similar (see
online report). In the cases for label selection and offering, the algorithm updates
the ψin and ψex variables, as discussed above. In the case of resume, the algorithm
checks that the stack contains one frame.

In behaviour sequencing and branching, substitutions are applied eagerly and
composed iteratively, and new constraints are accumulated in C:

MC
(
∆ � b1 ; b2, C, K

)
=MC

(
∆ � b1, C, b2 ·K

)
MC

(
∆ � b1 ⊕ b2, C, K

)
= (σ2σ1, C2)

if (σ1, C1) =MC
(
∆ � b1, C, K

)
and (σ2, C2) =MC

(
∆σ1 � b2σ1, C1, Kσ1

)
When a recursive behaviour recb β is encountered, Algorithm MC needs to

properly setup the input constraints C according to Rule Rec of Fig. 4:

MC(∆ � recβ b, C) = (σ2σ1, C2)
if C = C′] {b′ ⊆ β}
and (σ1, C1) =MC

(
ε � b, C′ ∪ {τ ⊆ β}, ε

)
and (σ2, C2) =MC

(
∆σ1 � τ, (C1\{τ ⊆ β}) ∪ ({b′ ⊆ β})σ1, Kσ1

)
Here the algorithm first calls MC on ε � b, checking that the recursion body b
is self-contained under C ′, in which the recursion variable β is bound to τ . This
update of C prevents the infinite unfolding of recb β. It then restores back the
constraint on β, applies the substitution σ1, and continues inference.

The clause for spawn b is similar, except that C is unchanged. Variables β are
treated as the internal choice of all behaviours bi bound to β in C:

MC
(
∆ � β, C, K

)
=MC

(
∆ � b, C, K

)
where b =

⊕
{bi | ∃i. (bi ⊆ β) ∈ C}

Inference fails when MC reaches a stuck configuration ∆ � b other than
ε � τ , corresponding to an error in the session type discipline.

To prove termination of SI, we first define the translation JbKg
C , that re-

places β variables in b with the internal choice
⊕
{ bi | ({bi ⊆ β}) ∈ C }. Due to

behaviour-compactness (Def. 5.1), JbKg
C is a finite ground term, i.e. a finite term

without β variables. Except for Rule Beta, transitions in Fig. 4 never expand b;
they either consume ∆ or b. Since JbKg

C is finite when C is well-formed, ε � JbKg
C

generates a finite state space and Algorithm MC always terminates.
Similar to ML type inference, the worst-case complexity ofMC is exponential

to program size: MC runs in time linear to the size of JbKg
C , which in the worst

case is exponentially larger than b, which is linear to program size. The worst case
appears in pathological programs where, e.g., each function calls all previously
defined functions. We intend to explore whether this is an issue in practice,
especially with an optimised dynamic programming implementation of MC.

Soundness and completeness of SI follow from the these properties of MC.
Lemma 6.1 (Soundness of MC). Let C be well-formed and MC(∆ � b, C) =
(σ1, C1); then ∆σ1 = ∆′ and ∆′ � bσ1 ⇓C1

.

Lemma 6.2 (Completeness ofMC). Let C be well-formed and (∆ � b)σ ⇓C ;
then MC(∆ � b, C0) = (σ1, C1) and ∃σ′ such that C ` C1σ

′ and ∀ψ ∈ dom(σ),
C ` σ(ψ) <: σ′(σ1(ψ)).

Completeness states that MC computes the most general constraints C1 and
substitution σ1, because, for any C and σ such that (∆ � b)σ type checks, C
specialises C1 and σ is an instance of σ1, after some extra substitution σ′ of
variables (immaterial for type checking).

Algorithm D collects all c ∼ η1 and c̄ ∼ η2 constraints in C ′, generates
duality constraints η1 ./ η2 and iteratively checks them, possibly substituting ψ
variables. It ultimately returns a C ′′ which is a valid type solution according to
Def. 5.3. Soundness and completeness of Algorithm D is straightforward.

We now show how SI infers the correct session types for Ex. 2.1 from Sect. 2.
We assume that Algorithm W has already produced a behaviour b and con-
straints C for this example. For clarity, we simplify b and C: we remove spurious
τs from behaviour sequences, replace region variables ρ with labels (only one
label flows to each ρ), and perform simple substitutions of β variables.

Example 6.1 (A Swap Service).
There are three textual sources of endpoints in this example: the two occur-

rences of acc-swp in coord, and req-swp in swap. A pre-processing step automat-
ically annotates them with three unique labels l1, l2 and l3. Algorithm W infers
b and C for Ex. 2.1; the behaviour b (simplified) is:

spawn (βcoord); spawn (βswap); spawn (βswap)

In this behaviour three processes are spawned: one with a βcoord behaviour,
and two with a βswap behaviour. The behaviour associated to each of these
variables is described in C, along with other constraints:

1. recβcoord
(push(l1 :ψ1); l1?α1; push(l2 :ψ1); l2?α2; l2!α1; l1!α2);βcoord ⊆ βcoord

2. push(l3 : ψ2); l3!Int; l3?α3 ⊆ βswap
3. swap ∼ ψ1

4. swap ∼ ψ2

The above behaviour and environment are the inputs to Algorithm SI, im-
plementing session type inference according to the second level of our frame-
work. The invocation SI(b, C) calls MC

(
ε � b, C, ε

)
, where the first ε is the

empty endpoint stack ∆ and the second ε is the empty continuation stack.
Behaviour b is decomposed as b = K[b′], where b′ = spawn (βcoord) and K
is the continuation []; spawn (βswap); spawn (βswap). The algorithm thus calls
MC

(
ε � spawn (βcoord), C, K

)
, which, after replacing βcoord and unfolding its

inner recursive behaviour becomes:

MC
(
ε � push(l1 : ψ1); l1?α1; push(l2 : ψ1); l2?α2; l2!α1; l1!α2;βcoord, C1, ε

)
Here C1 is equal to C above, with the exception of replacing Constraint 1 with

the constraint (τ ⊆ βcoord). Inference is now straightforward: the frame (l1 : ψ1)
is first pushed on the endpoint stack. From behaviour l1?α1 the algorithm applies
substitution [ψ1 7→?α4.ψ4], where ψ4 and α4 are fresh, and generates constraint
(α4 ⊆ α1) obtaining C2. We thus get:

MC
(
(l1 : ψ4) � push(l2:?α4.ψ4); l2?α2; l2!α1; l1!α2;βcoord, C2, ε

)
After the next push, the endpoint stack becomes (l2 :?α4.ψ4) · (l1 : ψ4). The

next behaviour l2?α2 causes MC to create constraint (α4 ⊆ α2) obtaining C3,
and to consume session ?α4 from the top frame of the endpoint stack.

MC
(
(l2 : ψ4) · (l1 : ψ4) � l2!α1; l1!α2;βcoord, C3, ε

)
Because of l2!α1, MC generates [ψ3 7→ !α5.ψ5] and (α1 ⊆ α5) obtaining C4.

MC
(
(l2 : ψ5) · (l1 :!α5.ψ5) � l1!α2;βcoord, C4, ε

)
Since l1 in the behaviour and l2 at the top of the endpoint stack do not match,
MC infers that ψ5 must be the terminated session end. Therefore it substitutes
[ψ5 7→ end] obtaining C5. Because of the substitutions, C5 contains swap ∼
?α4.!α5.end. After analysing βswap,MC produces C6 where swap ∼ !Int.!α6.end.

During the above executionMC verifies that the stack principle is respected
and no endpoint label is pushed on the stack twice. Finally the algorithm calls
D(C6) which performs a duality check between the constraints of swap and
swap, inferring substitution [α4 7→ Int, α6 7→ α5]. The accumulated constraints
on type variables α give the resulting session types of the swap channel endpoints:
(swap ∼?Int.!Int.end) and (swap ∼!Int.?Int.end).

7 A Proposal for Recursive Session Types

The system we have presented does not include recursive session types. Here
we propose an extension to the type system with recursive types. The inference
algorithm for this extension is non-trivial and we leave it to future work.

In this extension, a recursive behaviour may partially use a recursive session
type and rely on the continuation behaviour to fully consume it. First we add
guarded recursive session types: η ::= . . .

∣∣ µX.η ∣∣ X. The first level of our type
system remains unchanged, as it is parametric to session types, and already
contains recursive functions and behaviours.

A recursive behaviour recβ b operating on an endpoint l with session type
µX.η may: (a) run in an infinite loop, always unfolding the session type; (b)
terminate leaving l at type end; (c) terminate leaving l at type µX.η. Behaviour
b may have multiple execution paths, some terminating, ending at τ , and some
recursive, ending at a recursive call β. They all need to leave l at the same type,
either end or µX.η; the terminating paths of b determine which of the two session
types l will have after recβ b. If b contains no terminating paths then we assume
that l is fully consumed by recβ b and type the continuation with l at end.

To achieve this, we add a stack environment D in the rules of Fig. 4, which
maps labels l to stacks ∆. If ∆1 = (l : µX.η), we call an l-path from ∆1 � b1 any
finite sequence of transitions such that ∆1 � b1 →C,D . . .→C,D ∆n � bn 6→C,D.
A l-path is called l-finitary if there is no bi = τ l for any configuration i in
the series; otherwise we say that the path is l-recursive. We write (l : µX.η) �
b ⇓fin

C,D ∆′ when the last configuration of all l-finitary paths from (l : µX.η) � b
is ∆′ � τ . Similarly, we write (l : µX.η) � b ⇓rec

C,D ∆′ when the last configuration

of all l-recursive paths from (l : µX.η) � b is ∆′ � τ l. When no l− paths from
(l : µX.η) � b is l-finitary, we stipulate (l : µX.η) � b ⇓fin

C,D (l : end) holds. We
add the following rules to those of Fig. 4.

Rec2
(l : µX.η) � b ⇓fin

C′,D′ ∆′

(l : µX.η) � b ⇓rec
C′,D′ ∆′

(l :µX.η) ·∆ � recβ b→C,D ∆′ ·∆ � b′

∆′ ∈ {(l : end), (l : µX.η)}
C ′ = (C\(recβ b ⊆ β))∪(τ l ⊆ β)
D′ = D[l 7→ ∆′]

RCall

(l : µX.η) � τ l →C,D D(l) � τ

Unf
(l : η[X 7→ µX.η]) ·∆ � b→C,D ∆′ � b′

(l :µX.η) ·∆ � b→C,D ∆′ � b′

Rule Rec2 requires that both l-finitary and l-recursive paths converge to
the same stack ∆′, either (l : end) or (l : µX.η). In this rule, similarly to rule
Rec in Fig. 4, we replace the recursive constraint (recβ b ⊆ β) with (τ l ⊆ β),
representing a trivial recursive call of β. This guarantees that all l-paths have
a finite number of states. The D environment is extended with l 7→ ∆′, used
in Rule RCall to obtain the session type of l after a recursive call. Rule Unf

simply unfolds a recursive session type.

8 Related Work and Conclusions

We presented a new approach for adding binary session types to high-level pro-
gramming languages, and applied it to a core of ML with session communication.
In the extended language our system checks the session protocols of interesting
programs, including one where pure code calls library code with communica-
tion effects, without having to refactor the pure code (Ex. 2.3). Type soundness
guarantees partial lock freedom, session fidelity and communication safety.

Our approach is modular, organised in two levels, the first focusing on the
type system of the source language and second on typing sessions; the two levels
communicate through effects. In the fist level we adapted and extended the work
of Amtoft, Nielson and Nielson [1] to session communication, and used it to ex-
tract the communication effect of programs. In the second level we developed
a session typing discipline inspired by Castagna et al. [3]. This modular ap-
proach achieves a provably complete session inference for finite sessions without
programmer annotations.

Another approach to checking session types in high-level languages is to use
substructural type systems. For example, Vasconcelos et al. [18] develop such
a system for a functional language with threads, and Wadler [19] presents a
linear functional language with effects. Type soundness in the former guarantees
session fidelity and communication safety, and in the latter also lock freedom
and strong normalisation. Our system is in between these two extremes: lock
freedom is guaranteed only when processes do not diverge and their requests for
new sessions are met. Other systems give similar guarantees (e.g., [3, 16]).

Toninho et al. [16] add session-typed communication to a functional language
using a monad. Monads, similar to effects, cleanly separate session communica-
tion from the rest of the language features which, unlike effects, require parts
of the program to be written in a monadic style. Pucella and Tov [13] use an
indexed monad to embed session types in Haskell, however with limited endpoint
delegation: delegation relies on moving capabilities, which cannot escape their
static scope. Our Ex. 2.2 is not typable in that system because of this. In [13]
session types are inferred by Haskell’s type inference. However, the programmer
must guide inference with expressions solely used to manipulate type structures.

Tov [17] has shown that session types can be encoded in a language with a
general-purpose substructural type system. Type inference alleviates the need for
typing annotations in the examples considered. Completeness of session inference
relies on completeness of inference in the general language, which is not clear.

Igarashi et al. [9] propose a reconstruction algorithm for finite types in the lin-
ear π calculus. Inference is complete and requires no annotations. Padovani [11]
extends this work to pairs, disjoint sums and regular recursive types.

Mezzina [10] gives an inference algorithm for session types in a calculus of
services. The type system does not support recursive session types and endpoint
delegation. It does allow, however to type replicated processes that only use
finite session types, similar to our approach.

Bibliography

[1] Amtoft, T., Nielson, H.R., Nielson, F.: Type and effect systems - behaviours
for concurrency. Imperial College Press (1999)

[2] Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions.
In: Gastin, P., Laroussinie, F. (eds.) CONCUR, LNCS, vol. 6269, pp. 222–
236. Springer (2010)

[3] Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Founda-
tions of session types. In: PPDP. pp. 219–230. ACM (2009)

[4] Gay, S., Hole, M.: Subtyping for session types in the pi calculus. Acta In-
formatica 42(2-3), 191–225 (2005)

[5] Gay, S., Vasconcelos, V.: Linear type theory for asynchronous session types.
Journal of Functional Programming 20(01), 19–50 (Jan 2010)

[6] Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR, LNCS,
vol. 715, pp. 509–523. Springer (1993)

[7] Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type
discipline for structured communication-based programming. In: Hankin,
C. (ed.) PLS (ESOP), LNCS, vol. 1381, pp. 122–138. Springer (1998)

[8] Hüttel, H., Lanese, I., Vasconcelos, V., Caires, L., Carbone, M., Deniélou, P.,
Padovani, L., Ravara, A., Tuosto, E., Vieira, H., Zavattaro, G.: Foundations
of session types and behavioural contracts. ACM Comp. Surv. To appear

[9] Igarashi, A., Kobayashi, N.: Type reconstruction for linear π-calculus with
I/O subtyping. Inf. Comput. 161(1), 1–44 (2000)

[10] Mezzina, L.G.: How to infer finite session types in a calculus of services
and sessions. In: Lea, D., Zavattaro, G. (eds.) Coordination Models and
Languages, LNCS, vol. 5052, pp. 216–231. Springer (2008)

[11] Padovani, L.: Type reconstruction for the linear π-calculus with composite
regular types. Logical Methods in Computer Science 11(4) (2015)

[12] Palsberg, J.: Type-based analysis and applications. In: PASTE. pp. 20–27.
ACM (2001)

[13] Pucella, R., Tov, J.A.: Haskell session types with (almost) no class. In:
Haskell Symposium. pp. 25–36. ACM (2008)

[14] Shivers, O.: Control-flow analysis of higher-order languages. Ph.D. thesis,
CMU (1991)

[15] Tofte, M., Talpin, J.: Implementation of the typed call-by-value lambda-
calculus using a stack of regions. In: POPL. pp. 188–201. ACM (1994)

[16] Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and
sessions: A monadic integration. In: Felleisen, M., Gardner, P. (eds.) PLS
(ESOP), LNCS, vol. 7792, pp. 350–369. Springer (2013)

[17] Tov, J.: Practical Programming with Substructural Types. Ph.D. thesis,
Northeastern University (2012)

[18] Vasconcelos, V., Gay, S., Ravara, A.: Type checking a multithreaded func-
tional language with session types. Th. Computer Sc. 368(1-2), 64–87 (2006)

[19] Wadler, P.: Propositions as sessions. In: ICFP. pp. 273–286. ACM (2012)

	Type-Based Analysis for Session Inference (Extended Abstract)

