
SimAutoGen tool: Test vector generation from
large scale MATLAB/Simulink models

Manel TEKAYA1, Mohamed Taha BENNANI3, Nedra EBDELLI2, and Samir
BEN AHMED3

1 University of Carthage, TELNET Innovation Labs, Tunisia
2 University of Mannouba, Tunisia

3 University of Tunis El Manar, Tunisia

Abstract. Safety-critical applications require complete high-coverage
testing, which is not always guaranteed by model-based test genera-
tion techniques. Recently, automatic test generation by model checking
has been reported to improve the efficiency of test suites over conven-
tional test generation techniques. This study introduces our novel tool
SimAutoGen, which employs the model checking technique (as a formal
verification technique) to derive test vectors from Simulink models of
automotive controllers according to structural coverage metrics. Model
checking based on test generation is challenging for two reasons. First,
the input model to the model checker requires conversion into a formal
language. Second, standard tools have limited ability to generate test
vectors for large-scale Simulink models because the state-space explodes
with increasing model size. Our proposed SimAutoGen avoids the first
problem by expressing the properties to be verified, which correspond
to a structural coverage metric, in the Simulink language. To solve the
state-space explosion problem, we developed a new algorithm that slices
the Simulink model into hierarchical levels.

1 Motivation

Apart from providing formal verification, model checking efficiently and au-
tomatically derives test sequences from transition system models. Automatic
test generation exploits the capabilities of model checkers, generating counter-
examples with properties that violate the model [3]. As demonstrated by Gadhari
et al. [4], the model checking technique generates test cases from models more
efficiently than random generation and guided simulation. Motivated by this
study, we began developing SimAutoGen three years ago. We limit our scope
to Simulink models because Simulink is the most popular graphical modeling

This research and innovation work is conducted within a MOBIDOC thesis funded by
the European Union under the PASRI project. This work is a collaboration between
TELNET Innovation Labs and computer science and industrial systems laboratory.



language for embedded automotive software. Several model checking approaches
for test case generation from MATLAB/Simulink models have been already pro-
posed, including AutomotGen [4], SmartTestGen [9], and SAL (which integrate
the sal–atg tool for automatic test generation) [10] and the V&V Diversity plat-
form [8]. In [5], we compared the performances of SimAutoGen, sal–atg and the
SLDV test case generator. Model checkers are recognized for their flexibility and
ease of use [3]. However, we identified three main problems with model checkers:

1. Test case generation with model checkers is feasible only when the available
model can be handled by the model checker.

2. Model checkers are severely limited by the state-space explosion problem.
3. The properties of model checkers are usually expressed in Linear Temporal

Logic or Computational Tree Logic, which differ from the language of the
model.

Our tool SimAutoGen corrects these problems in the context of test vector
generation from Simulink models. First, SimAutoGen does not transform the
Simulink model. Second, we implement a new slicing algorithm inspired by the
method described in [7], which solves the state-space explosion problem in large-
scale Simulink models. Third, the properties to be verified are expressed in the
Simulink language, and specified according to the criterion of the structural
coverage model.

2 Structural model coverage criteria

The structural coverage metric can be utilized in two ways, as a test adequacy
criterion that decides whether a given test set completely or adequately complies
with that criterion, or as an explicit specification for test vector selection. In the
second case, the structural coverage metric behaves as a test selection criterion
(a generator for white-box tests), because the model and the code generated from
it are structurally similar. Thus, we can expect certain interrelations between
the attained model and the code coverage. Kirner [11] discussed the preservation
of code coverage at the model level. In our work, the structural coverage metrics
are employed as the test selection criterion. The test vectors generated from the
Simulink models by our model checking technique must conform to the struc-
tural coverage criterion. To accomplish this objective, we specify the Simulink
properties for three criteria of the control flow coverage (Condition, Decision,
and MC/DC), and the criterion of boundary value analysis. These four criteria
are briefly described below.

1. Condition coverage criterion: This criterion is determined by ensuring
the coverage of the Boolean inputs to the logical Simulink blocks.

2. Branch/Decision coverage criterion: According to this criterion, a block
with conditional behavior is covered provided that all conditional behavior
has been exercised at least once. For this purpose, SimAutoGen supports

2



the following blocks: Logical Operators, Switch, MultiportSwitch, Relational
Operator, and Saturation.

3. MC/DC coverage criterion: Chilenski [13] investigated three categories
of MC/DC: Unique Cause MC/DC, Unique Cause + Masking MC/DC, and
Masking MC/DC. Based on [13], we employ masking MC/DC. In masking
MC/DC, a basic condition is masked if varying its value cannot affect the
outcome of a decision due to structure of the decision and the value of other
conditions. Masking MC/DC for logical operator blocks is described in [14].
Besides the properties, each block needs an assumption to ensure generation
of the required test vector. In SimAutoGen, the masking MC/DC coverage
criterion is applied to the following blocks: Logical Operators, Switch, Mul-
tiportSwitch, Relational Operator, and Saturation.

4. Boundary value analysis: This criterion ensures data coverage of the
numeric type inputs to the mathematical Simulink blocks (Sum, Product,
Division, and Subtraction).

3 Software description

We present SimAutoGen, a tool that automatically generates test vectors from
MATLAB/Simulink models [2]. Our methodology is based on model checking
[6]. The main highlights of the tool, which is designed for automotive controller
testing, are listed below:

1. Determines structural coverage metrics at the model level corresponding to
the coverage metrics at the code level.

2. Generates test inputs by model checking, thus obtaining the model coverage
criteria.

3. Does not convert the Simulink model to an intermediate formal language
4. Specifies the test objectives (properties) as Simulink properties.
5. Avoids the state-space explosion problem during model checking by enhanc-

ing an existing solution.
6. Improves the reliability of testing, thus reducing the test phase cost of large-

scale Simulink models.

The current implementation of SimAutoGen uses the model checker Prover Plug-
In [12] integrated into the Simulink Design Verifier tool (SLDV)[1]. SimAutoGen
is implemented in Java (Eclipse Environment) and extracts the relevant informa-
tion from the Simulink models by a MATLAB script. This information is then
used for test generation.

4 Software Architecture

SimAutoGen is developed in the Eclipse and MATLAB environments. The porta-
bility of SimAutoGen is ensured by the Java script. A structural overview of
SimAutoGen is presented in Figure 1.

3



Fig. 1. SimAutoGen overview

User Interface : It is a Java Swing-based application that displays the in-
puts and outputs of SimAutoGen. The three inputs to SimAutoGen are (1) a
Simulink model (a .mdl file), (2) a user-selected structural coverage criterion,
and (3) a user-selected process. The three processes, Atomic testing, Unit test-
ing, and Slicing, will be detailed in the appendix. The Atomic testing feature
processes tiny Simulink models that require no slicing (i.e., single-output mod-
els). This feature is useful for a preliminary implementation testing. The Unit
testing feature slices large Simulink models with two or more outputs, and is
suitable for testing advanced implementations. The output of SimAutoGen is a
set of test vectors or a set of slices. Slicing can be selected for purposes other
than test vector generation.

Core elements : SimAutoGen is a new approach called MB–ATG [5], whose
structure is described in Figure 2. MB–ATG is implemented in three steps. The
first, second, and third steps handle large-scale Simulink models, automatic test
vector generation from each slice (according to the structural coverage criterion),
and integration of the test vectors generated from each slice, respectively. The
second step uses the model checker Prover Plug-In and expresses the properties
in the Simulink language. The property ψ and the assumption H as the model
M are implemented with Simulink operators called Proof objective and Assump-
tion, labeled P and A, respectively. Both operators are accessible through the
SLDV library. In the third step, redundant test vectors are eliminated from the
integration.

4



Fig. 2. Structure of MB–ATG

SimAutoGen implements two MB–ATG components: large-scale Simulink
model slicing and test vector generation. Large-scale slicing is performed by a
new slicing algorithm inspired by the static method described in [7], which con-
structs dependency graphs based on two dependence relations: Data Dependence
and Control Dependence. The Simulink blocks Data-store/Data-read pairs and
From/Goto pairs were not treated in the dependence analysis of [7] because
they are not connected through explicit links; rather, they communicate re-
motely through implicit communication protocols (Data-store/Data-read pairs,
for example). Our new algorithm models both types of links. The authors of [7]
extracted the blocks corresponding to the specific slicing criterion. However, our
objective is to slice the whole model into disjoint components (slices). To this
end, we trialed two methods; forward slicing and backward slicing. The slicing
criteria in forward slicing are the global inputs. This solution is problematic be-
cause most of the Simulink models contain Event input variables, which affect
all blocks. Consequently, we adopted backward slicing, whose outputs are the
slicing criteria. In particular, we compute the slices of the Simulink model by
performing a backward reachability analysis and marking the relevant blocks for
each output. We then remove the unmarked blocks and all empty subsystems
from the model. A subsystem is a set of blocks that you replace with a single
Subsystem block. The second MB–ATG component (test vector generation) has
two elements: a model transformation protocol and test-vector integration. The
model transformation protocol parses each slice and weaves the properties and
assumptions according to the block type and the user-selected structural cover-
age criterion. Before the weaving of properties and assumptions, this protocol
locates and calculates ψ and H insertion position. Next, it updates the location
of the neighboring blocks. Finally, it weaves P and H over the Simulink model.
The model transformation protocol is described in [5]. Figure 3 shows the cov-
erage of the Switch block according to the model decision coverage, with the
properties woven on it. The transformed slice is processed by the model checker
Prover Plug-In. In this case, a counterexample (equivalent to a test vector) is
generated. The test vectors generated and output from each slice are saved in an
XL file. All of these test vectors are then integrated while eliminating the repet-

5



itive and useless elements in the saved XL file. For this purpose, we implement
a new algorithm that compares different XL files.

Fig. 3. Decision coverage for the Switch block

5 Evaluation and measures

5.1 Model Description

Our tool was evaluated on six automotive industrial models, classified as shown
in Table 1. The FastCor and Detection models are large-scale models with
400–800 blocks. AirFlow and AirMPmp have two outputs and between 44 and
75 blocks. ThrAr and AirMnfld are smaller models with 40 blocks and a single
output.

XXXXXXXXXFeatures
Models

FastCor Detection AirFlow AirMPmp ThrAr AirMnfld

Inputs 21 25 9 8 6 8

Blocks number 434 874 75 44 40 38

Implicit signal 12 17 0 0 0 0

Subsystems number 12 19 2 2 2 2
Table 1. Models description

5.2 Output description

Table 2 shows the slicing results of the four large-scale Simulink models de-
scribed above. The two largest models, FastCor and Detection, are respectively

6



partitioned into three and five slices, whereas both medium-sized models are
divided into two slices. The model splitting decreases the average number of
inputs, blocks, and subsystems per slice, thereby avoiding the state-space explo-
sion. The number of implicit connections represents the number of hidden links
between the blocks of a single slice.

```````````Slices Features
Models

Fastcor Detection AirFlow AirMPmp

Slices S1 S2 S3 S1 S2 S3 S4 S5 S1 S2 S1 S2

Inputs number 11 20 11 8 13 13 6 13 7 6 8 8

Blocks 104 298 90 126 489 449 39 579 40 51 39 37

Implicit connections 3 5 4 3 4 4 2 4 0 0 0 0

Subsystems 7 10 10 7 9 9 2 9 2 2 2 2
Table 2. Slices description

XXXXXXXXXMeasures
Models

Fastcor Detection AirFlow AirMPmp ThrAr AirMnfld

PST 1.247 4.079 1.073 1.015

SST 12.892 14.983 11.383 11.003

WT 3.354 10.14 2.467 2.279 10.661 9.543

IT 1.219 1.936 0.292 0.583

GT 220.19 1295.009 17.952 20.514 22.134

TV 5 13 5 8 9 10 4 8 2 2 1 1

ITV 19 60 3 2 4 3
Table 3. Measures related to the execution time of SimAutoGen

Table 3 shows various measures related to the execution time in milliseconds
of the large- and atomic-scale models. Here, WT, IT, and GT denote the ex-
ecution time of weaving, integration, and generation of all slices, respectively.
The variables TV and ITV denote the number of test vectors generated per slice
and the number of integrated vectors in the entire model (after removing the
redundant input values), respectively. For the slicing action, we determined the
parallel slicing time (PST) and sequential slicing time (SST). A comparison of
the execution times of the slicing algorithm using sequential and parallel meth-
ods shows the improvement because of the use of Parallel Computing Toolbox
of MATLAB. Therefore, we have used this toolbox in weaving and test vector
generation processes. GT presents the execution time of counterexample gener-
ation. It shows that the model checker prover Plug-In consumes a large part of
the total execution time.

7



References

1. Simullink Design Verifier 1 : User’ Guide. Mathworks, Inc (2012)
2. Getting Started Guide: R2014b. Mathworks, Inc (2014)
3. Fraser, G. and Wotawa, F. and Ammann, P.: Issues in using model checkers for

test case generation. In: Journal of Systems and Software, pp 1403–1418, V82, N◦9.
Elsevier (2009).

4. Gadkari, A. and Yeolekar, A. and Suresh, J. and Ramesh, S. and Mohalik, S. and
Shashidhar, K.: Automatic test case generation from simulink/stateflow models
using model checking. In:Software Testing, Verification and Reliability, pp 155-
180, V24, N◦2. Wiley Online Library (2014)

5. Tekaya, M., and Bennani, M., and Alagui, M., and Ahmed, S.: Aspect-Oriented
Test Case Generation from Matlab/Simulink Models. In: Theory and Engineering
of Complex Systems and Dependability 2015, pp.495–504. Springer (2015)

6. Clarke, E M. and Grumberg, O. and Peled, D.: Model checking. In: The MIT Press.
(2000)

7. Reicherdt, R., and Glesner, S.: Slicing MATLAB simulink models. In: 34th Inter-
national Conference on Software Engineering (ICSE), pp 551–561. IEEE (2012)

8. Bahrami, D. and Faivre, A. and Lapitre, A.: DIVERSITY-TG : Automatic Test
Case Generation from Matlab/Simulink models. In: Embedded real time software
and systems, (2012)

9. Peranandam, P. and Raviram, S. and Satpathy, M. and Yeolekar, A. and Gadkari,
A. and Ramesh, S. An integrated test generation tool for enhanced coverage of
Simulink/Stateflow models. In: Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp 308–311. IEEE (2012)

10. Hamon, G. and De Moura, L. and Rushby, J. Automated test generation with
SAL. In: CSL Technical Note, pp 15. (2005)

11. Kirner, R. Towards preserving model coverage and structural code coverage. In:
EURASIP Journal on Embedded Systems, pp 6. Hindawi Publishing Corp. (2009)

12. Sheeran, Mary. Prover Technology - Prover plug-in documentation (2000)
13. Chilenski, J. and Miller, Steven P. Applicability of modified condition/decision

coverage to software testing. In: Software Engineering Journal, pp 193–200, V9,
N◦5. IET (1994)

14. Rajan, A., Whalen, M and Heimdahl, M.: The effect of program and model struc-
ture on MC/DC test adequacy coverage. In: ICSE’08. ACM/IEEE 30th Interna-
tional Conference on Software Engineering, pp 161–170. IEEE (2008)

8


