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Abstract. We propose a Data Aware Communication Technique (DACT)
that reduces energy consumption in Energy Harvesting Wireless Sensor
Networks (EH-WSN). DACT takes advantage of the data correlation
present in household EH-WSN applications to reduce communication
overhead. It adapts its functionality according to correlations in data
communicated over the EH-WSN and operates independently from spa-
tial and temporal correlations without requiring location information.
Our results show that DACT improves communication efficiency of sen-
sor nodes and can help reduce idle energy consumption in an average-size
home by up to 90% as compared to spatial/temporal correlation-based
communication techniques.

Keywords: Sensor networks, energy harvesting, energy efficiency, data collec-
tion, data redundancy

1 Introduction

With continuous and rapid advancements in microelectronics and wireless com-
munications, smart devices have become an integral and critical part of our
everyday lives. From smart phones to smart fridges, almost every part of our
daily routine involves an electrical/electronic device that consumes some form
of energy, mainly electricity. However, due to various behavioral, technological,
and social reasons, most of us do not have a clear idea of the amount of energy
required to sustain our daily habits. Part of this is due to the lack of a clear and
real-time measure for the effect of our daily habits and behavior on energy usage.
An example of this lack of awareness is leakage power (a.k.a. standby power),
which results from leaving electrical devices connected to the power outlet. Ac-
cording to [13], the average US household looses $100 every year on leakage
power. On a national level these losses reach up to US$ 100 billion and a carbon
footprint equivalent to 26.2 million tons of CO2 emissions in the US alone.
Studies have shown that about 71% of consumers are willing to change their
energy-related habits if they had clear information about their real-time energy



usage/cost [13]. Therefore, a quantitative method is required to raise awareness
among consumers about their energy consumption habits.

The continual scaling of transistors allows today’s electronic circuits to oper-
ate at a fraction of the power of their counterparts a few years ago, allowing elec-
tronics to be completely powered by ambient energy. In addition, wireless com-
munication technology has grown exponentially, allowing unprecedented wireless
communication amongst devices & access to the Internet through various proto-
cols (e.g. Wifi, ZigBee, Bluetooth). The combination of these two main advance-
ments in microelectronics and wireless communication paves the road for de-
veloping Energy Harvesting Wireless Senor Networks (EH-WSN) that partially
or completely run on scavenged energy [13]. An EH-WSN can harvest power
from surrounding environments while consuming very little power. Therefore,
optimization of power consumption at the lowest possible level is essential for
EH-WSN to operate by using idle power from other devices.

Like other WSN applications, an EH-WSN involves data gathering, in-network
information processing and data aggregation (e.g. [4,9,10,21]). However, the
EH-WSN application at hand has a unique feature, where correlations in the
data space are not necessarily due to spatial and/or temporal correlations in the
sensed phenomenon. Therefore, communication schemes that take advantage of
spatial and/or temporal correlations [17], [12] will not be effective in the energy
monitoring EH-WSN application at hand. Physical phenomena usually result in
similar data due to spatially and/or temporally correlated fields (e.g. monitoring
temperature), but this may not necessarily be true for energy usage monitoring.
For example, a household where one power outlet is idle while the one right next
to it is plugged to a power-hungry microwave is an example of spatial correlation
that does not lead to data correlation. We take advantage of this independence
in data, temporal, and spatial correlations in EH-WSN and propose a commu-
nication scheme that will selectively communicate data based on its significance
compared to other data.

In this paper, we tackle the problem of redundant data communication in EH-
WSN from a collaborative communication perspective and evaluate the operation
of the Information Processing and Communication Reduction (IPCR) scheme
proposed in [10]. In contrast to other schemes [6,7,9,12,17], [10] relies only on
data similarity rather than on underlying field correlations. It employs a clever
mechanism that compares a node’s current sensed data to that communicated
over the channel, based on which a decision of transmission or suppression of
data is made. That is, if each node processes the information transmitted over
the channel (by other nodes) to check its similarity with other sensed data, it
can make a more informed decision on whether to transmit its sensed value.

The remainder of this paper is organized as follows: Section 2 is an overview of
related studies that focus on reducing energy consumption in WSN. In 3, we map
the problem to a well known collaborative sequential spectrum sensing problem
based on which our problem is formulated. Section 4 describes the proposed
scheme and the effect of data similarity on its operation. Finally, we evaluate
the proposed scheme in section 5, followed by the conclusion in section 6.



2 Related Work

The majority of research efforts in improving energy efficiency of EH-WSN fo-
cus on communication operations. This is due to that communication operations
consume orders of magnitude more energy as compared to computation oper-
ations (e.g. 2000X [14]). However, information processing can greatly improve
the significance of the communicated data.

Few investigations have focused on joint solutions to MAC schemes and infor-
mation processing [17], [12]. Our previous work in [10] proposed a joint solution
to reduce communication operations via collaborations between the underlying
MAC scheme and a field estimation technique. We take advantage of [10] and
modify it to be utilized in our EH-WSN application.

3 Problem Statement and Assumptions

3.1 Overview

Consider a household EH-WSN where standby power is monitored by a group
of electro-magnetic radiation sensor nodes. Each node is required to report its
sensed idle power to a central node (sink). The sink is connected to the Internet
and is responsible for processing the results of all nodes and reporting energy
consumption data sending alerts to a smart phone when a preset threshold of
consumption is detected. Assume a total of IV, electro-magnetic radiation sensor
nodes monitoring power outlets in the EH-WSN, operating in a non-data aware
manner (i.e. each node is unaware of other data but its own), each of the N,
nodes transmits its sensed data independently to the sink node. According to the
similarity of the sensed field, this can result in up to N, —1 redundant (similar)
messages. Moreover, many collaborative communication reduction techniques tie
their performance to underlying field correlations [6,12,17]. While this can be ef-
fective in applications encountering some spatially and/or temporally correlated
fields (e.g. monitoring physical phenomena), it falls short when the underlying
field encounters spatially and/or temporally uncorrelated similar values such as
the case of a household where one power outlet is idle while the one right next
to it is plugged to a power-hungry microwave.

Several studies proposing efficient collaborative communication techniques
have been presented in the literature [5,22]. The main goal of these studies
is to detect when the channel is not being used by primary users so that sec-
ondary users can utilize it during that time. In our problem, nodes sense the
channel in order to detect ongoing transmissions and determine whether they
have useful information to send. Moreover, all nodes have an equal opportunity
and capability of acquiring the channel. Nodes listening to the channel during
an ongoing transmission determine the relevance of their sensed values to those
being transmitted over the channel. Therefore, the channel is monitored by non-
transmitting awake nodes for other transmissions, based on which they decide



whether to send their data. We tailor common representations of the collabo-
rative communication problem in [5,10,22] to formulate our problem and the
proposed solution.

3.2 Formulation

Consider N, electro-magnetic radiation sensor nodes placed at the power outlets
of a home to monitor its electricity usage, within each others’ communication
range and reporting to a sink node. The nodes are attempting to collectively solve
a binary hypothesis testing problem, where each of the IV, nodes is required to
decide between transmitting its local sensed data (hypothesis Hi) to the sink
node or not (hypothesis Hy). We assume that time is divided into discrete slots
of equal durations, 7, in which a node can transmit/receive data. We assume
that all nodes listen to each others’ transmissions (i.e. each transmission is a
broadcast). The term slot and observation interval are used interchangeably. Let
O;(t) be the observed value at node ¢ during slot ¢, and S;(¢) be the sensed
value at node ¢ during the same slot, where ¢ = 1,2,...,N,. Notice that the
observed value at node 7 is that transmitted by any of the other N, — 1 nodes
in the network, while the sensed value is that sensed by node ¢ itself. Elements
constructing the sets of observed and sensed values at node i over a time span of T’
slots, {O;(t)}T and {S;(t)}T, respectively, are independent given each hypothesis
and are assumed to be 1dentlcally distributed. Equation 1 represents O;(t) under
the two hypotheses.

Hy : Si(t) — Thri(t) + Wi(t) < 0;(t) < Si(t)+
Thri(t)+ W;(t), t=1,2,..,T (1)
H; : otherwise

where T hr; is the permissible threshold between the observed and sensed values,
which reflects the level of energy consumption reporting accuracy required by
the consumer. W; is additive white Gaussian noise with a power of o2, assumed
to be similar at all nodes.

As in [5,10,11] and without loss of generality, the primary signal S;(t)
is assumed to be a real zero-mean Gaussian random variable. Moreover, the
conditional probability distributions of O;(t) given H; and Hj are represented
by fo,) (0¢|H1) and fo, () (0¢|Ho), respectively. Each of them can be represented
as follows:

o (0 Ho) ~ N(0,0?)

foi( ) ~N(0,06° 4 02))

where N (0, o ) and N (0 o —‘r—O’i) are normal distributions with zero means and
variances of o2 and o2 —|— o2 ., respectively. azl_ represents the average received

primary signal at the i* node which is assumed to be fixed over the time slot
duration [11]. Therefore, any local observation at a node ¢ can be expressed as:

fo.w(oilH)
Y= Zl [foa) 0t|H0)} ®)

(2)




where Y; is the Log-Likelihood Ratio (LLR), computed by node i [22]. The
signal-to-noise ratio (SNR) can be defined as ¢; = 02, /0. This will result in an
LLR computed at node ¢ as follows:

(0 o T
S A R— (A2 N

Both [5,11] propose approximations for the above likelihood functions of Y;
given either Hy or Hy, which are shifted scaled chi-square distributions with T’
degrees of freedom.

4 Proposed Technique

In this section, we describe the details of DACT, its realization of the Information
Processing and Communication Reduction (IPCR) scheme presented in [10] and
study the effect of data similarity on its operation.

4.1 Operation

Consider the same EH-WSN in section 3. Each node i € N, sets a backoff
(BO) timer according to its locally computed LLR, such that BO « 1/|LLR).
Moreover, each node i checks the condition given in (1) to determine whether it
will transmit or not. That is, if a node determines that it has highly informative
information, based on the value of the BO timer (reflecting the LLR value), but
it doesn’t satisfy the condition in (1), it will decide not to transmit. This will
repeat Vi € N,,. Table 1 shows the pseudo code of DACT"s utilization of IPCR,
the details of IPCR operation have been omitted and can be found in [10].

Each node senses the field and sends its value if the channel is sensed idle (i.e.
empty). If the channel is sensed busy, a node compares its sensed value and that
being communicated over the channel according to (1). Note that this a com-
parison of the received data (communicated over the channel) and that locally
sensed by the node. Based on this comparison, a node either decides to send
(Hy) or discard (Hp) its data. The degree of information accuracy is controlled
via the threshold (Thr;) set by the user according to their habits/preference.
That is, if users set the threshold to a lower value, that will result in more com-
munication and hence less energy savings and vice versa. A detailed example of
DACT’s utilization of IPCR is discussed in section 5.

To avoid deadlocks, if none of the N, nodes in the network transmits in
communication round r, the first node to acquire the channel in communica-
tion round r + 1 will transmit its locally sensed value regardless of the current
similarity check as in (1).

4.2 Communication Cost

The operation of DACT requires evaluation of neighbors’ transmitted data,
which involves significant communication overhead. We identify different sources



Table 1. Basic DACT-IPCR Operation

Initialization: Vi € N,
1. iter < 0 /*set counter®/
2. Thr; + Threshold /*set Threshold*/
Begin
3. S; < sensed value
4. listen to chnnel
5. If channel is idle
transmit S;
Else
O; < ongoing transmission
9.  If(|0; —S;| < Thr;) [*according to (1)*/

® N

10. discard S;
11. exit
12. Else
13. Repeat
14. wter++
15. goto line 4
16. Until iter < T /*T is the max number of
slots in any frame*/
End

of energy consumption and their dependence on network and application param-
eters, such as collisions and queue utilization. Our analysis is based on common
channel assumptions that have been used in the literature [6,9,10].

In duty-cycled MAC schemes for WSNs, there are two main states for a node:
active and sleep. During its active state, a node can transmit, receive or listen
to the channel. The node turns off its radio during its sleep state. Each node is
assumed to have a queue of finite length @), and each packet in the queue has an
average length Lp a7 4 bits. We assume that data packets are generated following
a Poisson process with a rate equal to A packets/second (i.e. inter-packet times
are independent and have an exponential distribution with a mean = 1/X). How-
ever, more complex traffic models can also benefit from our technique but with
different distributions of trade-offs between energy consumed in channel sensing
and that saved from collision avoidance and conditional message transmissions.
Each packet is assumed to spend an average of Teiqy before leaving the queue,
which is the sum of queuing delay and service time computed by:

Tdelay =T,Ns + (A - 1)(TSNS + TC) (5)

where 7, is the average slot duration, N, is the average number of slots skipped
before acquiring the channel on each transmission attempt (Back off window), A
is the average number of transmission attempts needed per packet, and T¢ is a
collision duration. A can be represented as a function of the collision probability
Pc and the maximum number of retransmission attempts R4 such that A =



(1-praty)
-7,
network, N, where Pc =1 — (1 — PT)N”_1 and P, is the probability of a node,
having a packet ready to be sent, to transmit in a random slot. P, can be related
to the queue utilization factor p by P, = p/(Ns+ 1), where p = A\/p and p is
the mean service time. T is deduced from IEEE 802.11 as well as the values
of the guard periods, SIFS (Short Inter-Frame Space), DIFS (Distributed Inter-
Frame Space), and EIFS (Extended Inter-Frame Space) [18]. T¢ = DIFS +
SIFS + Lgrs/r and Tg = Lorstlerstlbparatlack 4 DIFS + 3SIFS is the
time needed to successfully transmit one data packet. Note that for a uniformly
distributed back off window over the maximum contention window will lead to

N = % The throughput of the queue can be computed as v = A\(1 — Pgp)

and Pg = (11: ,,pcﬁ’i'f is the blocking probability (i.e. probability that the buffer is
full).

We assume possible channel states with respect to the sending node to be: (a)
empty (neighbor nodes are idle listening or sleeping), (b) sending/receiving, and
(c) collision. Each state has a corresponding probability of (a) P, = (1—P,)Ne—1
(b) Psjp = Po(Np —1)(1 = P.)"»=2, and (¢c) P. = 1 — P, — P., respectively.
The total energy consumption of a node is due to transmitting, receiving, and
overhearing. Each one of these energy components has a certain successful and
collision component in it. This leads to:

. The collision probability is related to the number of nodes in the

Eiota = E, + Ef, + EJ, + ES, + ES + ES, (6)

where Ef , E7_, and E?, are the energies consumed in successful transmission,

reception and overhearing, respectively. Ef,, EX and ES, are the energies con-

sumed in collided (unsuccessful) transmission, reception and overhearing, re-
spectively. The value of each one of these energy components will vary according
to the MAC protocol behavior. Each of the above energy components suffers
an amount of idle listening as well (e.g., during DIFS and SIFS). We refer to
the energy consumed in a node’s radio states, transmission, reception and idle as
ETX ERX and EIPLE respectively. Radio sleep state is assumed to consume

radio’ “radio’ radio
no energy, therefore:

rx Lrrs+ Lpara

4 BRX Lers + Lack
radio .

r radio r

+ EIPLE(DIFS + 3SIFS + N,P.e) @)

radio

B, =F

L
TX ZRIS | RIDLE(DIPS +2SIFS +

di di
radio . radio

Ef. =FE

L
N P.e+ =215 (8)
T

where € is the duration of an empty slot. The energy consumed in successful and
unsuccessful receptions can be represented by (9) and (10), respectively.



rx Lrrs+ Lpara

B = R et et
rT radio r +
L L
EIX, 2T L SACK | pIDLE3SIFS) )
T
L
Eﬁm = Etcm - (E;z:z)d(io - Eﬁzﬁio) gs (10)

4.3 Data Similarity

In order to offset the communication overhead encountered in DACT, a certain
level of data similarity is required. Fortunately, this is the usual case when people
are not at home and standby power is being wasted. DACT utilizes data similar-
ity to detect and reduce redundant information communicated over the channel.
We have used a similar scheme to exploit data redundancy in genomic data for
efficient transmission [2]. Note that this distinguishes the energy consumption
monitoring EH-WSN applications from other WSN applications, since similarity
in sensed values does not necessarily reflect any spatial correlation, as discussed
in section 3.1. To represent data similarity, like in previous studies [9, 10], we
define a similarity factor F, = ]I\\,[—Z, 1 < Ng < N, where Ng is the number of
sets representing the field which has a total of N, nodes and Sy, is the set of
nodes in a neighborhood with a sensed field value V,,, min(f) <V, < maz(f),
where min(f) and maz(f) are the minimum and maximum values of the sensed
field, respectively. Note that YV, # V,,, Sy, N Sy, = 0.

4.4 Discussion

Consider a building with 100 power outlets that are being monitored for idle
power consumption via electro-magnetic radiation sensor nodes and a sink node,
forming an EH-WSN. Assume that all sensors are calibrated to sense power on a
scale of 1 to 100. At one extreme, all 100 nodes sense 90 and thus belong to one
set Sgo, therefore Fj, = N, which is the maximum value for S in a neighborhood
of size Np,. At the other extreme, all 100 nodes report 100 different values which
results in 100 different sets and thus Fj,, = 100/100 = 1, which is the minimum
possible value for F}, indicating no similarity in the sensed field.

DACT’s strength lies in exploiting data similarity and redundancy that is
absent in other studies [6,12,17]. In a best case scenario, when the field is highly
similar (highly correlated in data space and thus low values of F},), significant
communication savings are expected, as illustrated by the previous example.
However, if the field is highly dissimilar (high values of F},), DACT will perform
comparable to field correlation-based collaborative scheme [6,12,17] or non-
collaborative data gathering/aggregation techniques [20]. We refer to both as
conventional techniques.



Table 2. Simulation Parameters

Parameter|Value Parameter|Value
Bandwidth|20 kbps Comm. Range|250 m
RxPower|22.2 mW Interference Range|550 m
TxPower|31.2 mW DIFS|10 ms
IdlePower|22.2 mW SIFS|5 ms
SleepPower|3 uW Contention Window|64 ms
DataPckt|100 B |MAC scheme cycle (IPCR-SMAC)|4544 ms
ACK|10 B Duty Cycle)|50%

Since DACT gives each node in the network an equal opportunity of ac-
quiring the channel, load balancing is implicit. Since it is the reporting node’s
responsibility to assess its similarity to the data currently communicated over
the channel, and the worst case scenario performance (i.e. no similarity between
sensed data) will be comparable to that of conventional techniques. This greatly
reduces the load required by the sink node, which is usually responsible for
aggregating the unconditionally transmitted data (from reporting nodes), by
distributing the effort over the entire neighborhood.

5 Evaluation

In this section, we evaluate DACT via ns-2 simulations [1]. Each node in our sim-
ulations has a single omni-directional antenna and follows ns-2’s commonly used
combined free space and two-ray-ground reflection propagation model for wire-
less sensor networks. The underlying MAC scheme is Sensor MAC (SMAC) [18],
and we assume that nodes follow a single sleep/wakeup schedule. The transmis-
sion range and carrier sensing range are modeling a 914MHz Lucent WaveLAN
DSSS (Direct Sequence Spread Spectrum) radio interface which was used in sev-
eral previous studies [8,16]. Although this radio is not typical for a low power
WSN node, but we use its parameters to make our results comparable to those
reported in previous work [8,16]. Furthermore, measurements have shown that
similar proportions of the carrier sensing range to the transmission range are
observed in some nodes [3,16].

We test DACT on a 100 node randomly deployed electro-magnetic radiation
sensor network, where sensors are deployed following a uniform random distri-
bution, covering a total area of 10,000 square feet. The network has a randomly
selected sink to which all nodes are required to report. All nodes are assumed to
be in each other’s communication range (forming a single neighborhood). One
way of extending this to multiple neighborhoods is to have border nodes of each
neighborhood follow multiple schedules as in SMAC [18]. Each simulation is
an average of 15 runs, each lasting for 7000 seconds. Key network simulation
parameters are summarized in Table 2.

In order to accurately study DACT’s performance, we need to minimize the
influence of the underlying MAC scheme for our simulation results. To do so, we
keep the duty cycle relatively high (at 50% ) and the data rate relatively low
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node EH-WSN (Figure reproduced based on information from [10])

(at 1 packet every 50 seconds). These values ensure that the underlying MAC
protocol (IPCR in our case) is operating under relaxed conditions and allows
accurate evaluation of DACT strategy.

Figure 1 shows the normalized energy consumption for different similarity
factors at different threshold levels. When the threshold is 0% (set by the con-
sumer indicating maximum accuracy requirement) as shown in Fig. 1, the average
energy consumed is at its maximum. This is expected due to maximum accu-
racy requirement. Since techniques that rely solely on spatial and/or temporal
field correlations in their operation (e.g. [11,17]) do not realize field similarity
occurring only in the data space, their message complexity is not affected by un-
correlated field similarity and remains at its maximum. Figure 1 also reflects the
result of increasing the threshold to 10%, which decreases the average number
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of reporting nodes by approximately 10% , which is directly reflected in total
energy consumption

In Fig. 2, we take a closer look at the effect of IPCR on DACT for larger
similarity factor F},. Our experimental results show reduction in the communica-
tion complexity and is in agreement with the theoretical analysis in section 4.3.
Minor deviation from the average is also shown in the figure using error bars.

6 Conclusion

In this paper, we explored potential gains from monitoring energy consumption
in real-time by utilizing in-network collaborative information processing to re-
duce information redundancy and communication operations in Energy Harvest-
ing Wireless Sensor Networks (EH-WSN). We introduced a Data Aware Com-
munication Technique (DACT), which exploits similarities in the sensory data to
reduce communication redundancy via a clever similarity assessment technique.
DACT is designed without any spatial or temporal assumptions about the data
and can be applied to any energy monitoring and reduction application. DACT
detects such similarities in the data space and takes advantage of them to reduce
communication complexity and hence reduce energy consumption by up to 90%.
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