
HAL Id: hal-01435026
https://inria.hal.science/hal-01435026

Submitted on 13 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Shrinking and Expanding Cellular Automata
Augusto Modanese, Thomas Worsch

To cite this version:
Augusto Modanese, Thomas Worsch. Shrinking and Expanding Cellular Automata. 22th International
Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich,
Switzerland. pp.159-169, �10.1007/978-3-319-39300-1_13�. �hal-01435026�

https://inria.hal.science/hal-01435026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Shrinking and Expanding Cellular Automata

Augusto Modanese and Thomas Worsch

Institute for Theoretical Informatics
Karlsruhe Institute of Technology

Am Fasanengarten 5
76131 Karlsruhe, Germany

augusto.modanese@student.kit.edu, worsch@kit.edu

Abstract. Inspired by shrinking cellular automata (SCA), we investi-
gate another variant of the classical one-dimensional cellular automaton:
the shrinking and expanding cellular automaton (SXCA). In addition to
the capability to delete some cells as in SCA, an SXCA can also create
new cells between already existing ones. It is shown that there are reason-
ably close (polynomial) relations between the time complexity of SXCA
and the space and time complexity of Turing machines and alternating
Turing machines respectively. As a consequence the class of problems
decidable in polynomial time by SXCA coincides with PSPACE.

1 Introduction

Rosenfeld, Wu and Dubitzki [5] have introduced so-called shrinking cellular au-
tomata.

The idea is that the transition function allows a cell to “delete” itself. If
one cell does that, then its both neighbors to the left and right become direct
neighbors, and similarly if several cells are deleted (a precise definition will be
given in Sect. 2). Rosenfeld and Wu observed that some formal languages can be
recognized in less than real-time, using the shrinking process to mimic reductions
according to the productions of a context free grammar.

It took more than 30 years before Kutrib et al. [3] started a more thorough
investigation of shrinking CA, explaining relations between shrinking and non-
shrinking CA for small time bounds, i. e. real-time and linear time.

It seemed natural to also have a first look at cellular automata which can not
only shrink, but also have the opposite ability expand by generating additional
cells between already existing ones. As in the shrinking case, at least at first
sight, it is only clear how to define this in the one-dimensional case. It turns out
that shrinking and expanding CA are quite powerful.

The remainder of this paper is organized as follows. In Section 2 we define
shrinking and expanding cellular automata and related notions like the set SX-
CAP of problems decidable by SXCA in polynomial time. In Section 3 we relate
time complexity of alternating Turing machines to that of SXCA, implying that
PSPACE is included in SXCAP. In Section 4 we obtain results showing that

2 Augusto Modanese and Thomas Worsch

in particular SXCAP in included in PSPACE. (Hence SXCA belong to the
so-called second machine class [6].)

This paper is partially based on the bachelor thesis by the first author [4].

2 Basics

The set of all integers is denoted Z, the set of all positive integers N+ and
N0 = N+∪{0}. For two sets A and B the set of all total functions mapping from
A to B is denoted BA.

2.1 Standard CA

In this paper we are looking at one-dimensional cellular automata with the
standard neighborhood N = {−1, 0, 1} of radius 1. Let Q denote the set of
states of a single cell.

Then a global configuration is a function c : Z → Q. The local transition
function δ : QN → Q induces a global transition function ∆ : QZ → QZ in the
usual way: ∆(c)(x) = δ(`c,x) where `c,x : N → Q : n 7→ c(x+ n).

A (finite or infinite) computation is a sequence (c0, c1, . . .) of configurations
such that ct+1 = ∆(ct) holds for all t.

We will always assume that there is a special state q such that the local
transition functions satisfies two properties:

– As long as the cells in the neighborhood of a cell x are all in state q the next
state of x is q again, i. e. q is a quiescent state.

– A cell which is not in state q will never enter state q in the next step.

We will only look at decision problems. The input for a CA is always a non-
empty word w ∈ A+ over some finite alphabet A ⊂ Q. The initial configuration
of a word w = a0 · · · an−1 of length |w| = n with ai ∈ A for all i ≤ |w| is defined
as

cw : Z→ Q : x 7→

{
ai, iff 0 ≤ x = i < |w|
q, otherwise

. (1)

The requirements for q ensure that all configurations reachable from initial con-
figurations cw as just defined all consist of a finite connected block of cells all of
which are in a non-quiescent state, extended on both sides with infinitely many
cells in state q. Of course the block of non-quiescent cells may grow during a
computation.

For the acceptance and rejection of input words we assume that a special state
a (“accept”) and a special state r (“reject”) are present in Q. A configuration
c is final iff cell 0 is in the accepting or the rejecting state. The computation
(cw = c0, c1, . . . , ct) for an input w is halting if ct is final and if ct is the only
final configuration in the computation. We call ct the result configuration for w.
An input is accepted or rejected iff in the result configuration cell 0 is accepting
or rejecting respectively.

The support of a configuration c is the set {x | c(x) 6= q }. Let Cfin denote
the set of all configurations c : Z→ Q with finite support.

Shrinking and Expanding Cellular Automata 3

2.2 Shrinking and expanding CA

We now have a look at non-standard CA which can shrink by deleting cells “not
needed” any longer [5, 3] and which can expand by generating new cells between
already existing ones [4].

In the present paper the focus is on CA which are allowed to do both during
a computation. The following definition of shrinking and expanding CA (SXCA)
is adapted to this case.

Besides the set Q of proper states there is a “pseudo state” ⊗. Formally we
assume ⊗ /∈ Q and write Q̄ = Q∪ {⊗}. In analogy to Cfin let C̄fin denote the set
of all functions c̄ : Z→ Q̄ with having finite support {x | c̄(x) 6= q }.

The local transition function δ = (ε, σ) of an SXCA is given by two functions
ε : QN → Q̄ and σ : QN → Q̄. Given a configuration c ∈ Cfin these induce a
global transition of the SXCA defined in two substeps.

– To a given configuration c first ε and σ are applied to each local configuration
`c,x observed by cell x in c. This gives rise to a function X : Cfin → C̄fin in
the following way.

for all x ∈ Z:
X(c)(2x− 1) = ε(`c,x)

X(c)(2x) = σ(`c,x)
(2)

One can imagine that the existing cells are pulled apart by doubling their
indices entering the preliminary states σ(`c,x) respectively. To the left of each
such cell a “new” cell is generated with preliminary state ε(`c,x).

– Secondly, the cells which are in state ⊗ “are removed” and the “remaining
cells are renumbered” in the following sense: Given any c̄ ∈ C̄fin, define a
renumbering

rc̄ : Z→ Z

0 7→ min{x′ ≥ 0 | c̄(x′) ∈ Q }
x 7→ min{x′ > rc̄(x− 1) | c̄(x′) ∈ Q }, if x > 0

x 7→ max{x′ < rc̄(x+ 1) | c̄(x′) ∈ Q }, if x < 0

(3)

This induces a function S : C̄fin → Cfin by

S(c̄)(x) = c̄(rc̄(x)) (4)

Figure 1 shows an example.

The composition ∆ = S ◦X is the global transition function of the SXCA.
CA in the classical definition are a special case, where existing cells are

never deleted, i. e. all σ(`) 6= ⊗, and additional cells are never generated, i. e.
all ε(`) = ⊗. Shrinking CA are recovered by again requiring all ε(`) = ⊗ and
interpreting ⊗ as the “dissolve” value used in [3].

The definitions for the notions computation, acceptance, etc., are defined in
the same way as for standard CA.

4 Augusto Modanese and Thomas Worsch

c · · · q q q a b x y z q q · · ·
−5 −4 −3 −2 −1 0 1 2 3 4

X(c) · · · ⊗ a′ ⊗ b′ ⊗ ⊗ ⊗ y′ u z′ · · ·
−5 −4 −3 −2 −1 0 1 2 3 4

S(X(c)) · · · q q q a′ b′ y′ u z′ q q · · ·
−3 −2 −1 0 1 2 3

Fig. 1. The two substeps of a global transition of an SXCA: The cells in states a, b
and y should enter states a′ = σ(q, a, b), b′ = · · · and y′ = · · · respectively without
generating an additional cell to their left (ε(q, a, b) = ⊗, . . .). The cell in state x deletes
itself (left gray cell, σ(b, x, y) = ⊗) and also doesn’t generate an additional cell to its
left (ε(b, x, y) = ⊗). The cell in state z enters z′ = σ(y, z, q) and generates a cell in state
u = ε(y, z, q) to its left (second gray cell). Cells which are “not needed” are deleted
and the remaining ones “renumbered” during the second substep.

The time complexity of an SXCA is the function f : N+ → N+ where f(n) is
the maximum number of steps needed for an input of length n until it is accepted
or rejected. The set of problems which can be decided by SXCA with polynomial
time complexity will be written SXCAP.

3 Relating ATM time to SXCA time

Fellah and Yu [2] have shown an intricate close relation between tree-shaped
cellular automata (with sequential input at the root) and alternating Turing
machines (ATM) [1].

While the repeated generation of additional cells in an SXCA can yield an
exponential growth of the number of cells —which superficially looks similar to
the exponentially growing number of cells reachable from the root of a tree—
there is a difference: In a tree the root can quickly broadcast a value in t steps
to 2t cell. On the other hand, in a growing CA a cell (the “root”) from which
the generation of 2t cells has been initiated, cannot in t steps broadcast a value
to 2t cells (once the generation process is complete). This seems to increase the
complexity of some constructions. Still, we will prove in this section:

Theorem 1. An alternating TM with time complexity bounded by some function
t(n) can be simulated by an SXCA whose time complexity is O((t(n))2).

Since alternating time is polynomially related to sequential space [1], one imme-
diately obtains:

Corollary 2. PSPACE ⊆ SXCAP, i. e. the set of problems which can be
decided by SXCA in polynomial time comprises PSPACE.

Shrinking and Expanding Cellular Automata 5

[s]

[a b c d e f]

Fig. 2. A block storing 6 tape symbols. The head of the ATM is visiting the third
square and the ATM is in state s.

[[s] ∃/∀ [s′]]

[[a b c d e f] [a b c d e f]]

Fig. 3. Two copies of a block storing 6 tape symbols. The head of the ATM is visiting
the third square and the ATM is in state s. Two “versions” of state s are used in order
to allow the simulation of the ATM for its two possible continuations. The extra cell
between the block remembers whether s is an existential or a universal state.

We now describe a construction proving Theorem 1. We assume the reader
is familiar with ATMs.

Let T be an alternating Turing machine with one work tape on which also the
input is provided at the beginning of a computation. Furthermore let S denote
the set of states, B the set of tape symbols, and A ⊂ B the input alphabet of
the ATM. One may assume that in each situation there are exactly two possible
continuations for the ATM. We will construct an SXCA C which for each input
w ∈ A+ checks whether T would accept or reject w and then accepts or rejects
w accordingly.

Without loss of generality T never writes blank symbols, and hence there
is always one contiguous tape segment with non-blank symbols comprising all
(input and) visited squares. The SXCA C uses k consecutive cells to store such
segment of length k with symbols a1 · · · ak, along with a representation of the
ATM head being positioned on symbol ap, and the ATM being in state s ∈ S.
Each cell stores one symbol, and cell p in addition the state s while the others
store a value indicating that the head is not on the respective square. In addition
the block is surrounded by two “bracket cells”. See Fig. 2 for an example of such
a block of the SXCA.

In its very first step, C changes the states storing the input symbols such
that the cells represent the corresponding initial ATM configuration (as described
above). Afterwards, C iterates the following procedure:

1. New cells are generated to the left of the block and the block contents are
copied to it. For each state s of the ATM, the states in both blocks are
distinguished by using an unprimed representation s in the left one, and a
primed representation s′ in the right one.

2. Between the blocks an additional cell is used to remember whether the ATM
state is an existential or a universal one. The pair of blocks is surrounded
by an additional pair of brackets. See Fig. 3.

3. In the left block, the first alternative for the next step of the ATM is simu-
lated, while the second alternative is simulated in the right one. The SXCA
can distinguish between the two cases because different representations of
the state are used in the two blocks.

6 Augusto Modanese and Thomas Worsch

4. In each block C checks whether the ATM state is a final one.
– If this is not the case, then C continues with step 1 above.
– If the state is final, C breaks out of the loop for the block and continues

with step 5 below.
5. If the ATM state is a final one, then signals are sent in both directions to

the nearest enclosing brackets deleting all cells which do not store the state
or the brackets. Thus, the block is shrunk to a single cell storing state a or
state r.

6. Eventually, an extra cell storing a quantifier will observe final states in both
its neighboring cells. It then sends signals in both directions to the nearest
enclosing brackets. This causes the deletion of the two cells which contain
final states, as well as of the ones containing the brackets. The cell itself
enters state a or r according to the following rules:
– It enters a in case the quantifier is ∃ and at least one of the neighboring

final states was a, or if the quantifier is ∀ and both neighboring final
states were a.

– Otherwise the cell enters state r.

As long as a configuration is not a final one, the block, inside the brackets,
representing it will be replaced by two bracketed blocks and the ∃/∀ marker.
The resulting nested hierarchy of brackets will be deleted from the inside out,
once final configurations have been reached.

In the end, all non-quiescent cells are deleted except for a single cell, which
is in state a or r if and only if the ATM would accept or reject the input,
respectively.

It remains to estimate the time complexity of the SXCA. If the ATM is
t(n) time-bounded, then, for an input of length n, it will never make more than
t(n) steps during a possible computation and hence never visit more than t(n)
squares. Therefore, the length of all blocks which have to be copied during step 1
is at most t(n). The simulation of one step of the ATM requires only constant
time. Consequently after O((t(n))2) SXCA steps in every block a final state is
reached.

Deleting the non-state cells within a block again only takes time t(n), and
this also has to be done t(n) times. Therefore the result of the ATM is available
after O((t(n))2) steps.

4 Relating SXCA time to TM space

At the beginning of the previous section it has already been pointed out that
the (compared to tree CA) somewhat restricted possibilities of communication
between cells may manifest themselves in somewhat less efficient simulations of
other models by SXCA. On the other hand, the ability to delete a possibly large
number of cells simultaneously, until now seems to impede particularly efficient
“simulations” of SXCA by other models such as ATM. Instead of elaborating
a somewhat arduous ATM, in this section we only exhibit a space efficient ap-
proach:

Shrinking and Expanding Cellular Automata 7

Theorem 3. An SXCA whose time complexity is bounded by t(n) can be simu-
lated by a deterministic TM with space complexity bounded by O((t(n))2).

Together with theorem 1 this implies:

Corollary 4. SXCAP = PSPACE, i. e. the set of problems which can be
decided by SXCA in polynomial time is exactly PSPACE.

Thus SXCA are a model in the so-called second machine class [6].
In order to prove Theorem 3 we first describe an algorithm and discuss its

space complexity afterwards. For better readability at some points we have forced
page breaks to make sure that pseudo code and corresponding explanations are
on the same page.

We proceed “top down”, starting with a very simple function, and proceed
in three refining steps.

Assuming that there is a function State(cell x, time t) which computes the
state of cell x ∈ Z at time t ∈ N0, it is trivial to determine whether the SXCA
accepts a given input w. One just has to find the first time, when cell 0 enters a
final state and check that. See algorithm 1.

〈 finalState returns a or r if the SXCA accepts or rejects an input w,
respectively. 〉

function final state ← finalState() is
t← 0
repeat

t← t+ 1
s← State(0, t)

until s ∈ {a, r}
return s

end
Algorithm 1: Finding the final result of an SXCA.

8 Augusto Modanese and Thomas Worsch

Next, we describe the process of determining the state of a cell x at time
t. The case t = 0 is trivial. For t > 0, it is important to remember how the
transition from a configuration c to S(X(c)) was defined in Sect. 2; in particular
see Fig. 1. There are two possibilities how a cell z at time t− 1, given its state
and those of its both neighbors, can give rise to the state of cell x at time t:
(i) by changing its own state using σ; or (ii) by generating a new cell using ε.
Assume that z, along with a flag new which signals whether x was created using
ε or not, can be computed by a function Predecessor(x, t). Then algorithm 2
shows a straightforward way to compute the state of cell x at time t.

〈 Compute the state of cell x at time t: 〉
function state s← State(cell x, time t) is

if t = 0 then
〈 Initial configuration for input w: 〉
if 0 ≤ x < |w| then

return wx 〈 the x-th symbol of input w 〉
else

return q
end

else
(z,new)← Predecessor(x, t)
q−1 ← State(z − 1, t− 1)
q0 ← State(z, t− 1)
q1 ← State(z + 1, t− 1)
if new then
〈 cell was “generated” during transition to time t 〉
return ε(q−1, q0, q1)

else
〈 cell already existed 〉
return σ(q−1, q0, q1)

end

end

end
Algorithm 2: Determining the state of a cell x at time t.

Shrinking and Expanding Cellular Automata 9

The renumbering of cells was defined earlier by distinguishing between two
cell groups: the ones with indices x ≥ 0, and those with indices x < 0. Observe
that the renumbering of cells never changes the index of a cell from one group
to the other one. Now, consider the case x ≥ 0 first, and assume that there is
function Successor(x, t) which, for a cell index x at time t, returns the index
z at which the given cell will be located at time t + 1, or ∞ in case the cell is
deleted. Then, determining Predecessor(x, t) is a simple matter of counting
how many cells z get positioned to the left of x at time t. The case x < 0 is
similar; the difference is that one has to count the cells to the right. Using the
function sign: Z → Z with sign(0) = 0, and sign(x) = |x|/x otherwise, allows
one to write down compact code working for both cases as shown in Algorithm 3.

〈 Compute cell index z such that the states of cells (z − 1, z, z + 1) at time t− 1
determine the state of cell x at time t; additionally return a flag new
indicating whether the cell now at position x is “a new one” or not, i. e.
whether ε of σ should be used to compute its state. 〉

function (cell z, bool new)← Predecessor(cell x, time t) is
z ← 0
while true do

if Successor(z, t− 1) =∞∨ |Successor(z, t− 1)| < |x| then
z ← z + sign(x)

end

end
if x = Successor(z, t− 1) then

return (z, false)
else
〈 this can only happen if cell x was generated from t− 1 to t 〉
return (z, true)

end

end
Algorithm 3: Counting how many cells existing at time t − 1 get indices
“closer to 0” than cell z.

10 Augusto Modanese and Thomas Worsch

Finally, Successor(x, t) has to be described; see algorithm 4 on the next
page. Roughtly speaking, this is again a simple counting procedure: For every
cell “between 0 and up to, but excluding x itself”, one simply counts whether it
gives rise to 0, 1 or 2 cells at time t+ 1. After the trivial cases (cell x is deleted,
or x = 0) have been handled, the consequences of the actions of cell 0 are taken
into account. Before the while loop is started, i is the number of the first cell
6= 0 in the direction of cell x, and z is already the correct value to be returned
in case none of the cells i, . . . , x− sign(x) lead to states 6= ⊗. Subsequently, z is
increased/decreased (depending on which side of 0 is considered) when required.

function cell z ← Successor(cell x, time t) is
if σ(State(x− 1, t),State(x, t),State(x+ 1, t)) = ⊗ then return∞ end

〈 the rest is only executed if the cell isn’t deleted 〉
if x = 0 then return 0 end

〈 the rest is only executed if x > 0 or x < 0 〉
if x > 0 then

i← 1
if σ(State(−1, t),State(0, t),State(1, t)) 6= ⊗ then

z ← 1
else

z ← 0
end

end
if x < 0 then

i← −1
if ε(State(−1, t),State(0, t),State(1, t)) 6= ⊗ then

z ← −2
else

z ← −1
end

end
〈 Now, consider all cells from i up to, but excluding x, 〉
〈 and count how many non-⊗ cells they amount to 〉
while i 6= x do

q−1 ← State(i− 1, t)
q0 ← State(i, t)
q1 ← State(i+ 1, t)
if σ(q−1, q0, q1) 6= ⊗ then z ← z + sign(x) end
if ε(q−1, q0, q1) 6= ⊗ then z ← z + sign(x) end
i← i+ sign(x)

end
return z

end
Algorithm 4: Counting how many cells are generated from t to t + 1 which
are “closer to 0” than cell x.

Shrinking and Expanding Cellular Automata 11

Finally, the space complexity of the above algorithm has to be determined
depending on the length n = |w| of the input. Let t(n) be the time complexity
of the SXCA. First of all, one observes that, inside finalState, there will be
calls to State for all t from 0 to t(n). This requires a counter which uses log t(n)
space.

Secondly, the functions State, Predecessor and Successor all have a
parameter time t, and they call themselves recursively in such a way that at
least on every second recursion the time parameter is decreased by 1. Hence the
number of recursion levels is bounded by 2t(n).

It remains to determine the space needed on each recursion level in any of
the three functions. In all of them,q a constant number of cell indices have to be
stored. Since the number of non-quiescent cells can only grow from k to 2(k+ 2)
in a single global step, from an initial configuration with n ≥ 2 cellscan, after
t(n) steps, give rise to at most n · 4t(n) non-quiescent cells. O(t(n)) bits suffice
for storing the index of any cell in this resulting configuration.

Therefore the total space complexity of the above algorithm is bounded by
O((t(n)2).

12 Augusto Modanese and Thomas Worsch

5 Conclusion and Outlook

We have proven that space complexity of Turing machines and time complexity
of shrinking and expanding cellular automata are polynomially related. In the
construction we made use of both shrinking and expanding, but only in a some-
what restricted way: During a first part of the computation the CA was only
expanding, and during the second part only shrinking.

It is still an open problem to exactly characterize the set of problems which,
for example, can be decided by polynomial time cellular automata which can
only expand, but not shrink. The results may depend on the precise definition
of acceptance for XCA.

References

1. Chandra, A. K., Kozen, D. C., Stockmeyer, L. J.: Alternation. Journal of the ACM
28 (1981) 114–133

2. Fellah, A, Yu, S.: Iterative tree automata, alternating Turing machines, and uniform
Boolean circuits: relationships and characterization. In: Berghel, H. et al. (eds.):
SAC ’92 Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing:
technological challenges of the 1990’s. ACM, New York (1992) 1159–1166

3. Kutrib, M., Malcher, A., Wendlandt, M.: Shrinking One-Way Cellular Automata.
In: Kari, J. (ed.): Cellular Automata and Discrete Complex Systems. Lecture Notes
in Computer Science, Vol. 9099. Springer-Verlag, Berlin Heidelberg New York (2015)
141–154

4. Modanese, A. C. V.: Shrinking and Expanding Cellular Automata. Bachelor Thesis.
Karlsruhe Institute of Technology (2016), to be submitted

5. Rosenfeld, A., Wu, A, Dubitzki, T.: Fast Language Acceptance by Shrinking Cellular
Automata. Information Sciences 30 (1983) 47–53

6. van Emde Boas, P.: Machine Models and Simulations. In: van Leeuwen, J. (ed.):
Handbook of Theoretical Computer Science. Elsevier (1990) 1–66

