The Group of Reversible Turing Machines

Abstract : We consider Turing machines as actions over configurations in Σ Z d which only change them locally around a marked position that can move and carry a particular state. In this setting we study the monoid of Turing machines and the group of reversible Turing machines. We also study two natural subgroups, namely the group of finite-state automata, which generalizes the topological full groups studied in the theory of orbit-equivalence, and the group of oblivious Turing machines whose movement is independent of tape contents, which generalizes lamplighter groups and has connections to the study of universal reversible logical gates. Our main results are that the group of Turing machines in one dimension is neither amenable nor residually finite, but is locally embeddable in finite groups, and that the torsion problem is decidable for finite-state automata in dimension one, but not in dimension two.
Type de document :
Communication dans un congrès
Matthew Cook; Turlough Neary. 22th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich, Switzerland. Lecture Notes in Computer Science, LNCS-9664, pp.49-62, 2016, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-39300-1_5〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01435034
Contributeur : Hal Ifip <>
Soumis le : vendredi 13 janvier 2017 - 15:24:06
Dernière modification le : mardi 16 janvier 2018 - 15:35:12
Document(s) archivé(s) le : vendredi 14 avril 2017 - 19:08:49

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Sebastián Barbieri, Jarkko Kari, Ville Salo. The Group of Reversible Turing Machines. Matthew Cook; Turlough Neary. 22th International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), Jun 2016, Zurich, Switzerland. Lecture Notes in Computer Science, LNCS-9664, pp.49-62, 2016, Cellular Automata and Discrete Complex Systems. 〈10.1007/978-3-319-39300-1_5〉. 〈hal-01435034〉

Partager

Métriques

Consultations de la notice

136