The Impact of Search Volume on the Performance of RANDOMSEARCH on the Bi-objective BBOB-2016 Test Suite

Anne Auger 1, 2 Dimo Brockhoff 2, 3 Nikolaus Hansen 1, 2 Dejan Tušar 2, 3 Tea Tušar 2, 3 Tobias Wagner 4
1 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
3 DOLPHIN - Parallel Cooperative Multi-criteria Optimization
Inria Lille - Nord Europe, CRIStAL - Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) - UMR 9189
Abstract : Pure random search is undeniably the simplest stochastic search algorithm for numerical optimization. Essentially the only thing to be determined to implement the algorithm is its sampling space, the influence of which on the performance on the bi-objective bbob-biobj test suite of the COCO platform is investigated here. It turns out that the suggested region of interest of [−100, 100] n (with n being the problem dimension) has a too vast volume for the algorithm to approximate the Pareto set effectively. Better performance can be achieved if solutions are sampled uniformly within [−5, 5] n or [−4, 4] n. The latter sampling box corresponds to the smallest hypercube encapsulating all single-objective optima of the 55 constructed bi-objective problems of the bbob-biobj test suite. However, not all best known Pareto set approximations are entirely contained within [−5, 5] n .
Type de document :
Communication dans un congrès
Proceedings of the 2016 Genetic and Evolutionary Computation Conference Companion, Jul 2016, Denver, CO, United States. pp.1257 - 1264, 2016, 〈10.1145/2908961.2931709〉
Liste complète des métadonnées

https://hal.inria.fr/hal-01435453
Contributeur : Dimo Brockhoff <>
Soumis le : samedi 14 janvier 2017 - 00:40:38
Dernière modification le : jeudi 11 janvier 2018 - 06:27:32
Document(s) archivé(s) le : samedi 15 avril 2017 - 12:03:13

Fichier

wk0812-auger-RScomp-authorvers...
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anne Auger, Dimo Brockhoff, Nikolaus Hansen, Dejan Tušar, Tea Tušar, et al.. The Impact of Search Volume on the Performance of RANDOMSEARCH on the Bi-objective BBOB-2016 Test Suite. Proceedings of the 2016 Genetic and Evolutionary Computation Conference Companion, Jul 2016, Denver, CO, United States. pp.1257 - 1264, 2016, 〈10.1145/2908961.2931709〉. 〈hal-01435453〉

Partager

Métriques

Consultations de la notice

266

Téléchargements de fichiers

55