N

N

HAP: Building Pipelines with Heterogeneous Data and
Hive

Damien Graux, Pierre Geneves, Nabil Layaida

» To cite this version:

Damien Graux, Pierre Geneves, Nabil Layaida. HAP: Building Pipelines with Heterogeneous Data
and Hive. 2017. hal-01436850

HAL Id: hal-01436850
https://inria.hal.science/hal-01436850

Preprint submitted on 16 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01436850
https://hal.archives-ouvertes.fr

HAP: Building Pipelines with Heterogeneous Data and Hive

Damien Graux
INRIA
damien.graux@inria.fr

Pierre Geneves
CNRS
pierre.geneves@cnrs.fr

Nabil Layaida
INRIA
nabil.layaida@inria.fr

January 15, 2017

Abstract

The increasing number of available datasets gives op-
portunities to build large and complex applications
which aggregate results coming from several sources.
These emerging usecases require new systems where
combinations of heterogeneous sources are both al-
lowed and efficient.

To tackle these challenges, we provide a simple high-
level set of primitives — called HAP — to easily describe
processing chains. These descriptions are then com-
piled into optimized SQL queries executed by Hive.

1 Introduction

The increasing availability of data under free licenses
(open data) allows to develop innovative applications
that combine and enrich data. These applications often
have to deal with heterogeneous data — i.e. represent-
ing various kinds of information and structured using
various standards — of diverse size — e.g. datasets size
are spread over several orders of magnitude — and of
various natures since some datasets are more dynamic
than others.

The possible combinations of these three degrees
of freedom conducted to designs of specific applica-
tions dedicated to each single case, for instance effi-
cient evaluators of a chosen query language (e.g. SQL,
SPARQL. ..) in a distributed context. However, in some
usecases, existing delineations of field have to be over
crossed; indeed, aggregating results extracted from sev-
eral datasets might be required to build more complex
answers. Such a need implies to be able to efficiently
query several kinds of data structures while being able
to merge the obtained sub-results also efficiently.

Apache Hive [I1] is an open-source data warehousing
solution built on-top of Apache Hadoop [3]. As a con-
sequence, it takes as file system the HDFs [10] and con-
verts SQL (technically Hive-QL — but the fragment we
consider allow us to use the exact SQL syntax —) queries

[SQL Query]

[Apache Hive Engine}

l

[Map /Reduce Tasks] i

Figure 1: Query Evaluation Architecture.

EVAL id
CONNECT id id
FILTER id id

((columns)) [[query]]
id ((columns)) [[conditions]]
((columns)) [[filters]]

RETURN id

Figure 2: HAP Syntax.

in sequences of MapReduce jobs executed directly on
Hadoop, see e.g. Figure Therefore, Apache Hive
allows to query large datasets distributed across clus-
ter of nodes using a relational language while providing
resiliency thanks to Hadoop.

In this demonstration, we present a simple set of
primitives called HAP which uses an intermediate lan-
guage to describe processing chains which are then
compiled into a single SQL query executed with Apache
Hive (for scalability and resiliency). First, Hap al-
lows to design pipelines dealing with several kinds
of data structures queried by their conventional lan-
guages. Second, thanks to rewriting rules and statistics
on data, HAP is able to compute optimizations that the
Hive engine is not able to infer and realize.

EVAL 1 ((dep, arr ,depHour, arrHour ,stop)) [[@plane]]
EVAL 2 ((place ,restau)) [[Qdiner]]
EVAL 3 ((location , poi)) [[@tourism]]
CONNECT 1 2 x ((dep,arr,depHour,arrHour ,stop, restau)) [[place=stop]]
FILTER x y ((dep, arr ,depHour,arrHour ,stop, restau)) [[arrHour—depHour > k]]
CONNECT 3 y f ((dep,arr,poi,depHour,arrHour ,hstop,restau)) [[location=stop]]
RETURN f
(a) HAP primitives of the Demonstration Example.
select *
from (select dep arr poi depHour arrHour stop restau
from (select location poi
from (Q-tourism) as ini_3
) as 3
join (select dep arr depHour arrHour stop restau
from (select dep arr depHour arrHour stop restau
VAL K ((name)) [elect =] | FE0@i from (select dep arr depHour arrHour stop
from (Q-plane) as ini_1
;ri:let e select * from) as 1
select x ... join (select place restau
) as inij) as k from (Q-diner) as ini_2
) as 2
on (place=stop)
CONNECT i j k ((name)) [[key]] FILTER a b ((name)) [[condition]]
) as x
(select name (select name where arrHour-depHour > k
from from E]) as y
join | j where condition) as b on (location=stop)
on (key)) as k)asf

(b) Partial Translations for each Primitive.

(c) “Naive” Translation using Figure

Figure 3: Demonstration Example.

2 HAP Syntax

We propose a set of high-level primitives — called HAP —
to easily design pipelines that are compiled and pro-
cessed by Hive.

Syntax We propose four primitives, see Figure [2| for
their syntax. Each primitive deals with a set of columns
and defines also a unique identifier.

First, the initial instruction named EVAL allows to
evaluate an existing query (see Section |4 for a descrip-
tion of accepted languages). Its syntax implies to give
an ID to the task and to named the returned columns.
Second, CONNECT gives the opportunity of combining
sets of columns — results of queries by extension — ac-
cording to keys. Third, FILTER allows to give condi-
tions to refine a set of columns. Finally, RETURN is used
to have a starting point in the compilation process and
designates the set of columns (thanks to an identifier)
that should be returned. The combination of these four
primitives gives users the possibility of combining — in
few lines — subresults of already existing queries they
have without the need of rewriting them.

Technically, only one RETURN is tolerated per pro-

gram. In addition, there must obviously be unicity of
output identifiers whereas it is not the case as input
identifiers; indeed, a same result can be used at sev-
eral places in the process, in other words a “split” of
a branch can be done. Because of the restriction on
the RETURN number, we are sure that the process can
be translated into on single Hive query, which possibly
contains nested sub-queries. Thereby, the translation
algorithm is the following: starting from RETURN, it
constructs the tree of sub-queries using the paths of
identifiers defined by the CONNECT and FILTER primi-
tives until it reaches a stop condition with an EVAL.

Demonstration Example For instance, we con-
sider the following process. Suppose one has a
tourism agency with several already stored datasets
in a Hive warehouse such as transportation timesheets
(e.g. planes and/or trains), restaurant list, description
of points of interest (POIs)...and several already ex-
isting services to query each single dataset for example
“give me the next plane leaving London for NYC” or
“list the 1-star restaurants in Paris”. One possible new
usecase could be: “I want to travel from one place to

an other one as a tourist and if it exits a long enough
connexion (more than k hours) I'd like to go to the
restaurant.” This application needs to combine results
extracted from various datasets. Considering that Q-
plane, Q-diner and Q-tourism respectively extract rel-
evant information from the plane, the restaurant and
the POIs databases, the final results might be obtained
using our primitives as shown in Figure

These primitives make it possible to generate a sin-
gle query directly executable by Hive. For example, the
HAP demonstration example (Figure can be trans-
lated into the query of Figure [3c/ using the translation
rules of Figure Their advantage is that they allow
to apply a range of analysis and optimizations in the
query generation process which we now describe.

3 Optimizations

Indeed, an advantage of HAP is that it does not im-
ply users to rewrite everything but instead offers the
possibility of setting up processes in few lines while op-
timizing automatically the treatment. Even if Hive is
able to reason under specific conditions (e.g. convert-
ing joins over multiple tables into a single MapReduce
job if for every table the same column is used in the
join clauses), using HAP makes it possible to merge and
reorder sub-queries or filters.

3.1 Using Statistics on Data

As shown in Figure [1, Hive translates its queries into
sequences of MapReduce stages. As a consequence, it
will have to decide for each MapReduce stage of a join
which sequence is streamed through the reducers. Con-
ventionally, the last specified table is always chosen to
be streamed whereas the others are buffered. There-
fore, it helps to reduce the memory needed in the re-
ducer — for buffering the rows for a particular value of
the join key — by organizing the tables such that the
largest tables appear last in the sequence.

Hap attributes a weight w(id) to each identifier id.
These weights — which refer to the estimated size of
the sets — are computed using statistics on data. To
do so, HAP stores for each table T having a set of
fields {f{,..., fI'} the following information: the num-
ber of tuples in the table np, the numbers of dis-
tinct values in each field v(f{),...,v(f1). We assume
that each value appears with equal probability (uni-
form distribution) in a column. Therefore, considering
a CONNECT to obtain ids between id; and idy accord-
ing to [[f/*=f]* 11, we define the obtained weight

(1) — Joins at the same level

Default — Optimized
col; C colp Ucol,
SELECT col ¢
FROM (SELECT col. FROM C) SELECT col ¢
JOIN (FROM (SELECT col. FROM C)
SELECT col; JOIN (SELECT col,, FROM B)

FROM (SELECT col;, FROM B)
JOIN (SELECT colg, FROM A)
ON ...

) ON ...

B B

*—

ON ...
JOIN (SELECT col, FROM A)
ON ...

Cr——- C

(2) — Merging duplicate branches

Default = Optimized
col; C col, Ucoly
SELECT co\f
FROM (SELECT col, FROM A)
J0IN (SELECT col
SELECT col; FROM (SELECT col, FROM A)

FROM (SELECT col, FROM A)
JOIN (SELECT col;, FROM B)
ON condil

) ON condi2

S - '
B — B

(3) — Pushing down conditions

JOIN (SELECT col;, FROM B)
ON (condil AND condi2)

Default = Optimized
filter2 refines col,
SELECT colp
FROM (SELECT colq SELECT col ¢
FROM A FROM A

WHERE filterl)
WHERE filter2

» —{Fiter] {Fmiet]

Figure 4: Rewriting Rules.

WHERE filterl AND filter2

Filterl
Filter2

A —

w(ids) as follows:

w(id3) = min (w(idl)'w(id2) w(id1)-w(id2)>

o) ()

Similarly, the weight of an EVAL identifier is computed
going directly in the query using the same strategy as
above.

As a consequence, HAP can reorder the identifiers
of a CONNECT using the respective weights to guar-
antee that the estimated largest table is the last of
the sequence. Indeed, “CONNECT i j k ...” becomes
“CONNECT jik...” if w(i) > w(j).

3.2 Rewriting Rules

A round of static rewriting is also realized. Actually,
HAP tries to reorder the primitives according to the
rules schematically presented in Figure [4]

Nested Queries First of all, HAP tries to limitate
the number of nested sub-queries in order to increase

select
from (

dep arr poi depHour arrHour stop restau
select dep arr depHour arrHour stop
from (Q-plane) as ini_1
where arrHour-depHour > k
) as 1
join (select place restau
from (Q-diner) as ini_2
) as 2 on (place=stop)
join (select location poi
from (Q-tourism) as ini_3
) as 3 on (location=stop)

Figure 5: Optimized Query of the Example.

the Hive parallelism level. As shown in Figure [4] try-
ing to group the connections and avoiding duplications
can be done if the selected columns remain the same
between levels i.e. no new column is created (by ag-
gregation for instance).

Condition push down In a second time, HAP tries
to execute filters as soon as possible in order to limit
(at most) the size of intermediate results. To do so,
HaP pushes down filters while the columns involved in
the conditions are located on the same branch.

Considering the example shown Figure the previ-
ous optimization strategies lead to the query obtained
Figure[p] Actually, compared to Figure the FILTER
has been pushed closed to Q-plane, there is one nested
query level less and the Q-tourism query is last since
there are more POIs than planes or retaurants.

4 Heterogeneous Sources

We also extend the number of supported query lan-
guages which can be used in pipelines. Indeed, HAP
allows to query other data structures (than relational)
using the conventional language of each structure. HAP
is then able to compiled into a single query this ag-
gregation of different queries while optimizing (1) the
translation of each non-sQL query and (2) the final out-
put query (see Section .

RDF & SPARQL The Resource Description
Framework (RDF) is a language standardized by w3c
to express structured information on the Web as
graphs [6]. RDF data is structured in triples written
(s p o). SPARQL is the standard RDF query language [9].
In this context, we propose and share RDFHive: a dis-
tributed RDF datastore benefiting from Apache Hive.

HAP

Building Pipelines with Heterogeneous Data and Hive

| want to travel from |Paris + | to [Raleigh, NG | as a tourist. And | would like
to eat a [Pizza = | if I have to wait more that |2 hours during a connexion.

1
[Search.
Optimized Query g
SELECT dep arr poi depHour arrHour stop restau
FROM (SELECT dep arr depHour arrHour stop

FROM (Q-plane) AS ini_1

WHERE arrHour-depHour > k

) AS 1

JOIN (SELECT place restau

FROM (Q-diner) AS ini 2

Figure 6: Application Screenshot.

RDFHive is designed to leverage existing Hadoop in-
frastructures for evaluating SPARQL queries. RDFHive
relies on an optimized translation of SPARQL queries
into sQL queries that Hive is able to evaluate.

The sources of RDFHive are openly available un-
der the CeCILLE| license from: https://github.com/
tyrex-team/rdfhive

JSON & JSONPath JSONE| is an open-standard
format that uses human-readable text to trans-
mit data objects consisting of attribute-value pairs.
JsonPath [5] is a component allowing to find and ex-
tract relevant portions out of JSON structures. The
Hive built-in get_json_object function supports a lim-
ited fragment of JsonNPath. Thereby, HAP can also
aggregate results extracted from JSON files.

XML & XPath The Extensible Markup Language
(XML) is a w3C markup language that defines a set of
rules for encoding documents in a format that is both
human-readable and machine-readable [I]. XPath [2]
is a query language for selecting nodes from an XML
document.

When XML documents are loaded as single
string columns, HAP accepts the Hive built-
in set of functions related to XPath e.g.

xpath(xml_string,xpath_expression_string).

5 Demonstration Details

The typical demonstration scenario is based on the
touristic example introduced in Section [2] where infor-
mation about planes, points of interest and restaurants
are aggregated. This scenario, which widely extends

LCeCILL v2.1: http://wuw.cecill.info/index.en.html
2JSON website: http://json.org/

https://github.com/tyrex-team/rdfhive
https://github.com/tyrex-team/rdfhive
http://www.cecill.info/index.en.html
http://json.org/

the example previously presented, highlights several
advantages of HAP:

1. Datasources have various structures which implies
the use of various query languages e.g. POlIs
are stored in RDF — they should be queried with
SPARQL — whereas restaurants are stored in rela-
tional csv files.

2. Datasources have also different size spread over
orders of magnitude e.g. GBs of POIs and only
some kBs of planes.

3. The FILTER primitives needed in this usecase are
complex e.g in “real” datasets, locations are given
trough their latitude and longitude, thereby com-
puting distances implies to use the Haversine for-
mula.

Actually, attendees will be able to interact directly
by writing HAP programs around this usecase. More-
over, the whole process will be runnable step-by-step
in order to show the various optimizations realized, see

e.g. Figure [f]

6 Related Work & Conclusion

Accessing heterogeneous datasources can be done us-
ing multi-database systems [8] or data integration sys-
tems []. The typical solution is to define a com-
mon intermediate data model and also to provide a
query language. The dominant state-of-the-art archi-
tectural model is the mediator/wrapper architecture:
each datasource has an associated wrapper which is in
charge of the translations between the datasets and the
mediator which centralizes information. However, this
architecture, used e.g. in [7], might suffer from the
centralization of the mediator and the frequent trans-
lations done by the wrappers when datasources have
to be distributed across a cluster. On the other hand,
some systems — such as HueE| — aggregate only dis-
tributed components in order to have an end-to-end
distributed pipeline.

HAP tries to benefit from both strategies: (1) the
executions remain in a distributed context at any time
since pipelines are in fine translated into MapReduce
tasks, (2) it gets rid of wrappers/mediator bottlenecks
by storing heterogeneous datasets directly in the Hive
warehouse and (3) it uses a set of primitives which al-
lows several levels of optimization while being concise.

3Hue website: http://gethue.com/

References

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau. Extensible markup lan-
guage (xml). World Wide Web Consortium Rec-
ommendation REC-xml-19980210, 16:16, 1998.

[2] J. Clark, S. DeRose, et al.
(xpath) version 1.0, 1999.

Xml path language

[3] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107-113, 2008.

[4] A. Doan, A. Halevy, and Z. Ives.
data integration. Elsevier, 2012.

Principles of

[5] S. Goessner. Jsonpath-xpath for json, 2007.

[6] P. Hayes and B. McBride. RDF semantics. W3C
recommendation, 10, 2004. www.w3.org/TR/rdf-
concepts/.

[7] B. Kolev, P. Valduriez, C. Bondiombouy,
R. Jiménez-Peris, R. Pau, and J. Pereira. Cloud-
mdsql: Querying heterogeneous cloud data stores
with a common language. Distributed and Parallel
Databases, pages 1-41, 2015.

[8] M. T. Ozsu and P. Valduriez. Principles of dis-
tributed database systems. Springer Science &
Business Media, 2011.

[9] E. PrudHommeaux, A. Seaborne, et al. SPARQL
query language for RDF. W3C recommendation,
15, 2008. www.w3.org/TR/rdf-sparql-query/.

[10] K. Shvachko, H. Kuang, S. Radia, and
R. Chansler. The hadoop distributed file sys-
tem. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages
1-10. IEEE, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao,
P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy. Hive: a warehousing solution over a
map-reduce framework. Proceedings of the VLDB
Endowment, 2(2):1626-1629, 2009.

http://gethue.com/

	Introduction
	HAP Syntax
	Optimizations
	Using Statistics on Data
	Rewriting Rules

	Heterogeneous Sources
	Demonstration Details
	Related Work & Conclusion

