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ABSTRACT
Gesture-typing is an efficient, easy-to-learn, and error-
tolerant technique for entering text on software keyboards.
Our goal is to “recycle” users’ otherwise-unused gesture vari-
ation to create rich output under the users’ control, without
sacrificing accuracy. Experiment 1 reveals a high level of
existing gesture variation, even for accurate text, and shows
that users can consciously vary their gestures under different
conditions. We designed an Expressive Keyboard for a smart
phone which maps input gesture features identified in Exper-
iment 1 to a continuous output parameter space, i.e. RGB
color. Experiment 2 shows that users can consciously mod-
ify their gestures, while retaining accuracy, to generate spe-
cific colors as they gesture-type. Users are more successful
when they focus on output characteristics (such as red) rather
than input characteristics (such as curviness). We designed an
app with a dynamic font engine that continuously interpolates
between several typefaces, as well as controlling weight and
random variation. Experiment 3 shows that, in the context
of a more ecologically-valid conversation task, users enjoy
generating multiple forms of rich output. We conclude with
suggestions for how the Expressive Keyboard approach can
enhance a wide variety of gesture recognition applications.
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ACM Classification Keywords
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INTRODUCTION
People have been writing for thousands of years, using a wide
variety of techniques, including cuneiform on clay tablets,
carved runes, heiroglyphics, Chinese caligraphy, and illumi-
nated manuscripts. The development of moveable-type print-
ing presses brought a measure of standardization to text, since
each letter was no longer directly produced by a person. Once
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digital computers arrived, this uniformity became perfect–
digital symbolic values for each letter are defined according
to specific schemes, e.g. ASCII and Unicode, removing the
need for reinterpreting the possibly ambiguous visual appear-
ance of inked, carved, or otherwise rendered text.

This valuable reduction in ambiguity resulted in a corre-
sponding reduction in personalization that had been present
in earlier writing systems. Letters are recorded perfectly with
stylistic information stored separately, and applied to large,
heavily quantized blocks of text. For example, the subtle
emphasis encoded implicitly in a continuously varying pen
stroke is now simply rendered as a standard italic typeface.
Along with a severe reduction in the granularity of control,
this approach also discards potentially valuable channels for
implicit communication of personal style, mood or emotional
state, and temporal or situational contexts. Users can of
course edit the font, typeface size and color of the rendered
text, but this is necessarily separate from the actual text input.

Computer keyboards are usually constructed as an array of la-
beled momentary switches (buttons), but interestingly, most
mobile devices capture text input via “soft” keyboards dis-
played on high-resolution 2D touchscreens. Thus, although
the output is symbolic, the input is highly oversampled in
both space and time, giving us the opportunity to explore
more continuous forms of control. For example, dynamic
key-target resizing based on models of likely words or letter
sequences increases the apparent accuracy of soft keyboards
and partially resolves the “fat-finger” problem [13].

Gesture-typing [24] is a more interesting alternative that of-
fers an efficient, easy-to-learn, and error-tolerant approach for
producing typed text. Instead of tapping keys, users draw the
shape of each word, beginning with the first letter and contin-
uing through the remaining letters. Typically, a recognition
engine compares each word gesture to a pre-designed “tem-
plate” representing the ideal word shape. Word-gestures are
not unique for each word, but can be robustly matched using a
combination of kinematic models, multidimensional distance
metrics, and language models to resolve ambiguities. Ges-
tures that vary significantly may thus still register as correct.

As with other soft keyboards, the goal of gesture-typing key-
boards is to produce the single, “correct” typed word intended
by the user; it is either correct or incorrect, and input vari-
ation is of interest only for the purpose of designing toler-
ant recognition systems. Gesture variation is treated essen-
tially as a deformation of the correct shape and discarded
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as unwanted noise. To be sure, a small part of the varia-
tion is motor-system or digitizer noise, and cannot be consid-
ered meaningful. However human experience with handwrit-
ing clearly shows the potential for personal and stylistically-
communicative variation of output media through performed
human gestures.

What if we could leverage at least part of the natural vari-
ation in gesture-typing to increase the richness and nuance
of text-based communication channels? Mobile devices al-
ready include high-resolution sensors capable of measuring
the variation, and commercialized gesture typing systems are
widely installed and are already designed to tolerate deforma-
tions of the “ideal” gesture template. Capturing continuous
features of the variation and mapping it to properties of the
rendered text could re-enable some of the benefits of hand-
writing, such as recognizable personal styles, implicit com-
munication of mood, activity, or context; and explicit com-
munication of emphasis, sarcasm, humor, and excitement.

Expressive Keyboards
We introduce Expressive Keyboards, an approach that takes
advantage of rich variation in gesture-typed input to pro-
duce expressive output. Our goal is to increase information
transfer in textual communication with an instrument that en-
ables users to express themselves through personal style and
through intentional control. This approach adds a layer of
gesture analysis, separate from the recognition process, that
quantifies the differences between the gesture template and
the gesture actually drawn on the keyboard. These features
can then be mapped to output properties and rendered as rich
output. Before we can build an Expressive Keyboard, we must
first address four research questions:

1. Does gesture-typing performance actually vary substan-
tially across users (due to biomechanics or personality), or
context (activity or environment)?

2. Can this variation be quantified as detectible features?
3. Can users deliberately control these additional features of

their gestures while gesture typing real text?
4. How do users appropriate Expressive Keyboards in a more

realistic setting?

This paper presents related work, and then attempts to answer
the above research questions through a series of experiments
and software prototypes. Experiment 1 is designed to ver-
ify whether gesture-typing performance varies across partici-
pants and experimental conditions. We report the results and
how they led to the selection of three features that form a low-
dimensional representation of gesture variation. Experiment
2 is designed to test whether or not users can deliberately vary
both the selected features and the parameters of the rendered
output text using a simplified control mapping, while simul-
taneously typing the required text. We report on the results
and how they influenced the design of a second prototype,
which maps users’ gestures to a dynamic font. Experiment 3
is designed to collect ecologically valid in-the-wild data con-
sisting of real-world conversations between pairs of friends.
We report the result of this study, as well as users’ perceptions
of the dynamic font. We conclude with directions for future
research, including additional mappings and applications.

RELATED WORK
Much of the research on digital writing uses machine learning
to improve content recognition, e.g., by predicting the most
likely word from the context (auto-completion) [12] or by
improving spelling or grammar (auto-correction) [10]. These
systems seek to predict the user’s intention, at some level of
probability, to produce the “correct” outcome.

In each case, the output is fixed: typing on both hard and
soft keyboards produces standard output that lacks non-verbal
cues [23]. Users sometimes use bold or italic typefaces, or
ALL CAPS to emphasize a block of text. To convey more
subtle expression, users may also insert emoticons, either by
selecting them from a menu; typing a particular keyword,
e.g., ‘sad’ to produce /, drawing a gesture [21], or through
an emoticon recommendation system [22]. However, the act
of selecting an emoticon is not integral to the production of
the text and can easily distract the user from the act of writ-
ing [1, 21]. The degree of expression is also limited to the
pre-defined set of emoticons.

Enhancing Text-based Communication
Some researchers have explored how to support subtle
expression in text-based communication. For example,
EmoteMail [1] annotates email paragraphs with the sender’s
composition time and facial expression. KeyStrokes [19] uses
shapes and colors to visualize typing style and text content.
Iwasaki et al. [15] added sensors to a physical keyboard
to capture typing pressure and speed. Mobile devices offer
new possibilities for generating rich text, given their touch
screens and multiple sensors capable of capturing temporal,
spatial and contextual features. For example, Azenkot & Zhai
[3] investigated how users type on soft keyboards and found
that touch offsets vary according to how they hold the device.
Buschek et al. [6] combined touch offset, key-hold time, and
device orientation to dynamically personalize the font.

Gesture as an Expressive Instrument
A third alternative is to use gestures. Researchers who study
gesture for music or dance often take a completely differ-
ent perspective, emphasizing the continuous qualities of hu-
man gestures over recognition: individual variation is valued
rather than ignored or rejected. These researchers charac-
terize gesture variation in terms of qualities of movement:
spatial features [6, 7]); temporal features; continuity; power;
pressure; activation; and repetitions [9].

This approach to studying and using gesture contrasts with
definitions of the term from linguistics and cognitive psychol-
ogy. See McNeill [18] for a more in-depth discussion of the
competing conceptual understandings of the term ‘gesture’.

In the artistic domain, the richness of gesture can be trans-
formed into continuous output, e.g., [11], or to invoke a com-
mand [16] in a more integrated interaction. If the goal is to
make the system ‘fun’ and challenging, the system should
encourage curiosity [19]. Hunt et al. [14] found that continu-
ous, multi-parametric mappings encourage people to interpret
and explore gestures, although learning these mappings takes
time. Human gesture variation can also be affected by move-
ment cost [20], interaction metaphors and system behavior.
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QUANTIFYING VARIATION IN GESTURE-TYPING
We conducted a within-participants experiment with three
types of INSTRUCTION as the primary factor: Participants
gesture type specified words “as accurately as possible”; “as
quickly as possible while still being accurate”; and “as cre-
atively as possible, have fun!” The accurately condition
should provide the minimum level of variability for novice
gesture-typists as they try to match the word shape as closely
to the template as possible. The quickly condition might real-
istically be found in real-life gesture-typing under time con-
straints, and presumably results in greater variability and di-
vergence from the template. The creatively condition was de-
signed to provoke more extreme variation, and is not intended
to match a real-world gesture-typing scenario.

We chose three sets of 12 words that vary systematically ac-
cording to three dimensions: length (SHORT <4 characters,
LONG >4 characters); angle (ZERO, ACUTE, or OBTUSE);
and letter repetition (SINGLE, e.g., lose, or DOUBLE, e.g.,
loose). We consider angle between stroke segments because
it may affect performance [20]. For example, the word puree
is long, with a double letter ‘e’, and a zero drawing angle, i.e.
a straight line on the keyboard; taxi is short, with a single let-
ter and at least one obtuse angle: the chunk axi. Each letter
appears at least once in each set.

Participants
We recruited seven men and five women, all right-handed,
mean age 26. All use mobile phones daily, but none had used
gesture-typing prior to this experiment.

Apparatus
We developed a custom Android application running on an
LG Nexus 5 (Android 5.1) smartphone. It displays a non-
interactive Wizard-of-Oz (WOZ) keyboard that matches the
position and dimensions of a standard QWERTY English
keyboard. We use the keyboard evaluation technique de-
scribed in [4]; the WOZ keyboard collects gesture coordinates
that are later fed to a word-gesture recognizer (keyboard).

Procedure
Sessions last approximately 50 minutes. Participants sit in
a chair and hold the phone comfortably in their left hands,
so they can perform all gestures with their right index finger.
Participants are encouraged to talk aloud as they draw each
word. During initial training, participants may practice until
they feel comfortable using the gesture-typing technique.

Each trial in the experiment begins with an instruction dis-
played at the top of the screen, e.g., “Draw as accurately
as possible”, with a word centered below, e.g., queue, and
a soft keyboard at the bottom of the screen (see Fig. 1a). The
trial ends when participants lift their finger, after which they
answer a multiple-choice question as to their level of confi-
dence: “Do you think you wrote vein?” (Yes, No, or Not sure).
Each word is presented as a sub-block with 10 replications.

The experiment consists of 360 trials (12 words x 3 instruc-
tions x 10 replications). All participants begin with the accu-
rately instruction; quickly and creatively are counterbalanced
for order across participants. The 12 words are chosen from

Figure 1. Gesture variations: a) Accurately is straight, b) quickly is
smooth, and c) creatively is inflated and highly varied.

the three word sets; counter-balanced within and across par-
ticipants.

Data Collection
We record the touch coordinates in order to extract spatial
and temporal characteristics of each gesture. We later sim-
ulate the gesture data on gesture-typing recognizers, KB-1
and KB-2, to derive ACCURACY, i.e. the recognizer score
for the intended word (True=1, False=0). We also record the
participant’s CONFIDENCERATE – an ordinal measure of the
post-trial answers (Yes=1, Not Sure=0.5, No=0). The post-
questionnaire asks participants to describe how they varied
their gestures according to each instruction. We also record a
kinematic log of each gesture, using screen capture, and audio
record the participant’s verbal comments.

Results and Discussion
The first research question concerns the extent to which the
participant’s gestures vary as they gesture-type. We first ex-
amined the subjective measures obtained through the post-
questionnaire and looked at the existing variability in gesture
data to identify candidates for gesture features.

We collected 4320 unique gestures. We removed 22 outliers
(0.5%), defined as when 1) a participant said they made a
mistake, e.g. accidentally lifting the finger before finishing
the gesture; 2) they answered no to the post-trial question;
and 3) gesture length was <100 pixels. Significance rates for
confidence or recognition rate were not affected.

Figure 2. Recognized creative gestures included: a) loop and cusp for
taxi, b) visualization of crown for queen and c) scribbling on keys to
create the stars or a constellation for midnight.
Gesture Variability
Like [24], we found that participants viewed the word-gesture
as crossing through “targets” i.e. each letter in a word. Par-
ticipants changed the way they drew depending upon their
perception of the instructions. Seventy-five percent (9/12) of
the participants said they “pass through all the letters” and
“stay in the [letter] box” in the accurately condition. This
results in straight-line gestures (Figure 1a) that closely re-
semble the gesture template. Not surprisingly, participants
drew faster when asked to draw quickly, which resulted in
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smoother, more curvy gestures (Figure 1b), although two par-
ticipants mentioned that they tried to draw straight lines so it
was shorter and took less time. Almost half (5/12) said they
explicitly ignored precision when they drew quickly. Partici-
pants interpreted the creatively instruction as either to “draw
shapes along the way from one key to another” (7/12), or to
“be comfortable, likeable, or suitable” (5/12). The creatively
instruction resulted in the highest variation across gestures, as
shown in Figure 2.

Accuracy
Although recognition is not our primary goal, we are inter-
ested in how the different recognizers reacted to the variation
in the users’ gestures. We replay the recorded gesture data to
the Android MonkeyRunner event simulation tool on a desk-
top computer, which communicates with the phone using the
Android Debug Bridge. We use two recognizers (referred to
anonymously as KB-1 and KB-2) representing the state-of-
the-art for Android, with over 150 million copies installed
collectively. Both keyboards have identical dimensions but
different recognition algorithms: one is a commercial version
of SHARK2 [24]; we do not know the other approach 1.

We send the recognizer a random word between each prompt
word and erase personalization data after each participant.
This ensures that the recognition results cannot be contam-
inated by the adaptation and personalization features in the
keyboards. We expect low accuracy since both recogniz-
ers are known to use language context to resolve ambigui-
ties between word shapes in normal use, and participants did
not receive accuracy feedback during the experimental trials.
The instruction creatively was specifically intended to pro-
voke wide exploration and was not expected to give recog-
nizable results – in fact, high recognition rates would indicate
a failure to provoke adequate exploration.

ACCURACY for KB-2 (73.6% of the gestures recognized cor-
rectly) was significantly higher than for KB-1 (46.7%). One
contributing factor is that KB-1 treats leaving the keyboard
space as cancellation. However, even when these trials are re-
moved, KB-2 achieved a significantly higher recognition rate
(75% vs. 53%).

INSTRUCTION also has a significant effect on ACCURACY for
both keyboards (F2,22=140.6 and F2,22=106.3 for KB-1 and
KB-2 respectively, all p<.0001). A post-hoc analysis with
Tukey HSD showed that accuracy is significantly lower for
creatively (mean KB-1=34% and KB-2=62%), but no signif-
icant differences between accurately (KB-1=53% and KB-
2=82%) and quickly (KB-1=57% and KB-2=79%). Surpris-
ingly, for KB-1, the quickly instruction resulted in fewer er-
rors than instructions executed accurately.

Confidence Rate
Participants expressed high overall confidence in their per-
formance (83.6% Yes; 9.9% Not Sure; 6.4% No). Partici-
pants were most confident when they tried to write accurately
(87.5% Yes; 7.1% Not sure; 5.4% No), and least confident
1We anonymize the keyboards here since the goal of our investiga-
tion probably differs from that of the keyboard designers and the
samples we collected may not match typical uses of the keyboards.

when they wrote quickly (81.2% Yes; 10.2% Not Sure; 8.5%
No). For creatively (82.1% Yes), participants are less sure
whether or not they wrote the intended word: 12.4% Not Sure
and 5.5% No. Their comments indicate that they drew more
carefully in the accurately condition, which appears to have
increased their confidence.

In summary, Experiment 1 shows that novice users mod-
ify their gestures in response to different instructions, while
maintaining high confidence in their performance. Eight par-
ticipants were eager to pursue more expressive gestures when
writing, especially to generate emoticons or when communi-
cating with friends and family.

GESTURE FEATURES
The next step is to determine if the variation identified in ex-
periment one can be quantified as detectible features which
can then be mapped to text output variation. We considered
candidates from Experiment 1 as well as previously explored
gesture characteristics from the literature [7, 9]. We evalu-
ated them with respect to their applicability to gesture-typing:
Word-gestures are restricted by keyboard layout properties,
such as letter size and position, making features such as ori-
entation, direction, or scale difficult to control while gesture-
typing. We performed an ANOVA2 to determine the effect of
INSTRUCTION (user intention) on each feature.

Speed
Speed is a common measure of gesture variation, e.g., for
typing activity [19, 8] and modeling the production time of
a gesture [5, 7]. For gestures, speed is calculated by divid-
ing the total length of traced distance (in pixels) by the total
time (in milliseconds). We found that average speed is signif-
icantly affected by INSTRUCTION (F2,22=216.8, p<.0001),
where quickly is fastest (mean=1.8 px/ms), followed by cre-
atively (mean=1.3) and accurately (mean=1.07). This sug-
gests that the participants can vary the drawing speed accord-
ing to different instructions.

Since our goal is to enable more fine-grained gesture control,
we would like to increase granularity by examing each ges-
ture over chunks of movement instead of as a whole. Given
a sequence of points P = 〈(x, y)〉, we can divide P into n
chunks, where Pi is the ith sub-sequence. Thus, we calculate
the average speed (vi) of each chunk as follows:

vi =

∑n
j=0

√
(xj − xj+1)2 + (yj − yj+1)2

Ti
(1)

where Ti is the total time for Pi. Parameterizing n increases
the possibility of explorations in the feature space, which may
give similar information to acceleration but with less noise.
We started with n = 2 and compared the speed of the first
and last half of each gesture to measure speed consistency:

Ri,j =
vj
vi

(2)

2All analyses are performed with SAS JMP, using the REML proce-
dure to account for repeated measures.
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We found that participants were more likely to start quickly
and then slow down (mean R=0.83; ratios less than 1 indi-
cate drawing more slowly). An ANOVA showed that IN-
STRUCTION significantly affects the speed ratio (F2,22=35.4,
p<.0001). Drawing creatively results in the most constant
rhythm (0.91), followed by accurately (0.82) and then quickly
(0.77). Additionally, different patterns obtain when writing a
long word as opposed to a short one. Participants performed
faster at the end of long words with obtuse angles (1.1), such
as jewel, performed at constant speed with acute angles (1.0),
such as joking, and slowed down when angle=zero (0.76),
such as pure. This suggests that participants may separate
long words into separate chunks and then draw each chunk
more consistently.

Inflation
Some properties of a gesture, e.g., direction and residual mo-
mentum, may also result in unintentional inflation or over-
shooting that goes beyond the limits of the keyboard itself.
More interesting are deliberate gestures drawn outside the
keyboard, as in Figure 1c. Since the gestures are constrained
to pass approximately through each letter key in a word, we
refer to this variation as inflation rather than size, but it can
nevertheless be quantified using the ratio between the mini-
mum bounding boxes of the performed and template gestures.
We calculated the ratio between the participants’ gestures and
the gesture template’s bounding box (Rb):

Rbword =
Bgesture

Btemplate
(3)

We found a significant effect of INSTRUCTION on inflation
(F2,22=185.9, p<.0001). A post-hoc analysis with Tukey
HSD showed that words drawn creatively are significantly
more likely to be inflated; with no significant difference be-
tween accurately and quickly, which corresponds to qualita-
tive observations. Some participants intentionally drew out-
side the keyboard as they moved from one key to another, or
drew very large gestures, beyond the normal bounding box.

Curviness
While a word-gesture template consists of lines and corners,
in practice a gesture may also include curves [7]. Curviness
is usually defined as the sum of the length of each segment
whose radius of curvature is less than a certain threshold. In
our data, calculation of a normalized curviness metric was
complicated by the need to compare word templates with
varying numbers of corners. We consider the absolute instan-
taneous angle among three points using tangents. Given a
sequence of points P = 〈pi〉i...N , where N = sizeP , θ is the
angle between vector ~u = −−−−→pipi+1 and vector ~v = −−−−−→pi+1pi+2

where pi, pi+1, pi+2 ∈ P , calculated as follows:

θ = |atan2(|~u× ~v| , ~u · ~v)| (4)

To emphasize the relative variations over the gesture, we
measure the curviness (in degrees) by the standard devia-
tion of all angles. The standard deviation is close to zero for
straight lines but higher for curvy lines. For gestures consist-
ing of several segments, e.g., taxi, even if the lines are drawn
straight, the standard deviation is still affected by the corners.

Experiment 2: Block 1

CONTROL
INSTRUCTION

Consistent Different Varied
Output Make each

phrase the
same black
color.

Make each
phrase a dif-
ferent shade
of green.

Make each
phrase in-
clude at least
two colors.

Input Scribble on
each letter.

Draw at dif-
ferent speeds.

Draw outside
the keyboard.

Table 1. Examples of instructions that vary according to CONTROL (Out-
put or Input) and INSTRUCTION (Consistent, Different, or Varied).

While different words may have different numbers of corners
with different angles, we can still reliably distinguish a curvy
gesture by setting a threshold value. If all lines are drawn
relatively straight, the standard deviation is around 12; cusps
(acute corners), scribbles, and mixed straight-line/curves are
>12; while curves and loops (obtuse corners) are < 12.

An ANOVA showed that participants increase curviness when
writing quickly, which is significantly different (F2,22=60.5,
p<.0001) from accurately or creatively. These results corre-
spond to the qualitative observations.

In summary, participants tend to draw more curvy gestures
when writing quickly and straighter gestures when writing ac-
curately. This is not surprising when speed is the goal, given
that the human motor system maximizes smoothness to re-
duce movement cost [20].

EXPERIMENT 2: CONTROLLING INPUT AND OUTPUT
Experiment 2 investigates whether users can explicitly con-
trol both their movement (gesture input) and the final result
(gesture output). We chose RGB color as the output param-
eter space, since it is continuous, easy to quantify, and has
relatively unambiguous semantics – most people agree on the
meaning of the descriptor “red” as opposed to e.g. “messy”.

Block 1 is a [2x3] within-participants design with two pri-
mary factors: CONTROL, with two levels (input; output) and
INSTRUCTION, with three levels (consistent; different; var-
ied). Participants are asked to gesture type phrases either by
controlling a particular characterisic of their input, – “Go out-
side of the keyboard”; or by controlling a characteristic of
their output, – “Try to make each phrase the same color of
green”. For each type of control, participants are asked to
draw phrases that are consistent, different, or varied, as shown
in Table 1). Phrases were chosen randomly from MacKenzie
and Soukoreff’s three- or four-word phrase sets [17].

We are also interested if users can control their gestures based
on their relationship to the recipient or their current emotional
state. Block 2 is a one factor within-participants design with
two levels: message recipient and sender emotion. The task
is open-ended: participants can choose how to interpret these
instructions and make their own mappings between the in-
struction and the resulting variation in the output. Participants
gesture-type three phrases, to three different recipients or to
express three different emotions, as illustrated in Table 2. For
example: “Draw the phrase for your partner” or “Express how
you feel: happy”.
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Experiment 2: Block 2

Recipient
Draw the phrase for your partner
Draw the phrase for your best friend

Emotion
Express how you feel: happy
Express how you feel: angry

Table 2. Experiment 2, Block 2: Sample instructions based on message
recipient or sender emotion, replicated three times.

Participants
We recruited five right-handed men and seven women (mean
age 27). All use mobile phones daily. Four use gesture-typing
daily, the others are non-users. No participants had partici-
pated in Experiment 1.

Apparatus
We used the same LG Nexus 5 (Android 5.1) smartphone
as in Experiment 1. We chose KB-2 for the gesture-typing
recognizer since it allows drawing outside the keyboard area.
Touch events are captured by Android Debug Bridge running
on a desktop computer connected to the device via a USB ca-
ble. The touch data is sent back to the smartphone and post-
processed by the application to determine gesture features.

We implemented a prototype Expressive Keyboard that maps
gesture variation to the full range of RGB colors. We mapped
inflation ratio to red, curviness to green, and speed consis-
tency ratio to a gradient of blue. Gestures that use a constant
speed when following the gesture template – a straight line
from middle point to middle point of each letter in the word –
map to the color black. For example, as the user slows down,
the gesture turns from blue at the beginning of the phrase to
another color at the end of the phrase. This mapping makes
it technically feasible for users to generate all possible RGB
color combinations.

Procedure
Sessions last from 30-60 minutes. Participants sit in a chair
and hold the phone comfortably in their left hand, so they can
perform all gestures with their right index finger. Participants
are encouraged to talk aloud as they draw each word. They
are asked to practice until they feel comfortable with the rec-
ognizer and can reliably produce different colors.

Each trial displays an instruction at the top of the screen,
e.g. “Try to make each phrase a different shade of green”;
with a three- or four-word phase centered below. Participants
gesture-type three phrases in succession, on three separate
lines, according to the condition (see Fig. 5.) For exam-
ple, the Varied-Output condition “Make each phase include
at least two colors; use as many colors as you can” is ac-
complished by speeding up or slowing down to create varied
colors within each successive phrase.

In both blocks, participants may write the phrases as often as
they like, before pressing ‘next’ to submit the current result
and move to the next trial. After each condition, participants
used a five-point Likert-style scale to rate how their output
compared to their expectations.

The complete experiment consists of 30 trials: Block 1 in-
cludes 18 trials (2 CONTROLS x 3 INSTRUCTIONS x 3 repli-
cations); and Block 2 includes 12 trials (2 INSTRUCTIONS x
6 replications). Trials are counter-balanced within each block
and across participants using a Latin Square.

At the end of the experiment, participants are asked to ex-
plain how the system generated colors in block 1; how they
generated variations when asked to write to a particular re-
cipient; and how they expressed specific emotions in block
2. We intentionally did not inform participants how the map-
pings work, so that we could determine whether or not they
controlled their variation “unconciously”.

Data Collection
In addition to touch events, we record values for COR-
RECTRATE, WORDACCURACY and FEATUREACCURACY.
WORDACCURACY is when the gesture produced the correct
word; and FEATUREACCURACY is when the gesture pro-
duced both the correct word and correct output properties.
We also measure inflation, curviness, and speed consistency
ratio. To reduce noise caused by dependencies in word char-
acteristics, and to increase variation in general, we average
each measure progressively throughout each phrase. COR-
RECTRATE (0-2) measures the participant’s success in each
condition. We defined a threshold value for each condition
based on a pilot test and results from Experiment 1. For ex-
ample, in the varied-output condition, a successful trial has
a high blue value (> 100/255), and at least one other RGB
color component in RGB that differs from the other phrases
(difference ≥ 20/255). Fulfilling both conditions results
in CORRECTRATE=2, whereas fulfilling only one results in
CORRECTRATE=1. We count number of errors based on how
many times the participant erased a word before submitting a
results. We record the screen and audio throughout to capture
verbal comments.

Results
Participants were generally able to control the variation in
their gestures (overall CORRECTRATE is 1.3 out of 2.0), but
were unable to fully meet the goals of each condition. An
ANOVA showed that Both CONTROL and INSTRUCTION sig-
nificantly affect CORRECTRATE (F1,11=18.5 and F2,22=28.7
respectively, all p<.0001). Participants achieve significantly
higher success rates when controlling output (1.4) than when
controlling input (1.1) (Figure 3).

Figure 3. Participants are significantly more likely to control gestures
based on output than on input.
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A post-hoc test with Tukey HSD also showed a significant in-
teraction between CONTROL and INSTRUCTION (F1,11=37.5,
p< .0001). Participants were most successful in the Varied-
Input and Different-Output conditions (1.9 and 1.86 respec-
tively) which are both significantly different from the others.
The least successful conditions were the Consistent-Input and
Different-Input (0.6 and 0.7 respectively).

Variation in Gesture Features
A post-hoc analysis with Tukey HSD revealed a significant
interaction between CONTROL and INSTRUCTION for all ges-
ture features. Participants were clearly able to control the size
of the bounding box, as in the Varied-Input and Varied-Output
conditions, but otherwise chose not to. Participants drew
curvier gestures when in the Constant-Input and Different-
Output conditions and significantly more straight gestures
in Constant-Output. However, their natural inclination is to
draw curvy gestures with non-constant speed. Explicitly con-
trolling speed consistency appears to be more difficult.

The post-questionnaire on expectation-match level reveals
that overall, 70% of the tasks matched their expectations
(41% strongly satisfied, 18% neutral, and 12% dissatisfied).
Based on the measurement criteria, 76.4% of the tasks suc-
cessfully fulfilled at least one condition (50% fulfilled both).

Accuracy
The overall WORDACCURACY is 78.8%, which suggests that
the participants are able to control both their input and output
while retaining reasonable accuracy as compared to baselines
from Experiment 1. Overall FEATUREACCURACY is lower
at 45.1% (57.2% of correct words); participants sometimes
re-wrote correctly recognized words to modify their output
properties. The participants erased more incorrect words dur-
ing the first trial replication (mean 2.4 vs. 1 word for the
last trial replication). They also erased more correct words
to modify the output properties in the first trial replication
(mean 4 vs. 2). Both CONTROL and INSTRUCTION signifi-
cantly affect the number of errors. Participants in conditions
that focused on output made significantly more errors than in
conditions focused on input (7.2 > 2.0, F1,11=27, p<.0001).
Participants also erased significantly more often when trying
to be consistent than when trying to be different (6.5 > 2.9,
F2,22=4.3, p<.0001).

Conveying Emotion & Writing for Different Recipients
Participants varied their gestures when expressing certain
emotions or when writing to different recipients. Participants
used different strategies: six deliberately varied their gesture
input; five varied their gesture output; and only one partici-
pant varied both.

When the hypothetical recipient was their boss or their par-
ent, five participants reported they wanted to make the text
color darker, and thus wrote more slowly and accurately. In
contrast, when writing to a close friend or child relative, seven
participants said they drew more slowly, with curvier gestures
and detours, resulting in brighter colors (Fig. 5).

Three participants chose pink or red to write to their partners;
P9 drew a heart shape that left the keyboard area. Participants
expressed negative emotions using slower, straighter gestures,

resulting in darker colors. Four participants associated ‘an-
gry’ with greater speed and most expressed being busy by
drawing faster, curvier gestures. Only one participant stated
that they did not change their style of gesture-typing.

Discussion
Participants were able to control aspects of their gestures to
produce their intended outcomes, although perhaps not as
consistently as they would like. Participants found it easier
to control the output of their gestures, i.e. to explicitly con-
trol the color of a phrase, than to control the characteristics
of their input, i.e. to control the curviness, size and speed
of their gestures. Surprisingly, only 25% (3/12) were able to
correctly guess the mapping between color and their gestures.

Some participants took advantage of the variations in the
color feedback to reflect upon and modify their performance,
which was not possible for the input conditions. This
suggests that participants faced a trade-off during the first
time using Expressive Keyboard: they expended more effort
rewriting the phrase until they got the desirable colors, but
in the end were more successful in fulfilling the instructions.
Clearly, the participants need more time to practice, since
most participants were using gesture-typing for the first time.
While both types of accuracy must be improved, we believe
this is a promising start: novice users are unlikely to have
a clear understanding of how gesture recognition algorithms
work, but this should not prevent them from generating rich
output by varying their gestures.

Participants demonstrated that they are capable of drawing
certain types of gestures, e.g. extremely curvy or large ges-
tures, even if they do not choose to do so when typing without
rich output. By contrast, participants have difficulty main-
taining a constant drawing speed. Gestures typically start
quickly and then slow down, which with our mapping pro-
duces a color gradient in the Varied-Output condition. This
should be a particularly simple gesture to control, but inter-
estingly, only three found it easy and none could articulate
how it works.

Figure 4. Participants can intentionally control gesture size when asked
(BoundingBoxRatio), but do not vary it otherwise.
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Figure 5. Successful control of color through gesture: a) [instruction: Different-Output] bright-green indicates curviness, dark green indicates straight
lines; b) [instruction: Varied-Input] inflating the gesture increased red values; c) [instruction: recipients] P8 changed the color deliberately for different
recipients; d) [instruction: express emotion] P4 made curvier gestures with more detours for ‘happy’, and slow and less curvy gestures for ‘sad’.

We observed large individual differences across participants
with respect to the above features. Perhaps not surprisingly,
this suggests that each individual is likely to appropriate ex-
pressive gestures in their own way, and generate distinctive,
personal gesture styles, just as they do with their handwrit-
ing.

EXPERIMENT 3: ECOLOGICAL VALIDITY
We designed a third experiment to explore how Expressive
Keyboards are used in a more ecologically-valid setting, and
when mapped to more complex features than color. The ex-
periment is a [2x2] repeated measures with two factors: KEY-
BOARDTYPE {baseline keyboard, Expressive Keyboard} and
TEXTTYPE {user-generated, prescribed}. The baseline key-
board is a standard gesture-typing keyboard. The Expressive
Keyboard generates a dynamic font which shape and colors
changes depending on the gesture features.

Implementation
We implemented an Expressive Keyboard that maps gesture
features to a user-defineable dynamic font. The dynamic font
is created through a simple application we developed that
lets users draw each letter by defining control points. Users
can create several typefaces and dynamically interpolate be-
tween them to generate new intermediate fonts continuously.
The interpolation between n typefaces changes the position
of component control points based on a weighting function:

typefaceinterpolated =

∑n
j=1 typefacejweightj∑n

j=1 weightj
(5)

where each typeface is a vector of control points for each let-
ter.

For Experiment 3, we predefined a font with n=2; one type-
face is more skewed (italic) than the other. We used the same
gesture features as for Experiment 2, with the speed consis-
tency ratio mapped to the weight ratio for font interpolation;
inflation ratio mapped to stroke thickness (bold); and curvi-
ness mapped to the magnitude of random offsets applied to
each control point. We also used the color mapping used in
Experiment 2.

Participants
We recruited six pairs of friends, seven men and five women
(age range 19-40, mean 25.4); all use mobile phones daily.
Half of them use gesture-typing daily, the others are non-
users. No participants had participated in the two previous
experiments.

Apparatus
For the first session, we customized an Android chat applica-
tion3 to capture the gesture data as well as the typed words.
For the second session, we developed a custom Android ap-
plication that presents either the baseline keyboard or an Ex-
pressive Keyboard that renders the dynamic font. In addition,
we developed a simple font engine that lets users define static
typefaces by connecting control points to form each letter;
this software was used to design the font sets used in the ex-
periment but not in the experiment itself. For recognition,
we used KB-2 on the same LG Nexus 5 (Android 5.1) smart-
phone as in the previous experiments.

Procedure
Participants sit comfortably in a chair while gesture-typing.
The experiment is divided into three sessions. In the first ses-
sion, we set up live conversations between pairs of partici-
pants to collect gesture-typed texts in a natural setting. Each
pair of participants chat for 15 minutes without any restriction
on how to gesture-type. For the second session, we select five
sentences from the chat as the user-generated text.

The second session consists of three blocks of five trials each.
This is an individual task where the participant has to write
five user-generated and five prescribed sentences (from news,
blogs, etc). Participants are instructed to gesture-type as if
writing to their peer and to assume the peer will see the same
output. The session always starts with the prescribed text
with baseline keyboard, followed by an introduction to the
Expressive Keyboard and the mapping used. Participants are
encouraged to practice to understand how the system works;
no participant practiced longer than five minutes. For the
next two blocks participants are asked to write both the pre-
scribed and user-generated texts (counter-balanced across
participants). We do not specifically tell them how to use Ex-
pressive Keyboard and let them use it as they like. Through-
out the session, we ask the participants to describe aloud what
they want to do and what they are thinking.

The third session is a quiz (three blocks of three trials). We
ask them to gesture-type “hello” three times with specific
output goals: 1) bold and red, 2) italic and containing blue, 3)
green. Finally, we interview them regarding their preference
and hold a mini brainstorming session on how they might
define their own features and mapping if they could. An
experiment session last for 40 minutes.

3AndroidHive: http://www.androidhive.info/
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KEYBOARDTYPE
TEXTTYPE

User-generated Prescribed
WORDACCURACY

Baseline Keyboard 95% 75.4%
Expressive Keyboard 68.5% 79.5%

FEATUREACCURACY
Expressive Keyboard 55.9% 61.7%

Table 3. Accuracy in Experiment 3. Participants changed the way
they gesture-type with different keyboards, and are more likely to ex-
plore with Expressive Keyboard. Although using Expressive Keyboard
does not necessarily decrease word-accuracy, participants erased correct
words to modify the output properties leading to low values for feature-
accuracy.

Data Collection
We calculate the three gesture features as well as WORDAC-
CURACY and FEATUREACCURACY as in Experiment 2. We
log the timestamp and 2D coordinate of each touch event, and
record the screen and audio to capture verbal comments.

Results and Discussion
Out of 2312 performed gestures, we removed 183 that were
not gesture-typed, most of which were single-letter words.
For the quiz, we collected 108 gestures and removed 2 out-
liers where the participants had lifted their finger at the start
of the gesture.

Standard Gesture-Keyboard vs. Expressive Keyboard
We ran an ANOVA test to compare performance of
KEYBOARDTYPE and TEXTTYPE. WORDACCURACY
is significantly affected by KEYBOARDTYPE (F1,11=30.7,
p<0.0001). There is a significant interaction between KEY-
BOARDTYPE and TEXTTYPE (F1,11=15, p=.0001). How-
ever, further analysis with Tukey HSD showed that the only
significant difference is found when the participants wrote
user-generated text using baseline keyboard compared to Ex-
pressive Keyboard. There was no significant difference be-
tween baseline and Expressive Keyboard when writing a pre-
scribed text. This suggests that the use of the Expressive
Keyboard does not necessarily decrease WORDACCURACY;
instead the context when chatting may help the participants
better match the design parameters of the recognizer.

However, with Expressive Keyboard, there were cases in
which the participants erased a correctly-recognized word
to modify the output properties: 18.9% for user-generated
and 23.3% for prescribed. The overall FEATUREACCU-
RACY, which represents accuracy of Expressive Keyboard
is shown in Table 3. The time spent to draw a gesture
also significantly increased when using Expressive Keyboard
(F1,11=64.9, p<.0001), mean 2 seconds per word, while they
spent the least time when chatting (0.7spw).

There is a significant effect of KEYBOARDTYPE on inflation
and curviness (F1,11=30.6, p<.0001 and F1,11=5.6, p<.0177
respectively). The participants significantly inflated their ges-
tures when using Expressive Keyboard (mean 1.6) as com-
pared to baseline keyboard (mean 1.2). There is no significant
difference with regards of the speed consistency.

Figure 6. Using Expressive Keyboard in Experiment 3: a) P2 naturally
made curvy gesture (green) but made straight gestures (dark green) to
emphasize some words, b) P6 deliberately made two words (“burger
shop”) the same shape and color, c) P3 emphasized the first word, but
then deliberately made his gesture more precise (dark color) instead of
curvy.

From the post-questionnaire, we learned that the participants
took advantage of the fact that they could change the output
properties. All participants stated that they changed the way
they gesture-typed with Expressive Keyboard. Most used it
to highlight a specific word or phrase in the sentence, rather
than trying to control the appearance of every word. Two of
them mentioned they changed the properties to match their
intonation when reading the sentence. Three of them stated
that they expressed their feelings or mood when writing, e.g.
“when it’s something happy I tried to write faster [so] that
text becomes green and blue” (P6).

An interesting appropriation of Expressive Keyboard is to re-
flect on their own gesture-typing habits. P1, P10, and P11
realized that they tend to make curvy gestures, and they de-
liberately let the output change according to their natural in-
put style. On the contrary, P3 and P8 made a special ef-
fort to make the output text as similar as possible (e.g. all
black). This suggests that continuous changes to output prop-
erties can provide important feedback for the participants and
may change their behaviour when gesture-typing – not only
to customize the output, but also to try to gesture-type more
precisely.

Control of Gesture Features
In the quiz section, the average WORDACCURACY was 86%.
Participants were most accurate when controlling speed con-
sistency (33 out of 36 trials, or 92%) and curviness (32/36
or 89%), but less accurate when controlling inflation (26/34
or 76%). Further analysis revealed that the recognition error
was caused by 1) too much deformation (6 out of 15 errors),
2) faulty start or end position (6/15), and 3) removing the fin-
ger too early (3/15). This suggests that while many factors
affect recognition rate, certain types of intentional variation
may increase error to a small extent.

The instruction had a significant effect on all the gesture fea-
tures (all p<.0001). A post-hoc test with Tukey HSD showed
a significant difference between the instruction “italic” and
the others. In Fig. 7, we can see that in general the partici-
pants speed-up (mean rate=1.5) with higher variability when
asked to make the output italic; however both the value and
the variability dropped for instructions which required them
to keep the speed constant (0.86 and 0.84 for “bold” and
“green” respectively).

Similar significant differences also appear for inflation rate.
Pairwise t-tests with Tukey HSD showed that there is a sig-
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Figure 7. Participants successfully varied or kept constant the inflation
and speed consistency when instructed. They naturally made curvy ges-
tures, but could make them more curvy when instructed.

nificant difference between the instruction “bold” and the oth-
ers. However, for “green”, the inflation rate is a bit higher
(mean=1.6). Based on our observation, this is because the
participants overshot when trying to make a curvy gesture.

Meanwhile, the gestures are quite curvy for all instructions:
with means 10.9, 9.9, and 13.8 for “bold”, “green”, and
“italic”, respectively (a value of 12 indicates minimum curvi-
ness). Gestures are most curvy when instructed implicitly,
however, it is not significantly different from “bold”. This
suggests that inflating the gesture also increased curviness.
Overall, participants naturally made curvy gestures, but were
able to increase curviness when necessary.

GENERAL DISCUSSION
When provided the tools, participants took advantage of the
variation in their gestures to enhance communication. Experi-
ment 3 also confirms that participants were able to selectively
control speed and inflation, and naturally made curvy ges-
tures. Nine participants felt that using Expressive Keyboard
was more enjoyable than using a standard gesture-typing key-
board (1 neutral, 2 disagree). This means that despite the fact
that it is more time-consuming and less error-prone, the par-
ticipants were more willing to engage in gesture-typing itself.

Since all participants were necessarily novice users, a more
longitudinal study of Expressive Keyboards is needed to de-
termine whether accuracy improves with experience. Addi-
tional factors may also affect user performance when using
Expressive Keyboard, for example, in Experiment 3 six par-
ticipants mentioned that they sometimes changed their hand
position to increase the precision of their finger in gesturing,
e.g. from using thumb to index finger.

While our investigation mainly focused on intentional varia-
tion, we believe unintentional variation is as interesting and
can enrich inter-personal communication. Simply mapping
this variation to small differences in the rendered output
would generate a degree of expression that could be recog-
nizable as personal styles. A user may not specifically con-
trol their gesture when writing on a bumpy bus, yet the output
can reflect the writing process – something that handwriting

can capture easily. Conscious control of this variation would
not be required to implicitly communicate style, personality,
context, or mood. We are not interested in ‘identifying’ ex-
pression or emotion based on gestures, since we believe richer
interpretations will be result from a system in which users can
develop their own communication contexts and related mean-
ings.

In real usage, users should be able to vary the sensitivity of
the output variation or turn it off completely [2], especially in
cases where the user prefers to generate more formal output.
Users should also be able to (re)design their own feature de-
tectors, text-rendering properties, and mappings linking the
two.

Finally, we are not seeking a slavish recreation of tradi-
tional handwriting, nor a replacement for other communica-
tion channels such as emoticons. Instead, we aim for new
forms of nuanced textual communication supported by and
interacting with new technologies: touch screens, probabilis-
tic language models, vector graphic fonts, etc. The precise
ways in which these new opportunities would be used for
communicating style or emotional expression likely cannot
be designed, but must emerge through appropriation of the
system by communities of users.

CONCLUSION AND FUTURE WORK
This paper proposes a novel approach for gesture-typing that
maps gesture variation to one or more continuous properties
of the rendered text, producing rich output that is both ac-
curate and under user control. Using Expressive Keyboards,
users can simultaneously control both text content and style
– captured as changes in shape, weight, color or other output
parameters. Through a series of experiments, we established
that users do indeed vary their gesture-typing in quantifiable
ways, that they can control such variations intentionally, and
that they find a system that uses the variation to enrich the
rendered text interesting and enjoyable.

This work validates some of the concepts behind leverag-
ing variation in gesture-typing behavior, opening up a wide
range of research directions. In addition to improvements
in the variety and quality of calculated gesture features and
our dynamic font engine, we are investigating how Expressive
Keyboards might be used to improve gesture-typing accuracy
through progressive feedback.

We also plan to expand the different forms of output that can
be mapped to user gesture, including parametric emoji, hand-
writing, and nuanced speech synthesis. We are particularly
interested in studying the use of Expressive Keyboards in
ecological settings to see how it is appropriated for providing
new types of digital communication.
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