Machine Learning Agents in the Cloud to Support Smart Business Process Management

Abstract : In Virtual Enterprise, Business Processes Management is regarded as one of the most concerns of managers and academic researchers. Managing flows complexity and actors requirements in terms of high quality in less time, make this management more and more complex and push specialists to explore new promising ways. Like these researchers, we present in this paper, a modelling and simulating software toolkit called BP-EMC2 based on a generic framework baptized H-BPM. We propose a solution using machine learning agents operating in an AGR (Agent-Group-Role) organization within the Cloud. Furthermore, this paper includes a real case study of Adecco® business process deployed into its Cloud solution.
Type de document :
Communication dans un congrès
Luis M. Camarinha-Matos; Frédérick Bénaben; Willy Picard. 16th Working Conference on Virtual Enterprises (PROVE), Oct 2015, Albi, France. IFIP Advances in Information and Communication Technology, AICT-463, pp.479-488, 2015, Risks and Resilience of Collaborative Networks. 〈10.1007/978-3-319-24141-8_44〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01437915
Contributeur : Hal Ifip <>
Soumis le : mardi 17 janvier 2017 - 14:23:41
Dernière modification le : jeudi 11 janvier 2018 - 06:23:29
Document(s) archivé(s) le : mardi 18 avril 2017 - 14:11:20

Fichier

370605_1_En_44_Chapter.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Samia Gamoura, Laurent Buzon, Ridha Derrouiche. Machine Learning Agents in the Cloud to Support Smart Business Process Management. Luis M. Camarinha-Matos; Frédérick Bénaben; Willy Picard. 16th Working Conference on Virtual Enterprises (PROVE), Oct 2015, Albi, France. IFIP Advances in Information and Communication Technology, AICT-463, pp.479-488, 2015, Risks and Resilience of Collaborative Networks. 〈10.1007/978-3-319-24141-8_44〉. 〈hal-01437915〉

Partager

Métriques

Consultations de la notice

209

Téléchargements de fichiers

7