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Abstract. The research field of Brain-Computer Interfaces (BCI) emerged in 

an attempt to enable communication between paralyzed patients and 

technology. Identifying an individual's mental state, through his brain’s electric 

activity, a typical BCI system assigns to it a particular action in the computer. It 

is known that when the visual cortex is stimulated with a certain frequency, it 

shows activity with the same frequency. This Steady-State Visually Evoked 

Potential (SSVEP) activity can be used to achieve the aforementioned 

communication goal. In this work, we first analyze the spontaneous electrical 

activity of the brain, to distinguish two mental sates (concentration/meditation). 

Then, following an SSVEP type of approach, we divide the stimulating screen 

in four areas, each of which flickering at a distinct frequency. By observing the 

responding frequency from the occipital lobe of the subject, we can then 

estimate the 2 bit decision he made. We observe that such a setup is efficient for 

real time BCI, and can be easily integrated in mobile devices. Besides, the user 

is able to change voluntarily her/his decisions, interacting with the system in a 

natural manner. 

Keywords: BCI, EEG, SSVEP, Mobile Device, Tablet, Smartphone 

1   Introduction 

A biomedical cognitive control system must be able to interpret the electrical signals 

produced in our brain and distinguish different levels of activity. There have been 

various approaches taken in this area, such as event-related desynchronization and 

synchronization (ERD/ERS) [1], evoked potentials with latency of 300 ms (P300) 

[2,3] and visual evoked potentials in stationary mode (SSVEP) [4,5]. The ERD/ERS 

engaged in the study of alpha and beta waves, characterized by frequency between 8 

Hz and 12 Hz and 12 Hz to 30 Hz, respectively, which can be observed, for example, 

during an imagination task motion. P300 in an evoked potential with a latency of 

about 300 ms, which appears after a visual or auditory stimulus that requires attention 

and cause some surprise. SSVEP are elicited by retinal stimulation with a signal 
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whose frequency can vary between 3.5 Hz and 75 Hz and consist of a continuous and 

periodic signal detected in the visual cortex with the same frequencies [6]. The 

publications in this area are many and varied, ranging from the presentation of tools to 

control different devices, to new technological solutions. Among the applications that 

resulted from the above described techniques, we highlight some technological 

advances  such as: 1. Activation of a mobile robot using a BCI [7], wherein a robot is 

controlled through four imagined movement (foot, tongue, left arm and right arm) 

using ERD/ERS;  2. Application of dried EEG sensors to mobile BCIs [8], which are 

placed on the hair, and exhibit very similar results to traditional sensors that use saline 

solution or conductive gel for electrical contact; 3. Construction of a simple 

communication system using SSVEP based on BCI [9] where a user gives answers 

like "yes", "no", "good", "bad";  4. Creation of an online BCI using static visual 

evoked potential [10] where through one EEG channel the user can write a word and 

perform a search on Google; 5. Characterization of stimuli based on P300 amplitude 

[11], wherein the study shows that there are several factors which influence the 

potential analyzed, for example, the effect of motivation as possible physiological 

influence on the amplitude P300 and, finally; 6. Development of a mobile phone 

based on BCI for communication on a day-to-day [12] through SSVEP stimulation. 

In this context it is rather evident the importance of a transversal knowledge 

between neuroscience and computer science to reach new insights in BCI area, 

solving problems related to the acquisition, storage and retrieval of brain information, 

as well as creating new approaches to identify different actions on the same interface. 

This work aims to answer the question: “How to develop a solution where an user 

can interact with mobile devices naturally changing voluntarily their mental task?”. 

We propose a system consisting of two specific phases: First, the detection of an 

individual's state of concentration and second, the selection of the action to be taken 

through SSVEP after confirming the previous condition. To fulfill the first phase, the 

spontaneous electroencephalographic (EEG) signals were classified based on the 

traditional band frequency analysis (alpha band, between 8 to 13 Hz and beta band, 

between 13 and 30 Hz) [13,14]. In the second phase, the SSVEP permit to distinguish 

between at least 4 different actions that the subject would like to performed. 

2   Relationship to Cyber-Physical Systems 

A cyber-physical system (CPS) comprises the junction of computing elements with 

nature physical processes. This approach provides the development of more specific 

applications such as process control, instrumentation, medical devices and smart 

structures. In the coming age of internet of everything, the development of this type of 

system contributes to a new era of products where everyone will be connected 

everywhere. To reach such solution is necessary a flexible architecture with new 

interfaces. The research for user-friendly interfaces is increasing and one of the aims 

will be to replace keyboard and mouse computers for more effective means of 

communication. The use of touch screens, commonly available in tablets and 

smartphones, is a clear example of this demand. The project described in this paper 

presents a system that establishes the connection between machines and humans using 
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brain-computer interfaces (BCI) / Electroencephalography (EEG). The EEG is used as 

a non-invasive electrophysiological monitoring approach to identifying behavior 

patterns of brain electrical activity, while BCIs promote a direct communication 

channel between the brain and an electronic device. Using brain electrical activity 

recorded at scalp level enables intelligent monitoring systems in real-time. The use of 

sensory channels becomes a new form of input in addition to providing information 

about the status and user intent. Using this type of information, systems can adapt 

dynamically contributing to the task that one wants to run. To develop new solutions 

in this field, it is essential to understand how the brain works and manages the 

information. Referring to EEG and other biological signals such as 

electrocardiography (ECG) and electromyography (EMG), opens up a new form of 

communication between humans and electronic devices. This approach presents 

several challenges such as the efficiency of embedded systems, the implementation of 

algorithms using brain electrical impulses and distribution architectures that add 

autonomy to the devices and increase the efficiency to the communication 

mechanisms. At the end, this solution must have a high degree of robustness, and 

should enable connection to the cloud, not confined to the local control devices. 

3   Materials and Methods 

To answer the challenges in creating this BCI solution it is used the EPOC equipment 

[15] to record the EEG signals. The system comprises 14 channels (AF3, F7, F3, FC5, 

T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4) and two reference electrodes located in P3 

and P4 channels (Common Mode Sense active electrode and Driven Right Leg 

passive electrode - CMS/DRL). The device records the signals sequentially with a rate 

of 128 Hz, with a resolution of 14 bits per channel and have a frequency response 

between 0.16 and 43 Hz. In addition, it provides wireless data transmission using a 

frequency of 2.4 GHz, with a battery allowing for 8 hours of continuous work. One of 

the greatest facilities of this device is the use of saline solution electrodes instead of 

the common conductive gel to establish the contact between the electrodes and the 

scalp. The acquisition control and the complete signal classification process were 

performed by two software platforms: OpenVibe and EEGLAB. The OpenVibe is an 

open source application, multi-platform, containing various pre-programmed modules 

for signal processing. In parallel, the EEGlab, a Matlab toolbox for EEG and event 

related potentials processing, is also used, being necessary to install the plug-in 

acquisition BIOSIG data for reading data in GDF format (General Data Format) [16].  

3.1   Acquisition Protocol for Classification of the Mental State 

The signals from the 14 channels are recorded while the subject is seated with a 

straight posture with the palms on the knees, avoiding any muscular movement. A 

complete test lasts a total of five minutes. The subject is asked to switch from one 

mental state (meditation) to the other (concentration), every 30 seconds, being 

notified with a beep. In meditation he should get away from any thought focusing his 



134   P. Morais et al. 
 

attention on the breath which should be long and deep. For the state of concentration 

he should countdown of 3 in 3 from 100, while he visualizes the results.  

3.2 Signal Processing and Classification  

A band pass analog filter from 0.16 Hz to 85 Hz, together with a 50 Hz notch filter, is 

applied to the signals. Since the meditation/concentration detection states is the main 

purpose of this phase of the project, we focalized our analysis on the prefrontal cortex 

electrodes (AF3, AF4), relating with attention activities [17] and in occipital 

electrodes (O1, O2), where the alpha rhythm, which measure the level of arousal of 

the subject, is particularly intense. 

We used the OpenVibe application to implement the following steps: 1. The 

electrodes are selected; 2. A 4
th

 order Butterworth digital band pass filter between the 

alpha band frequencies (8-12Hz) is applied to the signals; 3. The signal is sub-divided 

into various time windows lasting 5 seconds with an overlap of 4.9 seconds; 4. The 

power spectral density is computed; 5. A moving average is applied. 

The identification of meditation and concentration states was performed by real-

time signal acquisition using the following criteria: if the alpha band spectrum in AF3 

electrode is below a certain threshold (in our arbitrary units this threshold is 20) then 

the state will be classified as “concentration”, else, the state will be classified as 

"meditation". If the alpha band spectrum exceeds the value 80 the corresponding EEG 

epoch is considered an artifact. 

3.3   Choosing Actions using SSVEP  

In a second stage, after checking the "concentrate" state, it is necessary to identify an 

action by means of SSVEP. To fulfill this objective it is presented to the subject a 

screen divided into four areas, each one with an image formed by a black/white 

checkerboard that oscillates at a predefined frequency. The subject option is identified 

depending on the area/image where the subject focuses its attention.  

The stimulation is made using the Psychophysics version 3, a Matlab toolbox, 

which allows imposing frequencies at 8.6 Hz, 10 Hz, 12 Hz and 15 Hz to the screen. 

The detection of the frequency emitted by the different screen areas is performed 

through the analysis of the power spectrum obtained from the electrodes O1 and O2, 

located in primary visual areas in the occipital lobe. This process allows the 

recognition of the action to be taken in a natural way. 

In this stage the signals were filtered using a 4
th

 order Butterworth digital band 

pass filter between 8-30 Hz, which comprises the alpha and beta bands. Once again, 

the analysis was performed on windows during 5 seconds with an overlap of 4.9 

seconds. Finally, the spectrogram of those signals is generated and the results were 

compared with the frequencies of the visual stimuli in order to identify the action that 

should be taken. 
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4   Results 

4.1   Meditation/Concentration 

The states identification of meditation and concentration which corresponds to the 1st 

phase of the project was performed by real-time signal acquisition. One example is 

shown next, for electrodes AF3 and O1 [Figure 1].  
 

 

Fig. 1. – Results of a 5 minutes essay in which the subject is switching from the meditation to 

concentration stage. Each state lasts 30 seconds starting with meditation. The graph represents 

the amplitude of the alpha waves in O1 and AF3 electrodes.  

 

As expected, during the concentration periods the alpha activity decreases 

substantially to values that rarely exceed the value 20 (arbitrary units). It should be 

noted in this example that the two peaks seen in between 30.0-60.0 and 150.0-180.0 

observed in O1 electrode, it is a state deconcentration unscheduled during the visual 

imagination of the subtraction results. Analyzing the values obtained, there is a clear 

distinction between the two states meditation/concentration, both on the front and 

occipital zone, although in the latter the difference is more pronounced.  

These results demonstrate that it is possible to search and identify patterns of brain 

activity consistent with the classification of this information in real time. 

4.2   SSVEP Results 

After completing the 1st stage of the process, with the concentration state 

identification, it follows the 2nd phase results, corresponding to the choice of the 

action using SSVEP. The results obtained in the spectrogram show a clear 
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identification of the 8.6 Hz, 10 Hz, 12 Hz and 15 Hz frequencies [Figure 2] (the ones 

at which the four areas of the screen flick) . 

 

 

Fig. 2. – Spectrogram with frequencies 8.6 Hz, 10 Hz, 12 Hz and 15 Hz identification using the 

electrodes O1 and O2 during the SSVEP stimulation. 

 

It was also realized that the checkerboard images in which the oscillating 

frequencies were applied, should be dispersed in the screen away from each other as 

much as possible. Besides, it is expected that the use of preset options will provide 

faster responses, compared to description of the desire. Taking an example of 

someone who wants to quench his thirst, using a grid with the image of a glass of 

water as one of the default options, will save significant time compared to writing this 

same intention.  

5 Conclusions 

The junction of the identification of a concentrated state with SSVEP will allow the 

implementation of a hybrid system with high accuracy. BCI approach allows the user 

to change voluntarily their mental task interacting with the system naturally. This 

work aims to contribute to the development of an autonomous system which allows 

monitoring in real-time mobile devices from the electrical brain activity. Associated 

with this application are the interfaces that will interact with the user. The flickering 

stimuli using checkerboard images can be replaced with icons that identify the user's 

intent with a clear differentiation of the actions to be taken. At the same time it should 

be evaluate the disruption that may be caused by peripheral vision of a concentrated 

individual, in order to remove this undesirable activity from the signal. We also 

believe that the use of higher frequencies will provoke a decreasing in visual fatigue 

caused by the oscillation of the image, making the system more comfortable. The 

presented approach should be tested in a statistical significant number of individuals 

to identify more precisely the degree of accuracy of the results.   
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