Automatic EOG and EMG Artifact Removal Method for Sleep Stage Classification

Abstract : In this paper, a new algorithm is proposed for artifact removing of sleep electroencephalogram (EEG) with application in sleep stage classification. Rather than other works which used artificial noise, in this study real EEG data contaminated with electro-oculogram (EOG) and electromyogram (EMG) are used for evaluating the proposed artifact removal algorithm’s efficiency using classification accuracy. The artifact detection is performed by thresholding the EEG-EOG and EEG-EMG cross correlation coefficients. Then, the segments considered contaminated are denoised by normalized least-mean squares (NLMS) adaptive filtering technique. Using a single EEG channel, four sleep stages consisting of Awake, Stage1 + REM, Stage 2 and Slow Wave Stage (SWS) are classified. A wavelet packet (WP) based feature set together with artificial neural network (ANN) are deployed for sleep stage classification purpose. Simulation results show that artifact removed EEG allows a classification accuracy improvement of around 14 %.
Type de document :
Communication dans un congrès
Luis M. Camarinha-Matos; António J. Falcão; Nazanin Vafaei; Shirin Najdi. 7th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr 2016, Costa de Caparica, Portugal. IFIP Advances in Information and Communication Technology, AICT-470, pp.142-150, 2016, Technological Innovation for Cyber-Physical Systems. 〈10.1007/978-3-319-31165-4_15〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01438238
Contributeur : Hal Ifip <>
Soumis le : mardi 17 janvier 2017 - 15:37:36
Dernière modification le : mardi 17 janvier 2017 - 15:49:45
Document(s) archivé(s) le : mardi 18 avril 2017 - 15:09:57

Fichier

 Accès restreint
Fichier visible le : 2019-01-01

Connectez-vous pour demander l'accès au fichier

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Citation

Ali Gharbali, José Fonseca, Shirin Najdi, Tohid Rezaii. Automatic EOG and EMG Artifact Removal Method for Sleep Stage Classification. Luis M. Camarinha-Matos; António J. Falcão; Nazanin Vafaei; Shirin Najdi. 7th Doctoral Conference on Computing, Electrical and Industrial Systems (DoCEIS), Apr 2016, Costa de Caparica, Portugal. IFIP Advances in Information and Communication Technology, AICT-470, pp.142-150, 2016, Technological Innovation for Cyber-Physical Systems. 〈10.1007/978-3-319-31165-4_15〉. 〈hal-01438238〉

Partager

Métriques

Consultations de la notice

99