
HAL Id: hal-01438400
https://hal.inria.fr/hal-01438400

Submitted on 17 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

An Interface Pattern Model for Supporting Design of
Natively Interoperable Systems

Vincent Chapurlat, Nicolas Daclin, Stéphane Billaud

To cite this version:
Vincent Chapurlat, Nicolas Daclin, Stéphane Billaud. An Interface Pattern Model for Supporting
Design of Natively Interoperable Systems. Marten van Sinderen; Vincent Chapurlat. 6th International
IFIP Working Conference on Enterprise Interoperability (IWEI), May 2015, Nîmes, France. Lecture
Notes in Business Information Processing, LNBIP-213, pp.171-185, 2015, Enterprise Interoperability.
<10.1007/978-3-662-47157-9_15>. <hal-01438400>

https://hal.inria.fr/hal-01438400
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

An interface pattern model for supporting design

of natively interoperable systems

Vincent Chapurlat1 , Nicolas Daclin
1
, Stéphane Billaud

1

1 LGI2P, Parc scientifique G. Besse – Ecole des mines d’Alès, 30035 Nîmes cedex, France

surname.name@mines-ales.fr

Abstract. This article focuses on the interoperability feature seen as a specific

requirement. Indeed, any complex system (e.g. a train, an organisation or an IT

system) need to interact with other systems, thereby forming a heterogeneous

environment. All these systems are not necessarily designed to function

properly and efficiently with one another, whether from a conceptual, technical,

behavioural or organizational standpoint. This paper highlights what seems to

be relevant in terms of conceptual definitions and modelling framework

whenever a (group) of engineer(s) intends to design what we call here a

“natively interoperable system” or, at least, a system maximizing its

interoperability capabilities. To proceed, as a first prerequisite, a definition of

the concept of interoperability is here proposed for complex system

engineering. The second prerequisite consists of establishing the needs of a

design team assigned to design such “natively interoperable system”. An

interface pattern model with sufficient generic, formal and pragmatic qualities

is then proposed and illustrated briefly.

Keywords: System Interoperability, Natively interoperable systems, Design for

Interoperability, Interface pattern model

1 Introduction

Many examples from industry have highlight that a lack of interoperability of

systems leads to delays, failures, dysfunctions or shortcomings all along these

systems’ life cycle; problems that can be much more manageable if they are

characterized and detected earlier in the system’s design stage. So, various research

and development were focused on interoperability management problematic

particularly over the last decade considering interoperability as an essential feature of

any kind of technical or socio technical complex system (e.g. a transportation system

or a Collaborative Network of Organisations [1]). The goal is to design a system able

to assume its mission and for this able to maximize and maintain its abilities to

interact efficiently with other systems (technical or sociotechnical, more or less

complex themselves) in various situations, even more or less unpredictable,

throughout its life cycle and without unwanted effects that can affect the behaviour of

each systems involved in the interaction. In this sense an interaction, requested or not,

consists to exchange and share items from different nature (digital i.e.

mailto:surname.name@mines-ales.fr

data/information/knowledge, physical i.e. any kind of energy field, or material e.g.

raw material, product, part, or waste). Further, an interoperable system must perform

efficiently its mission independently from other systems with which it must interact

for achieving this mission. However, lot of systems are currently more or less

designed in order to be integrated into a given and fully identified upper-level system.

These practices limit drastically the analysis of the real expected system

interoperability, for instance, in avoiding unexpected or reverse effects that the

interface is unable to prevent or, failing this, to protect the system itself. Last, even if

important recommendations and standards are now available for instance concerning

Health Care systems [2], IT systems [3], or Defence systems [4] design, the notions of

interoperability requirements, interoperability analysis issues, interface or interaction

still remain poorly formalised in engineering activities.

This article aims to propose conceptual elements for supporting complex system

design stage taking into account requested system’s interoperability. The goal is to

help engineers’ teams to design a so-called “natively interoperable system”. First,

definitions of system interoperability and interoperability requirements, obviously, of

natively interoperable complex system are proposed. Second, an interface pattern

model is needed to face design issues of such systems. This is done adopting a set of

pre-requisites conceptual and then generic definitions (processor, interaction,

effect…) that can be applied to various nature of systems. The goal is to provide

engineers with modelling language and, by evidence, a verification tooled approach

allowing them to confirm and to check whether the considered system can avoid

defects due to its interaction with other systems under all specified conditions via its

interfaces.

2 System interoperability / Interoperability requirements

Definition of interoperability depends of the application domain
1
 and authors e.g.

[5, 6, 7, 8, 9]. The goal here is to propose and adopt (in this paper at least) a definition

of system interoperability for the purpose of system design stage. Classically,

interoperability is "connecting people, data and diverse systems. The term can be

defined either technically or comprehensively, in taking into account social, political

and organizational factors". Then, "two or more devices are said interoperable if,

under a set of conditions, the devices are able to successfully establish, sustain and, if

necessary, break a link while maintaining a certain level of performance". In

1 The reader can find various interoperability definitions used in this section in glossaries

available on [last visited and checked 2011-04-12]: http://dli.grainger.uiuc.edu/glossary.htm,

http://www.eu-share.org/glossary.html,

www.csa.com/discoveryguides/scholarship/gloss.php,

www.naccho.org/topics/infrastructure/informatics/glossary.cfm,

ec.europa.eu/transport/inland/glossary_en.htm,www.nato.int/docu/logi-en/1997/defini.htm,

www.cs.cornell.edu/wya/DigLib/MS1999/Glossary.html,

www.ibtta.org/Information/content.cfm, dli.grainger.uiuc.edu/glossary.htm, cloud-

standards.org/wiki/index.php, en.wikipedia.org/wiki/Interoperability,

wordnetweb.princeton.edu/perl/webwn, www.anzlic.org.au/glossary_terms.html

http://dli.grainger.uiuc.edu/glossary.htm
http://www.eu-share.org/glossary.html
http://www.google.fr/url?q=http://www.csa.com/discoveryguides/scholarship/gloss.php&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBoQpAMoCg&usg=AFQjCNFL4KyPQ6CwT_o9I3FKXtnqZ_85fg
http://www.google.fr/url?q=http://www.naccho.org/topics/infrastructure/informatics/glossary.cfm&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBwQpAMoDA&usg=AFQjCNFUVNi7bdv5zaIV0IRihgcTgENYew
http://www.google.fr/url?q=http://ec.europa.eu/transport/inland/glossary_en.htm&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBQQpAMoBA&usg=AFQjCNEJ6eYG3ed4rlsHqU6n0dF0EwPDxw
http://www.google.fr/url?q=http://www.nato.int/docu/logi-en/1997/defini.htm&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CB0QpAMoDQ&usg=AFQjCNEGjg7-v1axlA_5G05iVVUtkEgBuA
http://www.google.fr/url?q=http://www.cs.cornell.edu/wya/DigLib/MS1999/Glossary.html&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBcQpAMoBw&usg=AFQjCNF4kozPS7czuNHTq8KZFMqgb6JeGg
http://www.google.fr/url?q=http://www.ibtta.org/Information/content.cfm%3FItemNumber%3D1241&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CB4QpAMoDg&usg=AFQjCNGQ5P2M0rKjUazOGRUORwSiyrmwoA
http://www.google.fr/url?q=http://dli.grainger.uiuc.edu/glossary.htm&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBsQpAMoCw&usg=AFQjCNG9pU3envMtHatZZhRWXv3aoyP9jA
http://www.google.fr/url?q=http://cloud-standards.org/wiki/index.php%3Ftitle%3DOpen_Cloud_Computing_Interface_Terms_and_Diagrams&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBkQpAMoCQ&usg=AFQjCNHyBOLn4C_YLFJQJ5H5p66ZbOH55w
http://www.google.fr/url?q=http://cloud-standards.org/wiki/index.php%3Ftitle%3DOpen_Cloud_Computing_Interface_Terms_and_Diagrams&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBkQpAMoCQ&usg=AFQjCNHyBOLn4C_YLFJQJ5H5p66ZbOH55w
http://www.google.fr/url?q=http://en.wikipedia.org/wiki/Interoperability&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBEQpAMoAQ&usg=AFQjCNHQhXshhgR9p1tR4xKF2Ct07fPYIQ
http://www.google.fr/url?q=http://wordnetweb.princeton.edu/perl/webwn%3Fs%3Dinteroperability&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBAQpAMoAA&usg=AFQjCNEQZd3VksO08tpnSRRNzHytPKhpiw
http://www.google.fr/url?q=http://www.anzlic.org.au/glossary_terms.html&sa=X&ei=7Vc9TZj5HNqV4gb7mdi9Cg&ved=0CBYQpAMoBg&usg=AFQjCNGSOkn6Li5x39mM7oW9kYnw5mEpMg

technical systems, interoperability is "a property of a product or system, whose

interfaces are completely understood, to work with other products or systems, present

or future, without any restricted access or implementation". In socio-technical

systems, it is defined as "a property referring to the ability of diverse systems and

organizations to work together", i.e., to inter-operate. For instance, enterprise

interoperability is defined as "a cooperative arrangement established between public

and/or commercial entities (authorities, parking facility operators, etc.), wherein tags

issued by one entity will be accepted at facilities belonging to all other entities

without degradation in service performance". In the same manner, interoperability is

considered as "the ability of a system or product to work with other systems or

products without special effort from the customer". In the military field, NATO

defines also interoperability as "the ability of systems, units or forces to provide

services to - and accept services from - other systems, units or forces and to use these

services so exchanged to enable them to operate efficiently together". Last, in

transportation systems, interoperability seems to be achieved when "a transport

network [is suitable] for movements without breaking bulk".

Thus we propose defining system interoperability as:

"The set of abilities and associated capabilities of a system (namely “S” from now)

that allow S to be and to stay able to exchange and work harmoniously with other

systems from its upper level all along its life cycle:

 To fulfil a common mission (i.e. the main function for which the overall system is

designed), possibly time-bounded, while remaining able to perform its own

mission and to reach its own objectives through the use of exchanged items with

other systems then when S is interacting with these systems whatever may be their

nature;

 In all specified operational situations (e.g. nominal functioning mode, or

functioning modes when facing a risky situation) met throughout its life cycle;

 Reflecting the stakeholders’ requirements under every specified situation.

This capability indicates and allows assessing before, during or after the interaction -

and when placed in its environment – that S does not require or result in major

changes to its operations, structure or behaviour; consequently, its functional and

non-functional requirements (performance, security, safety, ergonomics, human

factors, etc.) are not altered. Moreover, this does not induce undue adverse effects

(dysfunctions, risks) when S is achieving its mission independently of every other

system".

As a consequence a natively interoperable system S is "a system designed to

maximize its ability to interoperate all along its life-cycle". During S design stage,

engineer has to consider carefully this expectation and shall "[...] ensure the

compatibility, interoperability and integration of all functional and physical

interfaces and then ensure that system definition and design reflect the requirements

for all system elements: hardware, software, facilities, people, and data" [10]. To this

purpose, one or several interfaces are requested. An interface is defined in [11] as "a

boundary across which two independent systems meet and act on or communicate

with each other". That requires, at least by adhering to published interface standards

or by making use of a 'broker' of services able to assume interface role between S and

other systems, possibly, “on the fly”. Communication, synchronization or even

exchange protocols must be defined and applied.

3 Interface elements: prolegomena

Let's recall briefly a set of concepts from the literature on system sciences [12, 13,

14] and some theoretical foundations of Systems Engineering defined as "an

interdisciplinary approach and means to enable the realization of successful systems

[socio-technical or technical systems]. It focuses on defining customer needs and

required functionalities early in the development cycle, documenting requirements,

and then proceeding with design synthesis and system validation while considering

the complete problem" [15, 16, 17].

A processor aims to transform items (digital i.e. data/information/knowledge,

physical i.e. any kind of energy field, or material e.g. raw material, product, part, or

waste) transported by input flows, into new items transported by output flows, under

the control of other flows and by using resources that support or are involved in

processor functioning. As an example, S is a processor, a function, an activity or a

process when considering its functional view; moreover, a component or an

organizational unit involved in S is a processor when considering physical view

(organic, organizational).

Component

C1

Component

C2

Cable

(voltage)

To

determine

position

To compute

path

position

Processor
input output

control

support /

mechanisms

Processor

modelling

language (high

abstraction level)

Business modelling languages

(low abstraction level)

Enhanced

Functional

Flows Block

Diagram

(eFFBD)

To

determine

position

To

compute

path
position

Activity

diagram

from SysML

To

determine

position

To

compute

path

position

Physical

Block

Diagram

(PBD)

CableComponent Component

C1 C2

Functional view Organic view

Process

model

BPMN

To

determine

position

To

compute

path
position

M

Internal

block

diagram

SysML

B1:

Component

C1

B2:

component

C2

cable

« block »

Cable

Fig. 1. From high abstraction level to low abstraction levels of modelling

Figure 1 shows the links between an abstract modelling language proposed in the

SAGACE approach [13] and some equivalent notations used in various domains such

as eFFBD (enhanced Functional Flows Block Diagram) [18], PBD (Physical Block

Diagram), BPMN 2.0 (Business Processes Modelling Notation) [19], Activity or

Internal Block Diagram from SysML [20]. So, all of the proposed concepts discussed

below can be applied independently of the adopted modelling language. This step

offers a freedom to the designer in choosing the most relevant modelling language

when addressing system S interfaces design.

The processor behaviour is described by a transformation that details the inputs

flows/outputs flows treatment provided by the processor. This transformation may be

described by modelling the modification induced by the processor on one or more

characteristics of each item transported by input flows, so as to obtain new or

modified items transported by output flows. More generally, the characteristics of any

concept are named formally Space, Shape, Time attributes i.e. SST attributes in the

next: Space (e.g. type, definition domain, instantaneous value / default value…),

Shape (e.g. optical, electromagnetic, signal, binary, or linked to the aspect of the

pointed out item if it can be considered as dependent from one or several of five

senses) and Time (update frequency, maximum life cycle before updating…) (Figure

2).

Fig. 2. SST attributes categories and examples in use

Analytical methods can be applied (1) to assess processor performance (e.g. in

terms of costs, QoS or response time); and 2), to check some of the functional and/or

non-functional requirements (e.g. by evaluating various "-ilities"2) the processor

must respect in accordance with Stakeholders’ expectations and constraints.

2 « developmental, operational and support requirements a program must address (e.g. availability,

maintainability, vulnerability, reliability, or supportability) » [15, 24] i.e. a kind of non-functional

requirement (NFR)

An interaction is an oriented relation between an emitter processor P1 and one or

more receiver processors {P2, … , Pn} denoted {Pi} . There is an interaction when (1)

an exchange of one or more identified flows or service between P1 and {Pi} is

identified and/or (2), one or more fields F generated by P1 can impact {Pi}. An

interaction is planned or desired, or alternatively unwanted or unintentional. In all

cases, it can cause an effect if the interaction (1) affects one or more P2 SST

attributes, and/or (2), impacts the set of requirements (including interoperability

requirements) to respect by {Pi}, in one of various characterized ways, that means

[21]:

 Feared / Harmful. At least one characteristic of {Pi} becomes inconsistent with the

necessary conditions to survive. In this case, the identified relation causes the

emergence of behaviours or physical phenomenon that are often inappropriate,

such as resonances, electromagnetic interferences and thermal effects, thereby

inducing rather risky situations (accident, incident, or malfunction) or damage to

operational modes at the source and destination(s). They have to be avoided or

simply modified.

 Required but absent. The effect should exist but remains absent for various reasons

such as design mistakes or errors. In this case, some non-functional requirements

concerning P1 and {Pi} have not been verified (performance, safety, security, etc.).

 Required and present. The effect exists and moreover is considered necessary. All

requirements concerning P1 and {Pi} are checked so this effect cannot be removed

or even modified.

 Required then appropriate but insufficient or excessive: The effect exists some

non-functional requirements concerning {Pi} are not checked yet (performance,

safety, security, etc.). So, the effect must be analysed in order to be improved or

reduced.

The effect can be derived from various dimensions, depending on the technical or

socio-technical nature of processors P1 and {Pi}. Figure 3 shows the proposed effect

model inspired by the substance-field model originally proposed in [22]. In this

model, a field F is from thermal, mechanical, pressure, biological or other nature. A

list of available fields is given in [21] and [23] proposes a database of potential effects

that can help designers to identify appropriate solutions for modifying the interaction.

After defining these concepts, S must respect [25, 26] stakeholders’ requirements

separated into functional (i.e. "what must the system do?") and non-functional ("what

are the system's expected characteristics of performance, “-ilities” and constraints

supposed to do?") requirements. In our case, interoperability might concern both

functional and non-functional aspects of S.

The next formalizes the notion of interoperability requirement inspired by [27]

(applied to collaborative processes).

P1

interacts with P2

Conventional
representation

Feared /
Harmful

Excessive but
appropriate

Insufficient but
appropriate

Required
but absent

Present and
required

Interface
objectives

Effect
interpretation

must be detected
and avoided

must be checked
and preserved

must be created
and preserved

must be reduced
and preserved

must be improved
and preserved

P1

Field(s)

P2

There is an effect from P1 to P2 when the interaction 1) induces
one or more P2 TSS attributes variation and/or 2) impact
requirements of P2 and/or 3) make appear one or more Fields F
that can impact P2

Flow(s) / Service(s)

From source = Processor (Component /
Interfaced or enabling system,
Sub-System, Actor, Organization)

To target(s) = Processor
(Component/system, Sub-
System, Actor, Organization)

Exists because:
- Induces TSS attributes variation
- Impact one or more
requirements of target(s)
- Make appear one or more
Fields in the area: Physical,
Human / social, Finance,
Organizational

Have to be analysed and interpreted in
order to define potential defects
or risks to be avoided (technical
or industrial, environmental,
financial, human, ...)

Considered then as: Feared / Present and
required / Required but absent /
Excessive but appropriate /
Insufficient but appropriate

Effect model definition Effect model elements

Fig. 3. Effect model principle

These requirements are split up into 4 categories such as:

 Compatibility. S can send and receive flows from other systems in its

environment whenever such interactions are needed. This ability is driven by

respecting technical standards, communication protocols for technical

compatibility or organizational rules and policies for organizational compatibility,

described respectively as technical compatibility requirements e.g. required

frequency of the exchange and organizational compatibility requirements. These

must be recognized by all systems having to interact with S.

 Inter-operation. S operates seamlessly with the other systems in its environment

by taking into account flows content being exchanged to fulfil its mission;

moreover, it is able to control, adapt or anticipate problems promptly. S can also

influence, not necessarily intentionally, other systems through both desirable and

adverse effects. In this case, the term interoperation requirements could be

referenced e.g. lifetime of any item transported before its obsolescence in taking

into account states and modes of operation at the origin and relation target (ready,

stop, etc.).

 Autonomy. S is independent of other system operations and behaviour. Autonomy

may be decomposed into decisional autonomy (where S assumes its governance

and remains capable of deciding actions) and operational autonomy (where S

remains capable of preserving its performance in terms of cost, schedule and

quality of service). At this point, it becomes necessary to consider decisional

autonomy requirements and operational autonomy requirements.

 Reversibility. The relationships between S and the other systems are completely

reversible, i.e. S can return to an identified configuration or state without causing

any problems (dysfunctions, loss of performance, requirement violations, etc.)

requiring difficult to manage changes once S no longer needs to exchange with the

other systems in its environment. Relationship reversibility requirement is the term

introduced here.

Last, a causality rule exists whereby: "a processor A will be interoperable with

processor B if all elements that compose (from different sources) or refine (from the

same source) A and are involved in the interaction relationship with B do not cause

interoperability problems, i.e. A and B respect interoperability requirements

regarding their own role and objectives within the interaction".

Considering these new classes of requirements, requirements checklists classically

used in industry can be then enriched as proposed in Figure 4.

Fig. 4. Enriched requirements checklist

All concepts previously described are requested for designing interfaces as follows.

4 Interface model pattern

An interface is "the common logical and/or physical border between two or more

components (here, processors) or between the system (a processor) and its

environment (a upper-level processor), at which the rules of exchange, compatibility,

integrity and non-regression are to be respected throughout the system's life cycle".

From a theoretical point of view, an interface allows P1 and each Pi {Pi} to:

 Exchange the requested flow(s) or service(s). In due course, it must consider (in

the receiver role) or make available (in the emitter role) the items carried out by

the(se) flow(s) or requested by the service(s). Among other abilities, this set-up

must:

- Provide functional skills: emit, receive, transport, adapt (e.g. convert the input

format of the exchanged flows), separate, protect, authorize the interaction,

involve another processor, manage the items (e.g. store, retrieve), etc.

- Respect all stakeholders’ requirements, especially, interoperability

requirements.

 Protect them from, or avoid, the potential effects induced by the interaction, or, at

least, be able to contain the inappropriate effects within acceptable limits. To this

purpose, its behaviour has to be adapted and/or a set of protection mechanisms or

barriers must be designed to limit risky situations, for instance inspired by

resilience engineering principles [28].

So we propose in the next an interface pattern model enabling engineers to model

and analyse interactions between any type of systems and other systems composing

the environment then to build and check interfaces.

An interface is conceptualized as a processor P intending to establish a connection

between a processor P1 (system, component, subsystem, business unit or actor) with

its environment composed of a set of processors {Pi} in order to (objective 1)

transport flows between P1 and {Pi} (or vice versa) and/or (objective 2) protect from,

in the sense of avoiding, unwanted effects between P1 and (at least) one of the {Pi}

processors resulting from relationship implementation. Considering interface design

and following system design principles (e.g. as proposed in [29, 16]), three cases must

be raised:

 Designing a native interoperable processor P induces the design of each needed or

potential interface, by considering each interface as a sub-processor of P.

 Improving the interoperability of an existing processor P can induce global or

partial re-engineering of each of its interfaces, considering that each processor P1

found to play the role of interface can either replace one of the parts of P or be

added to P.

 Improving the interoperability of processor P, by considering P impossible to

modify (e.g. P must be definitively integrated into a more complex processor P’,

perhaps assumed to be the upper-level system). It induces the design and addition

of new interfaces between P and the other processors from the environment.

In accordance with the basic principles of Systems Engineering approach, and as

illustrated in Figure 5 an interface can be viewed as a processor characterized by:

 Interface purpose: The interface (objective 1) "allow to ensure the exchange of

flows or services between two or more systems (components / functions / actors or

business units having to be identified), as expected from an efficient (in terms of

resources used) and effective (with positive results) way", or (objective 2)

"contributes to improve the protection of a system (to be identified) from an

efficient and effective way, in taking into account other systems with which the

interaction is not mandatory or even inevitable".

Fig. 5. Interface Pattern Model

 Interface mission: An interface (objective 1): "ensures the requested interaction

i.e. exchange of flow(s), service(s) (themselves inducing exchange of flows)" or

(objective 2) "limits the effects of the interaction between identified processors

(systems / components / functions / actors or business units) from an efficient (in

terms of resources used) and effective (with positive results) way".

 Interface objectives: An interface must respect overall functional and non-

functional requirements (including interoperability but also, for instance,

performance, ergonomics, constraints, or verification requirements). They are

induced or come from the identified processors in relation. At least, an interface

must improve the identified processors interoperability (i.e. compatibility,

interoperation, autonomy and reversibility), reduce effects (having to be detected,

identified and then modelled by an effect model) following the interface objectives,

interchangeable, reliable, affordable, scalable, manageable and interchangeable

(Figure 5).

 Interface typology: logical or functional at first during the design process, it will

become physical, human-machine (HMI) or organizational interface. So, it is

proposed to distinguish the functional or logical interface, from physical, human-

machine and organizational interfaces as follows:

 Functional interface: between functional entities (e.g. functions from functional

architecture). The designer creates functional interfaces between functions that

model the flows to be exchanged (data, material, energy) in the role of input,

output, control (trigger) or resource flows. This notion of function requires

determining:

 types of carried out items, contents, origin (external of the system of interest

or internal), and respective roles in the system;

 whether or not a communication protocol and exchange is requested and

formalized;

 whether a treatment protocol or flow adjustment is needed taking into

account interoperability requirements;

 whether a synchronization protocol or source and target(s) adjustment is

requested.

After allocating functions to the processors, the functional interface evolves into the

physical, human-machine and/or organizational interfaces, which are then required

between the system under design, and its context, or else between subsystems and

components.

 Physical interface: between the system to be designed and components or

subsystems forming its context [11, 29, 30]. These interfaces are required to:

- Enable operating functions on physical flows and hence meeting the functional

requirements. For instance, [11] distinguished five types of physical interfaces:

- Spatial: related to physical adjacency for alignment, orientation,

serviceability, assembly or weight;

- Structural: related to load transfer or content;

- Material: related to the transfer of airflow, oil, fuel or water;

- Energy: related to the transfer of heat, vibration, electric or noise energy;

- Information: related to the transfer of signals or controls;

- Respect non-functional requirements (performance, “-ilities” such as

interoperability when considering non-functional aspect of interoperability, and

abilities, e.g. emission, reception, or transport of a flow);

 Human-Machine interface (HMI): The activities required for user interface

design are already detailed for instance in [30].

 Organizational interface: These interfaces are required between actors and

organizational units involved in and required to play roles in the system of

interest. Exchanges become necessary in conducting sharing, collaboration,

communication and cooperation when performing activities to: produce /

manufacture, deliver, store, sell, buy, design, manage, control, verify, plan,

teach and organize training periods for stakeholders, qualify actors' profiles,

decide, etc. These interfaces can be modelled as a collaborative working process

model or a virtual organization model for instance.

 Interface SST attributes. The goal is to define what are the requested SST

attributes of the requested interface, for instance, in terms of potential physical

elements that can be used to implement the interface (communication components,

connections, ports, links, etc.) as illustrated in Figure 2 and such as:

- Time e.g. duration for connection,/disconnection, maximum delay before

updating value or life cycle duration before obsolescence of the carried out items;

- Shape e.g. dimensions (L*H*D), geometry, weight, radiation from various

nature (see the list of possible fields in the effect model);

- Space e.g. position, speed, transfer speed...

 Interface functioning modes / operational scenarios and configurations: As any

component, an interface evolves all along its life cycle by passing from a

functioning mode to another one, highlighting then various behavioural scenarios

and configurations. An approach for discovering and analysing these

characteristics are detailed in [31].

 Interface functional architecture: The interface must transform one or more

flows stemming from an emitter system to a (set of) receiver system. This

transformation allows avoiding physical effects that may impair the systems in

interaction (e.g. disturbing or damaging structure/organization or behaviour) and

moreover must verify the interoperability requirements. We propose to model the

expected transformation by 1) a model of time, shape and space attribute

transformation of the flow and of items transported by the flow, and 2) the effect

model proposed above focusing on the potential effects to be avoided and

anticipated. In design stage, the functional vision of an interface highlighting these

two transformations can be for instance modelled by choosing and using one of the

modelling languages introduced in Figure 1 considering the nature of source and

targets processors. This completes the interface pattern model with one or more

functional architecture patterns models, more or less detailed aiming facilitating

design by reusing partially or fully these models.

 Interface physical architecture: The interface is implemented by linking various

sub-processors (physical subsystems or components, actors, sub-organizational

units), on which the functions proposed in the functional architectures are to be

allocated et then performed taking particularly into account all non-functional

requirements. This description can be generated by using, for instance, any

Physical Block modelling language and respecting SE principles.

5 Conclusion and prospects

This paper has introduced conceptual aspects of an interface model pattern

supporting engineers involved in natively interoperable system’s design activities.

This helps particularly and guides modelling activities but aims also to permit

checking and testing conformity, coherence and adequacy [32] of proposed interfaces

in order to design a system that will be able to maximise its interoperability in various

situations even difficult to predict. The goal is now to develop modelling and analysis

platform [33] integrating existing proof and simulation tools [34, 35] allowing then

mixing formal properties proof and simulation as proposed in [36] when considering

systems of systems [37] interoperability analysis.

References

1. Camarinha-Matos, L.M.: Collaborative networks: A mechanism for enterprise agility and

resilience. Enterprise Interoperability VI. 1–8 (2014)

2. European Commission, Annex II - EIF (European Interoperability Framework), 2010 (see

http://ec.europa.eu/isa/documents/isa_annex_ii_eif_en.pdf, last visited 2015-02-20)

3. ATHENA Interoperability Framework (AIF) (see http://athena.modelbased.net/model.html,

last visited 2015-02-20)

4. Department of Defense (DoD) Architecture Framework (DoDAF), version 2007, 23st april,

version 1.5 (Volumes I, II and III) (updated version 2.02 is available)

5. Daclin, N., Chen, D., Vallespir, B. (2008), Methodology for Enterprise Interoperability, in

'Proceedings of the 17th World Congress - The International Federation of Automatic Control

- Seoul, Korea, July 6-11, 2008

6. Lavean, G.: Interoperability in Defense Communications. Commun. IEEE Trans. 28, 1445–

1455 (1980)

7. Clark, T. & Jones, R., Organisational Interoperability Maturity Model for C2, in '1999

Command and Control Research Technology Symposium. United States Naval War College,

Newport', 1999

8. De Soria, I. M., Alonso, J., Orue-Echevarria, L.,Vergara, M., Developing an Enterprise

Collaboration Maturity Model: Research Challenges and Future Directions, in '15th

International Conference on Concurrent Enterprising, Leiden, Netherlands 22 - 24 June 2009

9. Y.Naudet, T.Latour, D.Chen, A Systemic approach to Interoperability formalization,

Proceedings of the 17th World Congress IFAC, International Federation of Automatic

Control, Seoul, Korea, July 6-11, 2008

10. DoD, Systems Engineering Fundamentals. Defence Acquisition University Press, 2001,

available at http://www.dau.mil/pubscats/PubsCats/SEFGuide 2001-01.pdf [last visited :

2012/07/07)

11. AFIS, CT AIS, Interfaces techniques et architectures du système, fiche N°2, 2006 [in

French]

12. C. Le Moigne. 1994. La théorie du système général: théorie de la modélisation [in French]

13. Penalva Jean-Michel, La modélisation par les systèmes en situations complexes. Thèse de

Doctorat, Université de Paris Sud, France, 1997 [in French]

14. C.Féliot, Toward a formal theory of systems, Colloque d'Automne du LIX 2007 - CAL07

Complex Systems: Modelling, Verification and Optimization, Paris, Carré des Sciences, 3rd

and 4th October 2007, http://www.lix.polytechnique.fr/~liberti/cal07/presentations/ [last

visited 11th July 2012]

15. INCOSE, System Engineering (SE) Handbook, A Guide For System Life Cycle Processes

And Activities Version 3.2.2, INCOSE TP 2003 002 03.2.2, 2011

16. BKCASE Editorial Board. 2014. The Guide to the Systems Engineering Body of

Knowledge (SEBoK), v. 1.3. R.D. Adcock (EIC). Hoboken, NJ: The Trustees of the Stevens

Institute of Technology, http://www.sebokwiki.org/ [last visited 2014-07-17].

17. B.S.Blanchard, W.J.Fabricky, Systems Engineering and analysis, Prentice Hall

International Series in industrial and systems engineering, fifth Edition, Pearson Coll., 2011

http://ec.europa.eu/isa/documents/isa_annex_ii_eif_en.pdf
http://athena.modelbased.net/model.html

18. Charlotte Seidner, Vérification des EFFBDs : Model checking en Ingénierie Système, PhD

Nantes University, november 3rd 2009 [in French]

19. OMG, Business Process Modelling Notation 2.0 (see

http://www.omg.org/spec/BPMN/2.0/PDF/, last visited 2015-03-16)

20. System Modeling Language SysML, http://www.sysml.org/ [last visited 2014-07-16]

21. D.Mann, Hands on systemic innovation. CREAX Press, 2002

22. G.Altshuller, The TRIZ method: numerous references and a presentation of TRIZ principles

are available on http://www.altshuller.ru/world/eng/index.asp [last visited 17th july 2012]

23. Oxford creativity, Effects data base, available at http://wbam2244.dns-

systems.net//EDB_Welcome.php [last visited 27th november 2012]

24. Olivier L. de Weck, Adam M.Ross, Donna H. Rhodes, Investigating Relationships and

Semantic Sets amongst System Lifecycle Properties (Ilities), third International Engineering

Systems Symposium CESUN 2012, Delft University of Technology, 18-20 June 2012

25. INCOSE, Survey of Model-Based Systems Engineering (MBSE) Methodologies, INCOSE-

TD-2007-003-01,Version/Revision: B, 10 June 2008

26. B.Nuseibeh, S.Easterbrook, Requirements Engineering: a roadmap, ICSE 2000

proceedings, Conference on the future of Software Engineering, New York, 2000

27. Mallek S., Daclin N., Chapurlat V., An Approach for Interoperability Requirements

Specification and Verification. The International IFIP Working Conference on Enterprise

Interoperability, Stockholm, Sweden, 2011

28. Resilience Engineering in Practice: A Guidebook, E.Hollnagel, J.Paries, D.Woods,

J.Wreathall Eds., ASHGATE publishing compane, ISBN: 978-0-4094-1035-5, 2011

29. H.Thimbleby, A.Blandford, P.Cairns, P.Curzon, M.Jones, User Interface Design as

Systems Design, People and Computers XVI- Memorable yet invisible, Proceedings of HCI

2002X.Faulkner, J.Finlay, F.Detienne editors, Springer, ISBN : 1852336595, 2002

30. P.Gruhn, Human Machine Interface (HMI) Design: The Good, The Bad, and The Ugly (and

what makes them so), 66th Annual Instrumentation Symposium for the Process Industries,

January 27-29, 2011

31. Vincent Chapurlat, Nicolas Daclin, Proposition of a guide for investigating, modeling and

analyzing system operating modes: OMAG, , International Conference on Complex System

Design and Management CSDM 2013 December 2013, Paris

32. Bérard B., Bidoit M., Finkel A., Laroussinie F., Petit A., Petrucci L., Schnoebelen Ph.

McKenzie P. Systems and Software verification: model checking techniques and tools,

Springer, 2001

33. Blazo Nastov, Vincent Chapurlat, Christophe Dony, François Pfister, A verification

approach from MDE applied to Model Based System Engineering: xeFFBD dynamic

semantic, Internation Conference on Complex System Design and Management CSDM 2014,

December 2014, Paris, France

34. Formal verification tools overview web site (available on http://anna.fi.muni.cz/yahoda/

[last visited 2011-04-10]

35. V&V Tools, RPG reference document, 2006 (available on

http://vva.msco.mil/Ref_Docs/VVTools/vvtools-pr.PDF [last visited 2011-04-10])

36. Bilal, M., Daclin, N., Chapurlat, V.: System of Systems design verification: problematic,

trends and opportunities. Enterprise Interoperability VI. pp. 405–415. Springer International

Publishing, 2014

37. Timothy L.J. Ferris, It Depends: Systems of systems engineering requires new methods if

you are talking about new kinds of systems of systems, INCOSE 2006

http://www.omg.org/spec/BPMN/2.0/PDF/

