M. Aschner, K. Vrana, and W. Zheng, Manganese uptake and distribution in the central nervous system (CNS), Neurotoxicology, vol.20, pp.173-180, 1999.

A. Asuni, A. Boutajangout, D. Quartermain, and E. Sigurdsson, Immunotherapy Targeting Pathological Tau Conformers in a Tangle Mouse Model Reduces Brain Pathology with Associated Functional Improvements, Journal of Neuroscience, vol.27, issue.34, pp.9115-9129, 2007.
DOI : 10.1523/JNEUROSCI.2361-07.2007

E. Bearer, T. Falzone, X. Zhang, O. Biris, A. Rasin et al., Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI), NeuroImage, vol.37, pp.37-46, 2007.
DOI : 10.1016/j.neuroimage.2007.04.053

E. Bearer, X. Zhang, and R. Jacobs, Live imaging of neuronal connections by magnetic resonance: Robust transport in the hippocampal???septal memory circuit in a mouse model of Down syndrome, NeuroImage, vol.37, issue.1, pp.230-242, 2007.
DOI : 10.1016/j.neuroimage.2007.05.010

G. Bramblett, M. Goedert, R. Jakes, S. Merrick, J. Trojanowski et al., Abnormal tau phosphorylation at Ser396 in alzheimer's disease recapitulates development and contributes to reduced microtubule binding, Neuron, vol.10, issue.6, pp.1089-1099, 1993.
DOI : 10.1016/0896-6273(93)90057-X

K. Chan, K. Cai, H. Su, V. Hung, M. Cheung et al., Early detection of neurodegeneration in brain ischemia by manganese-enhanced MRI, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.3884-3887, 2008.
DOI : 10.1109/IEMBS.2008.4650058

C. Cowan, T. Bossing, A. Page, D. Shepherd, and A. Mudher, Soluble hyperphosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo, Acta Neuropathol, 2010.
DOI : 10.1007/s00401-010-0716-8

URL : http://eprints.soton.ac.uk/155753/1/ANP-S-10-00181%5B1%5D.pdf

D. Cross, J. Flexman, Y. Anzai, K. Maravilla, and S. Minoshima, Age-related decrease in axonal transport measured by MR imaging in vivo, NeuroImage, vol.39, issue.3, pp.915-926, 2008.
DOI : 10.1016/j.neuroimage.2007.08.036

R. Dayanandan, M. Van-slegtenhorst, T. Mack, L. Ko, S. Yen et al., Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation, FEBS Letters, vol.114, issue.2-3, pp.228-232, 1999.
DOI : 10.1016/S0014-5793(99)00222-7

R. Dixit, J. Ross, Y. Goldman, and E. Holzbaur, Differential Regulation of Dynein and Kinesin Motor Proteins by Tau, Science, vol.319, issue.5866, pp.1086-1089, 2008.
DOI : 10.1126/science.1152993

P. Drapeau and D. Nachshen, Manganese fluxes and manganese-dependent neurotransmitter release in presynaptic nerve endings isolated from rat brain., The Journal of Physiology, vol.348, issue.1, pp.493-510, 1984.
DOI : 10.1113/jphysiol.1984.sp015121

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199413

D. Drechsel, A. Hyman, M. Cobb, and M. Kirschner, Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau., Molecular Biology of the Cell, vol.3, issue.10, pp.1141-1154, 1992.
DOI : 10.1091/mbc.3.10.1141

A. Ebneth, R. Godemann, K. Stamer, S. Illenberger, B. Trinczek et al., Overexpression of Tau Protein Inhibits Kinesin-dependent Trafficking of Vesicles, Mitochondria, and Endoplasmic Reticulum: Implications for Alzheimer's Disease, The Journal of Cell Biology, vol.252, issue.3, pp.777-794, 1998.
DOI : 10.1073/pnas.94.15.8208

L. Eng, R. Ghirnikar, and Y. Lee, Glial fibrillary acidic protein: GFAP-thirty-one years, 1969.

T. Falzone, S. Gunawardena, D. Mccleary, G. Reis, and L. Goldstein, Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies, Human Molecular Genetics, vol.19, issue.22, 2010.
DOI : 10.1093/hmg/ddq363

T. Falzone, G. Stokin, C. Lillo, E. Rodrigues, E. Westerman et al., Axonal Stress Kinase Activation and Tau Misbehavior Induced by Kinesin-1 Transport Defects, Journal of Neuroscience, vol.29, issue.18, pp.5758-5767, 2009.
DOI : 10.1523/JNEUROSCI.0780-09.2009

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849468

I. Grundke-iqbal, K. Iqbal, Y. Tung, M. Quinlan, H. Wisniewski et al., Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology., Proceedings of the National Academy of Sciences, vol.83, issue.13, pp.4913-4917, 1986.
DOI : 10.1073/pnas.83.13.4913

K. Iqbal and I. Grundke-iqbal, Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease, Molecular Neurobiology, vol.86, issue.Suppl., pp.399-410, 1991.
DOI : 10.1007/BF02935561

K. Iqbal, I. Grundke-iqbal, T. Zaidi, P. Merz, G. Wen et al., DEFECTIVE BRAIN MICROTUBULE ASSEMBLY IN ALZHEIMER'S DISEASE, The Lancet, vol.328, issue.8504, pp.421-426, 1986.
DOI : 10.1016/S0140-6736(86)92134-3

T. Ishihara, M. Hong, B. Zhang, Y. Nakagawa, M. Lee et al., Age-Dependent Emergence and Progression of a Tauopathy in Transgenic Mice Overexpressing the Shortest Human Tau Isoform, Neuron, vol.24, issue.3, pp.751-762, 1999.
DOI : 10.1016/S0896-6273(00)81127-7

L. Ittner, T. Fath, Y. Ke, M. Bi, J. Van-eersel et al., Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia, Proceedings of the National Academy of Sciences, vol.105, issue.41, pp.15997-16002, 2008.
DOI : 10.1073/pnas.0808084105

G. Jicha, B. Berenfeld, and P. Davies, Sequence requirements for formation of conformational variants of tau similar to those found in Alzheimer's disease, Journal of Neuroscience Research, vol.83, issue.6, pp.713-723, 1999.
DOI : 10.1002/(SICI)1097-4547(19990315)55:6<713::AID-JNR6>3.0.CO;2-G

J. Kim, I. Choi, M. Michaelis, and P. Lee, Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI, NeuroImage, vol.56, issue.3, 2011.
DOI : 10.1016/j.neuroimage.2011.02.039

N. Lapointe, G. Morfini, G. Pigino, I. Gaisina, A. Kozikowski et al., The amino terminus of tau inhibits kinesin-dependent axonal transport: Implications for filament toxicity, Journal of Neuroscience Research, vol.53, issue.2, pp.440-451, 2009.
DOI : 10.1002/jnr.21850

V. Lee and J. Trojanowski, The disordered neuronal cytoskeleton in Alzheimer's disease, Current Opinion in Neurobiology, vol.2, issue.5, pp.653-656, 1992.
DOI : 10.1016/0959-4388(92)90034-I

J. Lewis, E. Mcgowan, J. Rockwood, H. Melrose, P. Nacharaju et al., Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein, Nat Genet, vol.25, pp.402-405, 2000.

Y. Lin and A. Koretsky, Manganese ion enhances T1-weighted MRI during brain activation: An approach to direct imaging of brain function, Magnetic Resonance in Medicine, vol.42, issue.3, pp.378-388, 1997.
DOI : 10.1002/mrm.1910380305

S. Lovestone, C. Hartley, J. Pearce, and B. Anderton, Phosphorylation of tau by glycogen synthase kinase-3?? in intact mammalian cells: The effects on the organization and stability of microtubules, Neuroscience, vol.73, issue.4, pp.1145-1157, 1996.
DOI : 10.1016/0306-4522(96)00126-1

H. Lu, Z. Xi, L. Gitajn, W. Rea, Y. Yang et al., Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI), Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2489-2494, 2007.
DOI : 10.1073/pnas.0606983104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1892936

E. Mandelkow, K. Stamer, R. Vogel, E. Thies, and E. Mandelkow, Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses, Neurobiology of Aging, vol.24, issue.8, pp.1079-1085, 2003.
DOI : 10.1016/j.neurobiolaging.2003.04.007

C. Massaad, S. Amin, L. Hu, Y. Mei, E. Klann et al., Mitochondrial Superoxide Contributes to Blood Flow and Axonal Transport Deficits in the Tg2576 Mouse Model of Alzheimer's Disease, PLoS ONE, vol.18, issue.5, p.10561, 2010.
DOI : 10.1371/journal.pone.0010561.s004

K. Matsuda, H. Wang, C. Suo, D. Mccombe, M. Horne et al., Retrograde axonal tracing using manganese enhanced magnetic resonance imaging, NeuroImage, vol.50, issue.2, pp.366-374, 2010.
DOI : 10.1016/j.neuroimage.2010.01.008

A. Mudher, D. Shepherd, T. Newman, P. Mildren, J. Jukes et al., GSK-3?? inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila, Molecular Psychiatry, vol.9, issue.5, pp.522-530, 2004.
DOI : 10.1038/sj.mp.4001483

K. Narita, F. Kawasaki, and H. Kita, Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs, Brain Research, vol.510, issue.2, pp.289-295, 1990.
DOI : 10.1016/0006-8993(90)91379-U

J. Neelavalli and E. Haacke, A simplified formula for T1 contrast optimization for short-TR steady-state incoherent (spoiled) gradient echo sequences, Magnetic Resonance Imaging, vol.25, issue.10, pp.1397-1401, 2007.
DOI : 10.1016/j.mri.2007.03.026

L. Otvos, . Jr, L. Feiner, E. Lang, G. Szendrei et al., Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404, Journal of Neuroscience Research, vol.268, issue.6, pp.669-673, 1994.
DOI : 10.1002/jnr.490390607

R. Pautler and A. Koretsky, Tracing Odor-Induced Activation in the Olfactory Bulbs of Mice Using Manganese-Enhanced Magnetic Resonance Imaging, NeuroImage, vol.16, issue.2, pp.441-448, 2002.
DOI : 10.1006/nimg.2002.1075

R. Pautler, A. Silva, and A. Koretsky, In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging, Magnetic Resonance in Medicine, vol.38, issue.5, pp.740-748, 1998.
DOI : 10.1002/mrm.1910400515

K. Saleem, J. Pauls, M. Augath, T. Trinath, B. Prause et al., Magnetic Resonance Imaging of Neuronal Connections in the Macaque Monkey, Neuron, vol.34, issue.5, pp.685-700, 2002.
DOI : 10.1016/S0896-6273(02)00718-3

A. Seitz, H. Kojima, K. Oiwa, E. Mandelkow, Y. Song et al., Single-molecule investigation of the interference between kinesin, tau and MAP2c, The EMBO Journal, vol.21, issue.18, pp.4896-4905, 2002.
DOI : 10.1093/emboj/cdf503

E. Sigurdsson, Histological staining of amyloid-beta in mouse brains, Methods Mol Biol, vol.299, pp.299-308, 2005.

W. Sloot and J. Gramsbergen, Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia, Brain Research, vol.657, issue.1-2, pp.124-132, 1994.
DOI : 10.1016/0006-8993(94)90959-8

K. Smith, V. Kallhoff, H. Zheng, and R. Pautler, In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease, NeuroImage, vol.35, issue.4, pp.1401-1408, 2007.
DOI : 10.1016/j.neuroimage.2007.01.046

K. Smith, R. Paylor, and R. Pautler, R-flurbiprofen improves axonal transport in the Tg2576 mouse model of Alzheimer's Disease as determined by MEMRI, Magnetic Resonance in Medicine, vol.6, issue.5, pp.1423-1429, 2010.
DOI : 10.1002/mrm.22733

K. Smith, E. Peethumnongsin, H. Lin, H. Zheng, and R. Pautler, Increased Human Wildtype Tau Attenuates Axonal Transport Deficits Caused by Loss of APP in Mouse Models, Magn Reson Insights, vol.4, pp.11-18, 2010.

G. Stokin, C. Lillo, T. Falzone, R. Brusch, E. Rockenstein et al., Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease, Science, vol.307, issue.5713, pp.1282-1288, 2005.
DOI : 10.1126/science.1105681

W. Stoothoff, P. Jones, T. Spires-jones, D. Joyner, E. Chhabra et al., Differential effect of three-repeat and four-repeat tau on mitochondrial axonal transport, Journal of Neurochemistry, vol.284, issue.2, pp.417-427, 2009.
DOI : 10.1111/j.1471-4159.2009.06316.x

A. Takeda, S. Ishiwatari, and S. Okada, In vivo stimulation-induced release of manganese in rat amygdala, Brain Research, vol.811, issue.1-2, pp.147-151, 1998.
DOI : 10.1016/S0006-8993(98)00881-6

A. Takeda, Y. Kodama, S. Ishiwatari, and S. Okada, Manganese Transport in the Neural Circuit of Rat CNS, Brain Research Bulletin, vol.45, issue.2, pp.149-152, 1998.
DOI : 10.1016/S0361-9230(97)00330-4

H. Tjalve, J. Henriksson, J. Tallkvist, B. Larsson, and N. Lindquist, Uptake of Manganese and Cadmium from the Nasal Mucosa into the Central Nervous System via Olfactory Pathways in Rats, Pharmacology & Toxicology, vol.152, issue.6, pp.347-356, 1996.
DOI : 10.1111/j.1600-0773.1996.tb00021.x

H. Tjalve, C. Mejare, and K. Borg-neczak, Uptake and Transport of Manganese in Primary and Secondary Olfactory Neurones in Pike, Pharmacology & Toxicology, vol.12, issue.1, pp.23-31, 1995.
DOI : 10.1111/j.1600-0773.1995.tb01909.x

B. Trinczek, A. Ebneth, E. Mandelkow, and E. Mandelkow, Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles, J Cell Sci, vol.112, pp.2355-2367, 1999.

M. Vershinin, B. Carter, D. Razafsky, S. King, and S. Gross, Multiple-motor based transport and its regulation by Tau, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.87-92, 2007.
DOI : 10.1073/pnas.0607919104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1765483

K. Vossel, K. Zhang, J. Brodbeck, A. Daub, P. Sharma et al., Tau Reduction Prevents A{beta}-Induced Defects in Axonal Transport, Science, 2010.
DOI : 10.1126/science.1194653

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024010

M. Wood and P. Hardy, Proton relaxation enhancement, Journal of Magnetic Resonance Imaging, vol.177, issue.1, pp.149-156, 1993.
DOI : 10.1002/jmri.1880030127

A. Yuan, A. Kumar, C. Peterhoff, K. Duff, and R. Nixon, Axonal Transport Rates In Vivo Are Unaffected by Tau Deletion or Overexpression in Mice, Journal of Neuroscience, vol.28, issue.7, pp.1682-1687, 2008.
DOI : 10.1523/JNEUROSCI.5242-07.2008

B. Zhang, M. Higuchi, Y. Yoshiyama, T. Ishihara, M. Forman et al., Retarded Axonal Transport of R406W Mutant Tau in Transgenic Mice with a Neurodegenerative Tauopathy, Journal of Neuroscience, vol.24, issue.19, pp.4657-4667, 2004.
DOI : 10.1523/JNEUROSCI.0797-04.2004

B. Zhang, A. Maiti, S. Shively, F. Lakhani, G. Mcdonald-jones et al., Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model, Proceedings of the National Academy of Sciences, vol.102, issue.1, pp.227-231, 2005.
DOI : 10.1073/pnas.0406361102

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544048