
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Modeling DevOps Deployment Choices using Process

Architecture Design Dimensions

Zia Babar1, Alexei Lapouchnian2, Eric Yu1,2

1Faculty of Information, University of Toronto
2Department of Computer Science, University of Toronto

zia.babar@mail.utoronto.ca, alexei@cs.toronto.edu,

eric.yu@utoronto.ca

Abstract. DevOps is a software development approach that enables enterprises

to rapidly deliver software product features through process automation, greater

inter-team collaboration and increased efficiency introduced through monitor-

ing and measuring activities. No two enterprise-adopted DevOps approaches

would be similar as each enterprise has unique characteristics and requirements.

At present, there is no structured method in enterprise architecture modeling

that would enable enterprises to devise a DevOps approach suitable for their re-

quirements while considering possible process reconfigurations. Any DevOps

implementation can have variations at different points across development and

operational processes and enterprises need to be able to systematically map

these variation points and understand the trade-offs involved in selecting one al-

ternative over another. In this paper, we use our previously proposed Business

Process Architecture modeling technique to express and analyze DevOps alter-

natives and help enterprises select customized DevOps processes that match

their contexts and requirements.

Keywords: Enterprise Modeling, Software Processes, Business Process Model-

ing, DevOps, Goal Modeling, Adaptive Enterprise.

1 Introduction

Enterprises are expected to continuously respond to ongoing changes and evolving

environmental factors. Increasing competition and emergence of new market players

from non-traditional sectors require enterprises to react and adapt to change more

quickly than ever before [1,2]. To this end, more and more enterprises are relying on

software for the development and delivery of appropriate products and services. As a

result, software processes are becoming an integral part of enterprise processes. Just

like business processes (BPs), software development processes can vary significantly

from organization to organization due to unique enterprise characteristics; these pro-

cesses can be reconfigured in multiple ways to take account of enterprise variations

and behavioral peculiarities so as to fulfill high-level enterprise requirements. How-

ever, current methods of modeling software process reconfigurations are limited in

their ability to consider multiple enterprise perspectives and help choose among alter-

nate configurations. In this paper, we elaborate on the software process reconfigura-

tions that are possible in the DevOps approach for the purpose of describing a Busi-

ness Process Architecture (BPA) modeling technique, which allows the depiction and

analysis of BP reconfigurations along multiple dimensions.

The term “DevOps” is a combination of two words “Development” and “Opera-

tions” and has been described and referred to as a phenomenon, a philosophy, a mind-

set, a set of techniques, a methodology, etc. DevOps is not a software tool or method-

ology per se, but rather an approach for rapidly and frequently delivering new soft-

ware product features and service innovation. A recent Gartner news release predicted

that “DevOps will evolve from a niche strategy employed by large cloud providers to

a mainstream strategy employed by 25 percent of Global 2000 organizations” [3].

Broadly speaking, DevOps attempts to introduce rapid delivery of product features,

services and bug fixes to end-users through frequent release cycles, each containing a

small feature set. Rapid delivery enables an enterprise to reduce the time-to-market

for new products and features, provides greater customer centricity by introducing

new features based on evolving customer needs, quickly resolves operational and

support issues, and shows greater responsiveness to changing (internal and external)

environment situations. DevOps enables the above by [4,5,6]:

 Automating activities in the overall software development process through the

introduction of software tools and custom development of scripts, thus shortening

the time required for new feature development and bug fixes through reduction of

manual effort. This enables software teams to deliver more frequent releases to

customers and the user base.

 Using feedback loops for continuously improving software development processes

and development of product features through the monitoring and measurement of

various software process and technical metrics. These metrics are then interpreted

and utilized for overall process improvement.

 Promoting a culture of collaboration and information sharing between multiple

teams. The traditional approach of having organization silos with defined bounda-

ries and handover points is discouraged, and team members are expected to collec-

tively collaborate towards the attainment of enterprise objectives.

The above characteristics are not unique to DevOps, and indeed, are generally appli-

cable to enterprises with respect to enterprise agility and enterprise digital transfor-

mation [7]. Looking at software processes can provide insights into a broader context,

such as the development and evolution of new products and services, many of which

are digitally enabled. A BPA needs to be understood through a combination of these

ideas and concepts, particularly in light of enterprise requirement for greater respon-

siveness and adaptability, with DevOps being a suitable example for such a study.

This paper is organized as follows. In Section 2, we introduce a DevOps-based mo-

tivating example that allows us to discuss the core concepts of this paper. In Section

3, we model a typical DevOps implementation using the BPA modeling technique and

indicate possible areas and dimensions of software process variability. In Section 4,

we refer to the related work, while in Section 5 we outline future directions of this

research. Section 6 concludes this paper.

2 Motivating Example

DevOps is an interesting challenge for enterprise modeling for a number of reasons.

As described above, DevOps involves diverse considerations from the viewpoints of

process design, systems and tools development and deployment, and social and organ-

izational issues. Continuous Integration (CI) and Continuous Deployment (CD) of

product functionality and infrastructure setup are outcomes of DevOps [6]. The gen-

eral area of continuous software engineering, CI and CD has been covered in both

academic and industry literature with numerous published case studies [8]. Through

CD, “companies could benefit from even shorter feedback loops, more frequent cus-

tomer feedback, and the ability to more accurately validate whether the functionality

that is developed corresponds to customer needs and behaviors” [8]. Studying all

facets of the DevOps approach is thus best done through the enterprise modeling lens

enabling a multi-perspective understanding of the various considerations.

Analyzing and deciding between various DevOps process reconfigurations can be

done by considering enterprise objectives and benefits, which can be interpreted as

functional requirements (FRs) and non-functional requirements (NFRs) from a pro-

cess design perspective. The use of NFRs (represented by softgoals) in the require-

ments engineering discipline to evaluate and decide between variations and reconfigu-

rations is well established [9]. Some of the NFRs, as present in a typical DevOps

adoption, would be:

 Agility and Adaptability: Rapidly adapting to changing circumstances such as

evolving customer behavior, regulatory environment, emerging technologies, etc.

 Responsiveness: Quickly responding to user feedback and change requests in the

form of new product features and bug fixes.

 Speed and Frequency: Delivering new product features and bug fixes faster as

well as having a high deployment frequency.

 Efficiency: Improvement in software process execution by automating key process

segments and increasing collaboration between team members for greater infor-

mation flow.

 Customizability: Being able to customize the behavior of the software develop-

ment lifecycle based on changing contextual and situational needs.

Fig. 1 shows a simple BPMN [10] process model indicating the primary participants

and the major activities in a typical DevOps-inspired software process. We have de-

veloped this context by referencing published literature from multiple sources, such as

[8,11,12,13,14], with the intention of highlighting how the various process activities

in DevOps can be better configured to serve a variety of enterprise FRs and NFRs.

Fig. 1. A simple BPMN model representing a typical DevOps approach

In DevOps, the development of product features can be done using different devel-

opment methodologies while adhering to different practices and policies specific to an

enterprise adoption; in this context we assume the use of the Scrum project manage-

ment methodology [14]. However, this general DevOps context is not intended to be

an exhaustive depiction of variations in DevOps adoption in an enterprise setting, but

rather is meant to illustrate variability in software process configurations. We consid-

er four scenarios of variable behavior in this contextual setting, which correspond to

the numbered annotations in the BPMN diagram:

1. QA Testing: Any developed feature has to be functional tested before it goes

through the CD process. This testing can be carried out by QA engineers in at least

two ways: they can retrieve the committed code from the code repository and test it

on a test environment, or alternatively, they can collaborate with the software engi-

neer to quickly validate the functionality before the codebase is committed to the

code repository.

2. Release Planning: The enterprise is assumed to have periodic and fixed release

cycles of appropriate duration. A release planning activity is carried out at release

initiation that results in a release backlog; this artifact is then used to plan out indi-

vidual sprint iterations. Two of the possible alternatives are 1) the release backlog

is produced once and remains static throughout the release duration and 2) the re-

lease backlog is revisited at the beginning of every sprint and “groomed” (i.e. reor-

dered and re-estimated) based on on-going change in circumstances and priorities.

3. Automated Testing: In order to reduce product delivery durations, some product

testing can be automated by developing test plans that are then scripted for execu-

tion as part of the CI process. The test scripts can be developed once and reused for

subsequent CI activities or they can be developed every time to serve specific test-

ing needs based on the product feature being tested.

4. Tool Usage for Automation: DevOps is characterized by the usage of third-party

tools for CI and CD, server configuration, infrastructure provisioning, deployment

management, etc. These tools are configured for use repeatedly without requiring

the knowledge of their inner working. This is depicted in Fig. 1 as a separate Au-

tomation Engineer pool to visually differentiate it from the on-going DevOps En-

gineer activities.

The BPMN model in Fig. 1 allows a visual understanding of the sequencing of

process activities and the flow of information between them. However, BPMN pro-

cess modeling is lacking in terms of the selection and evaluation of alternative

DevOps configurations. In any enterprise, there would exist multiple process levels,

with processes at one level feeding into those at an upper level. The multiple levels of

process-driven dynamics and the relationships between the process levels are not

apparent in the BPMN model nor are boundaries between these process levels obvi-

ous. Multiple BPs may come together to provide some feature functionality (for ex-

ample, the development of test plans and their execution are part of two separate

BPs), but the nature of their relationship is not explicit in the model. While process

activities can be shown, along with the changes in their sequencing, the implications

of any activity reordering cannot be determined. Similarly, enterprises rely on sense-

and-respond loops to continuously improve their operational processes [15]. While

the BPMN model in Fig. 1 does show such feedback loops, the full range of attributes

associated with them (for example, the multitude of timescales present in the loop or

the execution frequency of the sensing and responding parts) are not evident.

3 Modeling Process Reconfigurations

The BPA modeling framework was introduced in [16,17] for assisting with the mod-

eling of BPs, their relationships, and the flexibility afforded by various BPA configu-

rations. We use this framework to evaluate various DevOps reconfigurations and to

choose among them. Fundamental concepts in the BPA framework are that of Process

Element (PE), Variation Point (VP), Stage and Phase [16].

 A PE is defined as “an activity that produces some output or outcome. It may also

include the act of making decisions”.

 A VP is referred to “the point in a process where multiple options exist. Variation

points may appear anywhere in a process”.

 PEs are grouped together in process Stages if they are executed together as part of

the same execution cycle. A stage boundary exists between two stages and PEs can

be moved across stage boundaries as required while considering different trade-

offs.

 A stage may contain one or more Phases, which are sections of a stage that are the

“portions of a process such that placing a PE under consideration anywhere within

a phase produces the same result…However, moving PEs across phase boundaries

may affect the quality of decisions and the outcome of actions”.

A PE can be repositioned along four dimensions in any process architecture. These

four dimensions include, (1) the temporal dimension – positioning a PE either before

or after other PEs (with respect to sequence of execution), (2) the recurrence dimen-

sion – positioning a PE in a stage that is executed more frequently or less frequently

compared to other stages, (3) the plan-execution dimension – positioning a PE in a

stage that either is responsible for planning or responsible for the execution of that

plan, (4) the design-use dimension – positioning a PE in a stage that either is respon-

sible for designing a tool, capability or artifact, or responsible for using the output of

that design stage. These dimensions are discussed in more detail in the subsequent

sub-sections.

Fig. 2 shows a BPA model for the DevOps approach with multitudes of process el-

ements, stages, phases and the relationships among them. The model visualizes the

key aspects of software development and operational support processes that are com-

monly present in the DevOps approach starting from the Product Management stage

to the Operational Support stage. For the sake of comprehension and understandabil-

ity, we conceptually divide the model into multiple sections and consider them indi-

vidually with regards to the overall DevOps approach as follows:

 Product Management: Product FRs and NFRs are elicited and gathered from a

variety of sources (such as User Input and Business Need) and consolidated to-

gether. This is then used to develop a Product Backlog, which is frequently

groomed for estimating and prioritizing individual Product Backlog Items (PBIs).

The grooming exercise is a periodic process that runs at a higher recurrence than

the requirements elicitation activity, which is denoted by the recurrence relation-

ship between the two stages.

 Development: The model depicts the Scrum project management methodology

with the various rituals and iterations shown as part of the Release Planning and

Sprint Cycle stages. Evidence of recurrence is apparent in the usage of the Product

Backlog over multiple Release Planning iterations. The Perform QA Testing pro-

cess element can be used to demonstrate the temporal dimension as the testing can

be done either before the code is committed to the source repository or after. Both

options have different consequences as shall be seen in the section 3.1.

 Automated Testing: The DevOps approach promotes the usage of tools and

scripts for automating the testing of product features. For this, test plans and test

scripts are created and are then used to automate the testing effort, whereas test

plans are implemented through test scripts. The test plans and test scripts are creat-

ed in the Testing Plan stage and the test scripts are executed through the Execute

Test Scripts PE (part of the Continuous Integration stage); these are illustrative of

the plan-execute dimension.

 Ongoing Deployment: As with testing, the deployment of the developed product

feature is ongoing, immediate and automated while factoring in the variable and

multiple environments that the product would have to run on. The software de-

ployment is automated through deployment scripts that are executed by various

deployment tools; these scripts are developed by the DevOps engineers and exe-

cuted as part of the Continuous Deployment stage that gets triggered on the suc-

cessful completion of the Automated Testing and Continuous Integration stages.

 Operational Support: A major contribution of DevOps to software development

is the breaking down of silos between the development and operational teams, thus

fostering a culture of collaboration. The BPA models do not show process partici-

pants, so the collaborative aspect of DevOps is not visible. However, the Opera-

tional Support stage (along with the monitoring and measurement of operational

metrics) is visually apparent, including the incorporation of software metrics into

the product backlog (through a feedback loop) for ongoing software process lifecy-

cle improvement.

The positioning of certain PEs in the DevOps approach are described in subsequent

sub-sections along with the criteria for deciding among the options. Enterprises may

want to analyze alternate positioning of PEs based on their FRs and NFRs. For this

purpose, goal modeling can be used for representing the variations and helping select

the appropriate alternative. NFRs are represented as softgoals and alternate methods

of achieving a goal are represented as OR decompositions. Selection of a suitable

alternative is made based on the positive and/or negative contribution(s) that the al-

ternative would have on the NFRs (softgoals). The four scenarios described in the

previous section (which also correspond to each of the four process architecture di-

mensions) are presented, with goal models shown alongside the BPA model snippets.

In all goal model examples, the root goal can be achieved through two alternate sub-

goals. The choices are limited to just two for brevity and space reasons. A real-world

situation could contain many possible choices, as well as many competing and com-

plementary NFRs. Also, the goals are shown at a PE level and decomposed down to

just one level. In the general case, the goal model would start from enterprise-level

goals, with multiple levels of goal refinement and alternatives until PE level sub-goals

are reached [9].

Fig. 2. Business Process Architecture (BPA) for a DevOps approach

3.1 The Temporal Dimension

The particular temporal placement of a PE can bring about certain benefits. A PE

can either be advanced (and be executed) before other PEs or postponed after those

PEs. Postponing a PE provides the benefit of executing it with the latest context and

information available, thus reducing the risk and uncertainty that are inherent in any

BP. The alternative is to advance the PE relative to other PEs, which reduces the

complexity and cost as less effort is required to process the limited contextual infor-

mation available at that instant. Uncertainty is also reduced. Therefore, the placement

of any PE should be carefully considered with regards to various NFRs, subject to

inherent temporal constraints among the PEs. The testing of a product feature by a

QA engineer illustrates the trade-offs between advancing and postponing a PE (Fig.

3). The QA engineer can verify the developed feature (Perform QA Testing) after the

software engineer checks in the code to the code repository (Commit Code Changes)

or before the code is checked in by working directly with the software engineer. As

shown by the goal model, the latter approach has the benefit of being collaborative in

nature and encouraging both the software engineer and QA engineer to work together

to solve the problem quickly. The former approach is more methodological and al-

lows for the proper (and independent) validation of the feature and the tracking of

testing issues. The appropriate order of the Perform QA Testing PE is determined

based on the organization’s prioritization between the softgoals.

Fig. 3. QA testing alternatives (A1) As a separate phase from product feature implementation,

(A2) As part of the product feature implementation phase. (B) Analyzing the temporal place-

ment of QA testing process element based on NFRs.

3.2 The Recurrence Dimension

A recurrence relationship exists between the two stages of a process when the output

of one stage can be used repeatedly (and without change) by the subsequent stage. A

PE can be moved from a stage with a lower recurrence to one with a higher recur-

rence (and vice versa). Such a movement of the PE can change the non-functional

properties of the BP in various ways. For example, reducing the PE recurrence saves

cost as the same PE does not have to be executed repeatedly. Conversely, increasing

the PE recurrence can assist with flexibility and adaptability as the PE is executed

based on updated and current information.

In the DevOps approach, a product can be developed by having periodic and mul-

tiple product releases with many development sprints (within each release) required

for attaining the release objectives (Fig. 4). Depending on the situation, an enterprise

can create (Create Release Backlog) and groom a release backlog (Groom Release

Backlog) once, which is then used for subsequent sprint planning. Alternatively, the

enterprise can reassess the release objectives every time it starts a new sprint [13].

The former is a more methodological approach and ensures that the enterprise is

aligned to what the release deliverable is going to be, whereas the latter enables the

enterprise to adapt to changing priorities by constantly reviewing the release delivery

items. The enterprise can decide to go with either approach based on NFRs such as

methodicalness, stability, cost, adaptability, flexibility, etc., by moving the Groom

Release Backlog between the Sprint Cycle and Release Planning stages.

Fig. 4. Release backlog grooming alternatives (A1) As part of the Sprint Cycle stage with no

recurrence, (A2) Moved to the Release Planning stage with a multi-recurrence dimension be-

tween both stages. (B) Analyzing the recurrence arrangement of the release backlog grooming

and sprint planning stages based on NFRs.

3.3 The Plan-Execute Dimension

A BP can be considered to have two distinct segments, where one segment is respon-

sible for creating a plan, which the other segment would then execute one or many

times. Here, a plan-execute relationship exists between the two segments of the pro-

cess. In the BPA modeling technique, each segment is modeled as a stage, with the

stage producing the plan being the planning stage and the stage executing it being the

execution stage. PEs can also be moved from an execution stage to a planning stage

(and vice versa) based on the goal-driven analysis of their contribution to the relevant

NFRs. Such movements create variations in the plan-execute behavior and allow ei-

ther increased pre-planning (by moving a PE to the planning stage) or shifting more

responsibility to the execution side (by moving a PE to the execution stage).

Typically, testing plans are created (Create Testing Plan) for enabling automated

testing. They are then coded up (Create Testing Scripts) in the form of testing scripts

by the DevOps engineer and repeatedly executed (Execute Testing Scripts). As shown

in Fig. 5, there are two possibilities with respect to the creation of the testing scripts.

One is to create the testing scripts for every instance of automated testing so that the

scripts are customized to the particular feature being tested (Create Testing Scripts PE

is part of the Continuous Integration stage), whereas the other is to have a consistent

and standard set of testing scripts that would allow testing coverage irrespective of

particular product features being developed (Create Testing Scripts PE is part of the

Testing Plan stage). The trade-offs would be between customized behavior and effi-

ciency; on the one hand, the repeated creation of testing scripts would allow specific

and customized testing, while in the other case, the development lifecycle automation

would be higher. Enterprises would have to choose the appropriate configuration

based on their situational and contextual needs.

Fig. 5. Test scripts creation placement alternatives (A1) As part of the continuous integration

stage with increase customizability of testing, (A2) As part of the testing plan stage leading to

greater efficiency and reuse. (B) Analyzing the placement of test script creation along the plan-

execute dimension while considering trade-offs for NFRs.

3.4 The Design-Use Dimension

A BP can result in the creation of a tool, capability or artifact that can be repeatedly

used. Just like the plan-execute dimension, such BPs can be considered as having two

distinct stages, with one stage being responsible for designing the artifact and the

other stage for using that artifact repeatedly. Thus, a design and use relationship exists

between these segments of the process. In the BPA modeling framework, the stage

producing the artifact is called the design stage and the stage using the artifact is

called the use stage. The use stage uses the artifact repeatedly without necessarily

being aware of the inner working of that artifact. PEs can also be moved from a de-

sign stage to a use stage (and vice versa), with such a repositioning either leading to

an increased design/artifact sophistication/automation or to trading the design effort

for run-time usage control/customizability.

The DevOps approach emphasizes greater automation of the software development

lifecycle through the use of tools. A number of third-party tools are available (e.g.,

Jenkins1 for CI, Chef2 for deployment management, Github3 for source repository and

Splunk4 for application monitoring etc.), which provide such automation of process

activities. These tools are configured (designed) for use in any particular DevOps

implementation and thus enable a move from manual methods of product deployment

1 https://jenkins-ci.org/
2 https://www.chef.io/
3 https://github.com/
4 http://www.splunk.com/

(shown by the Manual Deployment stage in Fig. 6) to more automated and CD cycles

(shown by the Environment Setup design stage and the Continuous Deployment use

stage). However, the introduction of any artifact in the design-use dimension should

be evaluated against the NFRs (as shown by the goal model).

Fig. 6. Deployment of product release alternatives (A1) Manual deployment without the use of

automated tools, (A2) Through the design and use of configured third-party tools. (B) Analyz-

ing the need for having a design-use dimension for product release deployment.

4 Related Work

CI and CD are well understood concepts in continuous software engineering where

the objective is to deliver ongoing software product improvement and enhancements

in less time and greater frequency through improved process automation and introduc-

tion of suitable software tools [8]. Generally, any organization would have multitudes

of software processes to handle different project development situations; appropriate

software processes are selected based on situational needs and business context [18].

Software process tailoring refers to the customization of standard software planning,

development and operational processes [19] in situations where organizations need an

enterprise-level assessment on how environmental factors, product and project goals,

and other organizational aspects influence software process configurations. Common-

alities and variabilities exist between these software processes and, as such, these

software processes can be tailored to meet specific enterprise business and operational

goals and objectives using different techniques for decision making [20,21].

Several software process modeling techniques exist and are primarily based on

process modeling languages (such as BPMN), Unified Modeling Language (UML) or

Software & Systems Engineering Metamodel (SPEM) [22]. Apart from a few (such as

[23,24]), most of the software process modeling frameworks do not provide support

for modeling variability in software process configurations and the ability to reason

about them while taking enterprise- and process-level NFRs into consideration.

Enterprises attempt to reduce development effort and increase the range of product

features offered through software product lines (SPLs). SPLs can be used to support

multiple software products through the development of common software architec-

ture(s) and code components. SPLs rely on variation points to support software prod-

uct variability [25]. Delaying decisions during the development cycles of these SPLs

provides the benefit of allowing the optimization of technical and business goals (e.g.,

increased code reuse) across multiple products, possibly at the expense of other goals

(e.g., simpler architecture). Extending the idea of SPLs to processes results in the

notion of Software Process Lines (SPrL) [26], which is based on a similar premise:

similarities and differences between a set of software processes could be scoped for

determining customized software process configurations as per unique software pro-

ject conditions. In [27], the idea of (software) Process Line Architectures (PLA) is

introduced. A PLA is described as “a process structure which reflects the commonali-

ty and variability in a collection of processes that make up a process line from the

perspective of overall optimization”. Like a BPA, a PLA also represents the existence

of VPs in (software) processes. However, it does not support the placement of a pro-

cess element along the four dimensions as described in this paper.

Previous research on BPAs largely focused on the nature of the relationships

among their BPs. Various relationship types were proposed (e.g., [28,29]), such as

sequence, reference, composition, etc. Unlike most BPA approaches, we focus on

systematically analyzing multiple BPA alternatives along the four variability dimen-

sions with the aim at finding the one that best matches the properties of the domain.

Another relevant domain is BP variability modeling that focuses on representing

customizable BP models and deriving custom variants from them (see [30] for an

overview), with the key element being a VP, which is used to represent and bind vari-

ability. Overall, these approaches deliberate about variability only at the process level

(within a single process) and do not support reasoning about BPAs. In dealing with

BP flexibility, Weber et. al [31] propose four dimensions of change, including the one

focusing on the recurrence of activity execution. While somewhat similar to our ap-

proach, it neglects trade-offs among the various options and does not cover flexibility

in BPAs. Feature models [32] are sometimes employed as a useful abstraction to help

guide BP customization (i.e., selecting or deriving a BP variant from a customizable

process model). While a viable option, feature models (unlike goal models used here)

lack the ability to represent selection criteria and support trade-off analysis among

configuration alternatives.

5 Future Work

In future iterations of this work we plan to study the following:

 Many enterprises are becoming critically dependent on software and software pro-

cesses to create and deliver value to their stakeholders in the form of products and

services. Successfully introducing software process reconfigurations in response to

changing business models or strategic direction may impact the ongoing delivery

of value, product and services [33]. We aim to link the impact of software process

reconfigurations to business goals and value in order to exploit synergies and miti-

gate negative consequences.

 We wish to understand the possible forms of software process reconfigurations

with the intention of identifying key points of process variations and the influenc-

ing factors that contribute towards these process reconfigurations. Requirements

for software process reconfiguration are usually developed in response to shifting

enterprise objectives, adaptability requirements and emerging digital technologies

in the enterprise context. The relationship between these requirements and their in-

fluence on variation points for software processes would need to be understood.

 Processes are executed by participants or actors in any enterprise. Changes in or-

ganizational structure and team dynamics would invariably influence process con-

figurations (and vice versa). For example, any process reconfiguration would pos-

sibly shift the boundaries of actor influence with some actors gaining responsibility

and other actors losing responsibility or power. Conversely, changing an actor’s

boundary of influence may also require the selection of an alternate process con-

figuration to successfully attain the same set of goals. The association of opera-

tional process level concerns and social organizational considerations needs to be

studied and developed by combining the BPA technique (for process representa-

tion) with a social actor modeling framework, such as i* [34].

 Enterprises take advantage of software metrics to routinely and incrementally im-

prove on software processes. While software metrics are well documented [35], il-

lustrating and analyzing the integration and usage of these software metrics for on-

going software process improvements, through the use of enterprise modeling

techniques, is not well covered. The BPA can be continuously refined through use

of software metrics and data analytics in all stages of the feedback loop – i.e., sens-

ing, interpreting, deciding and acting.

We are exploring methods and techniques from diverse areas, including software

engineering, requirements engineering, system dynamics, and management literature,

to contribute towards a framework for the management of enterprise software process

variability. We are developing a meta-model and an ontology to understand the nature

of software process variability and to extend existing enterprise modeling techniques

to incorporate attributes and constructs for denoting variability and flexibility in soft-

ware processes. Finally, we aim to validate such a proposed framework by conducting

case studies for various types of enterprises.

6 Conclusions

Every enterprise relies on various BPs for proper functioning, which can take many

forms and can include operational, transactional, strategic, recurring, design process-

es, etc. Having uniform and static processes is no longer an option for enterprises

dealing with a multitude of dynamically changing situations that require periodic

adjustment of process configurations [36,37]. A recent report from Gartner mentions

that “by 2017, 70 percent of successful digital business models will rely on deliberate-

ly unstable processes designed to shift as customer needs shift” [38]. In this paper, we

considered the possible dimensions of software process reconfigurability using the

DevOps approach as a motivating example. Limitations of current process modeling

languages, such as BPMN, in illustrating multiple aspects of process architecture were

discussed, with the BPA modeling technique being used to describe four dimensions

of PE positioning, namely, temporal, recurrence, plan-execute, and design-use, in a

typical DevOps implementation. Goal models were used for evaluating alternate

software process reconfigurations by assessing the satisfaction of enterprise NFRs.

7 References

1. Wilkinson, M.: Designing an “adaptive‟ enterprise architecture. BT Technology Journal,

24(4), pp. 81–92 (2006)

2. The Economist: Organisational Agility: How Business can Survive and Thrive in Turbu-

lent Times. A report from The Economist Intelligence Unit (2009)

3. Gartner Research: Gartner Says By 2016, DevOps Will Evolve From a Niche to a Main-

stream Strategy Employed by 25 Percent of Global 2000 Organizations, March 5, 2015,

http://www.gartner.com/newsroom/id/2999017

4. Erich, F., Amrit, C., Daneva, M.: A mapping study on cooperation between information

system development and operations. In Product-Focused Software Process Improvement,

pp. 277–280. Springer (2014)

5. Bang, S. K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of modern web

applications: knowledge, skills, and abilities for DevOps. In Proceedings of the 2nd annual

conference on Research in information technology, pp. 61–62. ACM (2013)

6. Lwakatare, L. E., Kuvaja, P., Oivo, M.: Dimensions of DevOps. In Agile Processes, in

Software Engineering, and Extreme Programming, pp. 212–217. Springer (2015)

7. Smeds, J., Nybom, K., Porres, I.: DevOps: A Definition and Perceived Adoption Impedi-

ments. In Agile Processes, in Software Engineering, and Extreme Programming, pp. 166 –

177. Springer International Publishing (2015)

8. Bosch, J. (Ed.): Continuous Software Engineering. Springer (2014)

9. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-driven design and configuration

management of business processes. In Business Process Management, pp. 246–261.

Springer, Berlin Heidelberg (2007)

10. Business Process Model and Notation, v2.0, http://www.omg.org/spec/BPMN/2.0/PDF/

11. Ståhl, D., Bosch, J.: Modeling continuous integration practice differences in industry soft-

ware development. Journal of Systems and Software, 87, pp. 48–59 (2014)

12. Paasivaara, M., Durasiewicz, S., Lassenius, C.: Using scrum in distributed agile develop-

ment: A multiple case study. In Global Software Engineering, 2009. ICGSE 2009. Fourth

IEEE International Conference on, pp. 195–204. IEEE (2009)

13. Fitzgerald, B., & Stol, K. J.: Continuous software engineering and beyond: trends and

challenges. In Proceedings of the 1st International Workshop on Rapid Continuous Soft-

ware Engineering, pp. 1–9. ACM (2014)

14. Schwaber, K., Beedle, M.: Agile software development with Scrum. Prentice Hall, (2002).

15. Haeckel, S.H.: Adaptive Enterprise: Creating and Leading Sense-And-Respond Organiza-

tions. Harvard Business Press (1999)

16. Lapouchnian, A., Yu, E., Sturm, A.: Re-designing process architectures towards a frame-

work of design dimensions. In Research Challenges in Information Science (RCIS), 2015

IEEE 9th International Conference on, pp. 205–210. IEEE. Chicago (2015)

17. Lapouchnian, A., Yu, E., Sturm, A.: Towards Variability Design for Business Process Ar-

chitecture. In 34th International Conference on Conceptual Modeling, (2015). Accepted.

18. Alegría, J. A. H., Bastarrica, M. C.: Building software process lines with CASPER.

In Software and System Process (ICSSP), 2012 International Conference on, pp. 170–179.

IEEE. (2012)

19. Pedreira, O., Piattini, M., Luaces, M. R., Brisaboa, N. R.: A systematic review of software

process tailoring. ACM SIGSOFT Software Engineering Notes, 32(3), pp. 1–6, (2007)

20. Martıınez-Ruiz, T., Garcııa, F., Piattini, M., Munch, J.: Modelling software process varia-

bility: an empirical study. Software, IET, 5(2), pp. 172–187 (2011)

21. Martínez-Ruiz, T., García, F., Piattini, M.: Managing process diversity by applying ra-

tionale management in variant rich processes. In Product-Focused Software Process Im-

provement, pp. 128–142, Springer Berlin Heidelberg (2011)

22. García-Borgoñon, L., Barcelona, M. A., García-García, J. A., Alba, M., Escalona, M. J.:

Software process modeling languages: A systematic literature review. Information and

Software Technology, 56(2), pp. 103–116 (2014)

23. Cares, C., Mayol, E., Franch, X., Alvarez, E., Goal-driven agent-oriented software pro-

cesses, in: Proceedings of the 32nd Euromicro Conference on Software Engineering and

Advanced Applications, SEAA, Cavtat/Dubrovnik, Croatia, pp. 336–343 (2006)

24. Washizaki, H.: Deriving project-specific processes from process line architecture with

commonality and variability, in: Proceedings of the IEEE International Conference on In-

dustrial Informatics (INDIN’06) , pp. 1301–1306, Singapore (2007)

25. Van Gurp, J., Bosch, J., Svahnberg, M.: On the notion of variability in software product

lines. In Software Architecture, 2001. Proceedings. Working IEEE/IFIP Conference on,

pp. 45 –54, IEEE (2001)

26. Rombach, D.: Integrated software process and product lines. In Unifying the Software

Process Spectrum, pp. 83–90, Springer Berlin-Heidelberg (2006)

27. Washizaki, H.: Building software process line architectures from bottom up. In Product-

Focused Software Process Improvement (pp. 415–421). Springer Berlin-Heidelberg (2006)

28. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.: Fundamentals of Business Process

Management, Ch.2. Springer-Verlag, Berlin-Heidelberg (2013)

29. Eid-Sabbagh, R., Dijkman, R., Weske, M.: Business process architecture: use and correct-

ness. In Proc. 10th International Conference on Business Process Management (BPM'12),

pp. 65–81, Springer-Verlag, Berlin- Heidelberg (2012)

30. La Rosa, M., Aalst, W.M.P. van der, Dumas, M., Milani, F.P.: Business process variability

modeling: A survey. ACM Computing Surveys (2013)

31. Weber, B., Reichert, M., Rinderle-Ma, S: Change Patterns and Change Support Features –

Enhancing Flexibility in Process-Aware Information Systems. Data and Knowledge Engi-

neering (3), pp. 438–466 (2008)

32. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, SEI, Carnegie Mellon

University (1990)

33. Esfahani, H. C., Yu, E., & Annosi, M. C.: Strategically balanced process adoption. In Pro-

ceedings of the 2011 International Conference on Software and Systems Process, pp. 169 –

178. ACM (2011)

34. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engi-

neering. MIT Press (2011)

35. Fenton, N., Bieman, J.: Software metrics: rigorous & practical approach. CRC Press

(2014)

36. Yu, E., Deng, S., Sasmal, D.: Enterprise architecture for the adaptive enterprise – A vision

paper. In Trends in Enterprise Architecture Research and Practice-Driven Research on En-

terprise Transformation, pp. 146–161, Springer Berlin Heidelberg (2012)

37. Yu, E., Lapouchnian, A.: Architecting the enterprise to leverage a confluence of emerging

technologies. In Proceedings of the 2013 CASCON, IBM Corp. (2013)

38. Spender, A.: Top 10 Strategic Technology Predictions for 2015 and Beyond, Gartner Re-

search. February 18, 2015, http://www.gartner.com/smarterwithgartner/top-10-strategic-

technology-predictions-for-2015-and-beyond/

http://www.gartner.com/smarterwithgartner/top-10-strategic-technology-predictions-for-2015-and-beyond/
http://www.gartner.com/smarterwithgartner/top-10-strategic-technology-predictions-for-2015-and-beyond/

