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Abstract. Cloud computing is introducing an architectural paradigm
shift that involves a large part of the IT industry. The flexibility in
allocating and releasing resources at runtime creates new business op-
portunities for service providers and their customers. However, despite
its advantages, cloud computing is still not showing its full potential.
Lack of mechanisms to formally assess the behavior of the cloud and its
services/processes, in fact, negatively affects the trust relation between
providers and potential customers, limiting customer movement to the
cloud. Recently, cloud certification has been proposed as a means to
support trustworthy services by providing formal evidence of service be-
havior to customers. One of the main limitations of existing approaches
is the uncertainty introduced by the cloud on the validity and correct-
ness of existing certificates. In this paper, we present a trustworthy cloud
certification approach based on model verification. Our approach checks
certificate validity at runtime, by continuously verifying the correctness
of the service model at the basis of certification activities against real
and synthetic service execution traces.

Key words: Certification, Cloud, FSM, Model verification

1 Introduction

Cloud computing paradigm is radically changing the IT infrastructure, as well
as traditional software provisioning and procurement. Cloud-based services are
becoming the primary choice for many industries due to the advantages they offer
in terms of efficiency, functionality, and ease of use. Several factors characterize
the choice between functionally-equivalent services at infrastructure, platform,
and application layers, among which Quality of Service (QoS) stands out [17].
However, the dynamic and opaque nature of the cloud makes it hard to preserve
steady and transparent QoS, which often affects the trust relationship between
providers and their customers, and limits customer movement to the cloud.

In response to the need of a trustworthy and transparent cloud environment,
several assurance techniques have been defined [6, 12, 16, 22, 23]. Among them,
certification approaches are on the rise [2, 10, 26]. Cloud certification in fact
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is beneficial for both customers having trusted evidence on the correct behav-
ior of the cloud (and corresponding cloud/service providers) in the treatment
and management of their data and applications, and providers having trusted
evidence on the truthfulness of their claims.

Software certification has a long history and has been used in several domains
to increase trust between software system providers and customers. A certificate
allows providers to gain recognition for their efforts to increase the quality of their
systems, and supports trust relationships grounded on empirical evidence [27].
However, cloud computing introduces the need of re-thinking existing certifica-
tion techniques in light of new challenges, such as services and processes owned
by unknown parties, data not fully under control of their owners, and an envi-
ronment subject to rapid and sudden changes. Certification processes need then
to be tailored to accommodate these new challenges.

An increasing trend in software system certification is to test, monitor, and/or
check a system behavior according to its model [4, 7, 24]. If this paradigm fits
well the certification of a static system, it opens the door to potential inconsis-
tencies in cloud environments, where cloud services and corresponding processes
are subject to changes when deployed in the production environment, and could
therefore differ from their counterparts verified in a lab environment. In this sce-
nario, online certification is a fundamental requirement and evidence collection
becomes a continuous and runtime process. In general we need to answer the fol-
lowing question: “does my service behave as expected at runtime when deployed
in the production environment?”. The correct answer to this question passes
from the continuous verification of the model used to provide a solid evidence on
service behavior. In this paper, we present an approach to continuous model ver-
ification at the basis of a sound cloud service certification. Our approach builds
on testing and monitoring of execution traces to discover differences between the
model originally used to verify and certify a service in a lab environment, and
the one inferred in the production environment.

The remainder of this paper is structured as follows. Section 2 presents our
certification process and reference scenario. Section 3 presents two different ap-
proaches to model generation. Section 4 describes our approach to model ver-
ification. Section 5 presents a certification process adaptation based on model
verification in Section 4. Section 6 illustrates an experimental evaluation of our
approach. Section 7 discusses related work and Section 8 draws our concluding
remarks.

2 Certification Process and Reference Scenario

We describe the certification process at the basis of the approach in this paper
and our reference scenario.
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Fig. 1. Certification process

2.1 Certification Process

A certification process for the cloud involves three main parties [2], namely
a cloud/service provider (service provider in the following), a certification au-
thority, and an accredited Lab. It is aimed at collecting the evidence proving a
property pr for a cloud service cs (Target of Certification – ToC). The process,
being defined for the cloud, must combine both offline and online evaluation.
Offline evaluation usually considers a copy of the ToC deployed in a lab envi-
ronment, which can be tested according to the selected property. While offline
evaluation verifies services in a controlled setting and provides many advantages
such as improved performance and reduced costs, it does not represent alone a
suitable approach for the cloud. For this reason, online evaluation has attracted
increasing attention, since it provides rich information coming from real services
and processes running with production configurations. It also permits to study
the behavior of services at runtime, and verify that service certificates are valid
over time and across system/environment changes. Online evaluation involves
the real ToC, which can be evaluated by monitoring real traces of execution or
by testing specific aspects of its behavior.

Figure 1 shows our certification process, taken as reference in this paper. A
service provider initiates the certification process by requesting a certificate for
one of its cloud services cs (ToC) for a given property pr (step 1). We note
that the request may contain the model m of the service to be certified ([m]
in Figure 1). The certification authority receiving the request starts the process
by involving its accredited lab (step 2). The latter is delegated by the certifica-
tion authority to carry out the service evaluation. The accredited lab checks the
correctness of model m (step 3), if available, or generates it according to infor-
mation (e.g., interface description, implementation documentation, source code)
available on the service. Model m is then used to collect the evidence, which is
delivered to the certification authority (step 4). The certification authority eval-
uates whether the evidence is sufficient or not to prove the requested property
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for the service and issue a certificate C to it (step 5). Upon certificate issuing
(step 5), the accredited lab starts a continuous and online evaluation process
(step 6), involving model verification and refinement (step 3). We note that,
although some solutions for online evaluation exist [5, 28], online evaluation is
often preceded by offline evaluation to target those scenarios which are difficult
to evaluate on real systems (e.g., Denial of Service, security attacks).

In summary, we consider a certification process whose evidence collection is
driven by a model of the ToC [2]. The model is an automaton representing the
ToC behavior. It is used to exercise the ToC and collect the evidence needed to
verify the property of interest. The model is verified both offline, when provided
by the service provider, and online, where its validity is continuously evaluated
together with the validity of the corresponding certificate. Our certification pro-
cess can support different types of evidence (e.g., test-based, monitoring-based)
to assess the quality of service. On one hand, test-based certification is grounded
on results retrieved by test case executions on the ToC, while monitoring-based
certification builds on evidence retrieved by observing real executions of the ToC.
The choice of defining a cloud certification scheme based on system modeling
is driven by the fact that model-based approaches are common in the context
of software evaluation [2, 7, 19, 20, 24]. In particular, model-based approaches
have been used to analyze software behavior, to prove non-functional properties
of software, to infer system executions, and to generate test cases at the basis of
software evaluation.

2.2 Reference Scenario

Our reference scenario is a travel planner TPlan delivered at cloud applica-
tion layer (SaaS),1 implementing functionality for flight and hotel reservation.
It is implemented as a composite service and includes three main parties: i) the
client requesting a travel plan; ii) the travel agency (i.e., TPlan) implementing
service TPlan and acting as the service orchestrator; and iii) the component ser-
vices which are invoked by the travel agency within TPlan process. The travel
agency implements TPlan as a business process using a service BookFlight for
flight reservation, a service BookHotel for hotel reservation, and a service Bank-
Payment for payment management. Table 1 summarizes the details about the
operations of partner services, including TPlan.

Upon logging into the system by means of a public interface provided by
TPlan (operation login), customers submit their preferences, which are dis-
tributed to the partner operations findOffers of services BookFlight and Book-
Hotel. Once the customer has selected the preferred flight and hotel (calling op-
erations bookOffer of services BookFlight and BookHotel, respectively), service
BankPayment is invoked to conclude the reservation (operation makePayment of
service BankPayment). We note that BankPayment is invoked only in case both

1 We note that, though for simplicity a SaaS scenario is considered in the paper,
the proposed approach applies to services insisting also on platform (PaaS) and
infrastructure (IaaS) layers.
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Table 1. Operations of service travel planner

Service Operation Description

TPlan <tokenID> login(username, password) Provides password-based authenti-
cation, and returns an authentica-
tion token.

TPlan <TPlanID> saveTPlan(hotelBookings, flightBookings) Saves hotel and flight reservations.

TPlan <confirmation> cancelTPlan( TPlanID) Cancels a plan.

TPlan <confirmation> logout (tokenID) Disconnects a user and destroys the
authentication token.

BookHotel <confirmation> login (tokenID) Provides a token-based authentica-
tion.

BookHotel <hotelsList> findOffers(check-in, check-out) Searches for hotel offers and returns
a list of offers.

BookHotel <confirmation> bookOffer (offerID) Books a specific offer from the offer
list.

BookHotel <confirmation> cancel(bookingID) Cancels an existing reservation.

BookHotel <confirmation> logout( tokenID) Disconnects a user from service
BookHotel.

BookFlight <confirmation> login(tokenID) Provides a token-based authentica-
tion.

BookFlight <flightsList> findOffers(departure-day, return-day) Searches for flight offers and returns
a list of offers.

BookFlight <confirmation>bookOffer(offerID) Books a specific offer from the offer
list.

BookFlight <confirmation> cancel(bookingID) Cancels an existing reservation.

BookFlight <confirmation>logout(tokenID) Disconnects a user from service
BookFlight.

BankPayment <transactionID>makePayment(tokenID, TPlansID) Executes a payment.

BankPayment <confirmation> cancelPayment(transactionID) Cancels a transaction.

BookFlight and BookHotel are correctly executed. The customer can also cancel
a previous transaction and logout from the system (operations cancelTPlan and
logout of TPlan).

3 System Modeling

The trustworthiness of a model-based cloud certification process is strictly in-
tertwined with the trustworthiness of the considered model, or in other words
depends on how much the model correctly represents the ToC. The latter de-
pends on i) the amount of information available on the system to be modeled
and ii) how the model is generated. We consider two types of models depending
on the amount of available information: i) workflow-based models that consider
information on service/operation conversations, ii) implementation-based models
that extend workflow-level models with details on operation and service imple-
mentation. In the following, we give a quick overview on workflow-based and
implementation-based models.

3.1 Workflow-based model

A workflow-based model represents the ToC in terms of operations/services. At
this level we differentiate between two types of workflow: i) single-service work-
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flow, which models the sequence of operation invocations within a single service
and ii) composite-service workflow, which models a sequence of operation invo-
cations within a composite service. We note that, in the latter case, operations
belong to different composed services. We also note that single-service workflow
can be considered as a degeneration of the general case of composite-service
workflow, modeling the internal flow of a single service. Some approaches al-
ready used workflow-based models for service verification (e.g., [15, 20]). Merten
et al. [20] presented a black-box testing approach for service model generation,
which entirely relies on service interface and addresses requirements of single-
service workflow. Their approach focuses on the definition of a data-sensitive
behavioral model in three steps as follows. First, it analyzes the service interface
and generates a dependency automaton based on input/output dependencies
between operations. Second, a saturation rule is applied, adding possible service
invocations from the client to the model (e.g., directly calling an operation with-
out following the subsequent calls). Third, an additional step verifies whether
the generated dependencies are semantically meaningful or not. Fu et al. [15] ad-
dressed the issue of correctness verification of composite services using a model
based approach. To this aim, they developed a tool to check that web services
satisfy specific Linear temporal logic properties. Their approach relies on BPEL
specifications, which are translated in guarded automata. Automata are then
translated into Promela language and checked using the SPIN model checker.

3.2 Implementation-based model

An implementation-based model extends the workflow-based model with imple-
mentation details coming from the service providers. These details can be used
in different ways depending on the type of information they carry on. If they
include implementation documentation, they can be used to manually build an
automaton representing the behavior of the single operations. Otherwise, if the
providers provide traces of the internal operation execution, methods such as
the one in [19] can be used to automatically generate the internal behavioral
model of the service. Each of the states in the workflow-based model can be fur-
ther extended in the implementation-based model. At this level we can combine
techniques for extracting the service model based on data value constraints [14]
and techniques that generate a finite state machine based on service component
interactions [8].

Example 1. Figure 2 presents a workflow-based model (composite-service), a
workflow-based model (single service), and an implementation-based model. Work-
flow-based model (composite-service) is driven by the flow of calls between ser-
vices in the composition. For instance, BookFlight and BookHotel are two part-
ner services that are invoked by TPlan. Workflow-based model (single service)
is driven by the flow of operation calls within a service, which are annotated
over the arcs. For instance, service BookHotel exposes different operations to
book a hotel room (see Table 1), which are used to generate its FSM model [20].
The model includes the input/output dependencies between operations. Also, for
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Fig. 2. Three-level modeling for TPlan service

simplicity, a transition is triggered iff the execution of the annotated operation
call is successful. Node Env in Figure 2 represents requests sent by the client to
different operations. Implementation-based model is driven by the flow of code
instructions within a service operation and provides a fine-grained representation
of the considered service.

All generated models can be represented as a Finite State Machine (FSM)
defined as follows.

Definition 1 (Model m). Let us consider a service model m generated by the
accredited lab. Model m can be defined as m=(S,Σ, δ, s0, F ), where S is a finite
set of states, Σ is a finite set of input, δ : S ×Σ 7→ S is the transition function,
s0∈S is the initial state, and F ⊆ S is the set of final states.
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We note that each transition annotation in Σ corresponds to a valid opera-
tion/code instruction call at any levels of the cloud stack, including infrastructure
and platform levels. The service model represents the different execution paths
for the service. A path can be formally defined as follows.

Definition 2 (Path pt i). Given a service model m, a path pt i is a sequence of
states pt i=〈s0,. . .,sn〉, with s0∈S and sn∈S denoting the initial state and a final
state, respectively, s.t. ∀n−1

i=0 si, ∃ a transition (si × σ 7→ si+1)∈δ.

When a certification process is considered, the minimum amount of informa-
tion required for system modeling is mandated by the certification authority and
usually involves a combination of workflow and implementation information. The
approach in this paper supports both workflow-based and implementation-based
modeling, as well as manual modeling.

There is however a subtlety to consider. Sometimes the correctness of a cloud
service model, and in turn of the corresponding certification process, passes
through the modeling of the configurations of the cloud infrastructure where the
service is deployed. For instance, the activities to be done to certify a property
confidentiality against other tenants depend on the real service deployment, such
as how resources are shared among tenants. If a tenant shares a physical ma-
chine with other tenants, confidentiality can be guaranteed by encrypting the
physical storage; if a tenant is the only one deployed on the physical machine, no
encryption is required to preserve the property. This difference, if not correctly
modeled, can result in scenarios where laboratory configurations guarantee the
property, which is no more valid with production configurations. In this paper,
we assume that configurations are not modeled in the FSM leaving such modeling
issue for our future work.

4 Model Verification

According to the process in Figure 1, model verification is under the responsi-
bility of the accredited lab that starts the verification of the ToC model in a lab
environment. If the verification is successful the certification process continues
and eventually leads to certificate issuing based on the collected evidence. We
note that, in those cases where the model is generated by the accredited lab
itself, model verification is successful by definition. Upon certificate issuing, the
certificate is linked to the ToC deployed in the production environment. How-
ever, in addition to common errors that could inadvertently be added during
model definition, the ToC can be affected by events changing its behavior once
deployed in the cloud production environment, and therefore impairing the cor-
rectness of the original modeling effort usually done in a lab environment. It
is therefore fundamental to provide an approach to online model verification,
which allows to continuously evaluate the correctness and trustworthiness of
certification processes and the validity of the corresponding issued certificates.
The accredited lab is responsible for online model verification, and checks the
consistency between the observed ToC behavior and the original model.
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Fig. 3. Model verification process

In the following of this section, we present our model verification approach.
The approach checks model correctness by collecting execution traces from real
ToC executions and projecting them on the model itself. Figure 3 shows the
conceptual design of our approach.

4.1 Execution Trace Collection

Execution trace collection represents the first step of our verification process.
Traces are collected either by monitoring real executions of the ToC involving real
customers or by observing the results of ad hoc test-based synthetic executions
(synthetic traces). Execution traces can be formally defined as follows.

Definition 3 (Trace T i). An execution trace T i is a sequence 〈t1,. . .,tn〉 of
actions, where tj can be either an operation execution opj or a code instruction
execution ci j.

We note that a trace T i composed of a sequence of operation executions opj

refers to a workflow-based model, while a trace T i also including code instruc-
tion executions ci j refers to an implementation-based model. We also note that
execution traces can be collected at multiple provider sites, depending on the
considered workflow.

Example 2. According to our reference scenario in Section 2.2, two types of
traces can be collected depending on the considered level (see Figure 2). At
workflow level, a trace represents a sequence of operation invocations, which
may belong to a single (e.g., T i=〈BookHotel.login(), BookHotel.findOffers(),
BookHotel.bookOffers()〉) or multiple (e.g., T i=〈BookHotel.login(), BookHo-
tel. findOffers(), BookHotel.bookOffers(), BankPayment.makePayment() 〉)
services. At implementation level, a trace is represented by a sequence of code
instruction executions (e.g. T i=〈checkOfferAvailability, not available,
returnError〉).
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4.2 Service Model Verification

Model verification is a function that takes as input the service model m=(S,
Σ, δ, s0, F ) and collected execution traces T i, and produces as output either
success (1), if the traces conform to the service model, or failure (0), otherwise,
with a description of the type of inconsistency found. Formally, we can define
model verification as follows.

Definition 4 (MV ). Model Verification is a function MV :M×T→{0,1}×R
that takes as input the initial service model m=(S,Σ, δ, s0, F )∈M and execution
traces T i∈T , and produces as output either:

– [1,∅] iff i) ∀T i∈T , ∃ a finite path ptj=〈s0, . . . , sn〉 in m∈M s.t. T i is consis-
tent with ptj (denoted T i≡ptj) and ii) ∀ptj=〈s0, . . . , sn〉 in m∈M, ∃T i∈T
s.t. T i≡ptj, or

– [0,r], otherwise, where r∈R describes the reason why a failure is returned.

We note that model verification is based on a consistency function ≡ between
collected traces and service model paths, as defined in the following.

Definition 5 (Consistency Function ≡). Given a trace T i=〈t1,. . .,tn〉∈T
and ptj=〈s0, . . . , sn〉 in m∈M, T i≡ptj iff ∀tk∈T i, ∃ (sk−1×σ 7→sk)∈δ s.t. tk
and σ refer to the same operation/code instruction.

Definitions 4 and 5 establish the basis for verifying the consistency between
observed traces and paths. A failure in the model verification means that there is
an inconsistency between the service model and the execution traces, which can
affect an existing certification process and invalidate an issued certificate (see
Section 5). Several types of inconsistencies can take place, which can be reduced
to three main classes as follows.

– Partial path discovery: it considers a scenario in which a trace is consis-
tent with a subset of a path in the model. In other words, given a trace
T i=〈t1,. . .,tn〉∈T and a path ptj=〈s0, . . . , s l〉 in m∈M, ∃ a subset ptj of ptj
s.t. T i≡ptj . This means that while mapping a trace to paths in the model,
only an incomplete path is found. We note that, for traces that stop be-
fore a final state in m, an inconsistency is raised after a pre-defined timeout
expires. The timeout models the expected elapsed time between two opera-
tions/instructions execution.

– New path discovery: it considers a scenario in which a trace is not consistent
with any path in the model. In other words, given a trace T i and a model m,
∀ptj∈m, T i 6≡ptj . This means that a new path is found, that is, at least a new
transition and/or a new state is found in the traces.

– Broken existing path: it considers a scenario in which real traces do not cover
a path in the model, and the synthetic traces return an error for the same
path. In other words, given a path ptj , 6 ∃T i s.t. T i≡ptj . This means that the
model includes a path that is not available/implemented in the real ToC.
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Table 2. Execution traces of operation BookHotel.

# Trace Trace values
1 login(),findOffers(),bookOffer(),logout()
2 bookOffer(),cancel()
3 findOffers(),login(),bookOffer(),logout()
4 Env,cancel()
5 Env,login(),logout()
6 Env,cancel(),login(),cancel(),logout()
7 Env,bookOffer(),login(),bookOffer(),logout()
8 bookOffer(),login(),bookOffer(),cancel()
9 findOffers(),bookOffer(),login(),bookOffer(),logout()
10 findOffers(),login(),logout()

We note that the above classes of inconsistency are due to either a bad mod-
eling of the service or a change in the production service/environment. Broken
existing path inconsistencies can also be due to unexpected failures within the
deployed ToC. We also note that additional inconsistencies can be modeled by
a combination of the above three. As an example, let us consider a single oper-
ation annotating a transition in model m (e.g., login() of service BookHotel),
which is updated to a new version with a new slightly different interface. In this
case, two inconsistencies are raised. First, a new path is discovered such that it
contains the new interface for operation login(); then, a broken existing path
is discovered having the original operation login().

Example 3. Let us consider the execution traces in Table 2. By projecting the
list of traces over the model in Figure 2 (single service workflow), we find some
inconsistencies. For instance, trace 2 shows a partial path inconsistency. The
sequence of calls (BookHotel.bookOffer(), BookHotel.cancel()) maps to a sub-
path of the model (login, bookOffer, cancel). Trace 10 shows a new path discov-
ery inconsistency. The sequence of calls (BookHotel.findOffers(), BookHotel.
login(), BookHotel.logout()) is supported by the service, while the model does
not have this path (i.e., the model is missing a transition from node findOffers to
node login). Finally, let us consider a scenario in which a failure in the authen-
tication mechanism makes function login() unreachable. In this case, a broken
existing path incosistency is raised for each path involving function login().

5 Certification Process Adaptation

Inconsistencies raised by our model verification in Section 4 trigger a certification
process adaptation, which could result in a certificate refinement. Certification
process adaptation is executed during online evaluation by the accredited lab.
It is aimed at incrementally adapting the certification process according to the
severity of the model inconsistency, reducing as much as possible the need of
costly re-certification processes [3].

The accredited lab, during online evaluation, collects the results of our model
verification including possible inconsistencies. Then, it adapts the entire evalu-
ation process following four different strategies.
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– No adaptation: model verification raises negligible inconsistencies (e.g., a par-
tial path discovery that does not affect the certified property). Accredited lab
confirms the validity of the certificate.

– Re-execution: model verification raises one or more broken existing path incon-
sistencies. Accredited lab triggers additional testing activities by re-executing
test cases on broken paths, to confirm the validity of the certificate.

– Partial re-certification: model verification raises critical inconsistencies (e.g.,
a new path discovery or a partial path discovery that affects the certified prop-
erty). Accredited lab executes new evaluation activities, such as exercising the
new portion of the system for certificate renewing.

– Re-certification: re-execution or partial re-certification fail and the accredited
lab invalidates the certificate. A new certification process re-starts from step 2
in Figure 1 by adapting original model m according to the model verification
outputs (i.e., r in Definition 4).

The role of model verification is therefore twofold. On one side, it triggers re-
execution of testing activities; on the other side, it adapts the model for partial or
complete re-certification. In any case, model verification supports a trustworthy
cloud certification process, where accidental and/or malicious modifications to
certified services are identified well in advance, reducing the window of time in
which an invalid certificate is perceived as valid.

6 Experimental Evaluation

We implemented a Java-based prototype of our model verification approach. The
prototype is composed of two main modules, namely, consistency checker and
model adapter. Consistency checker receives as input a service model and a set
of real and synthetic traces,2 and returns as output inconsistent traces with the
corresponding type of inconsistency. Model adapter receives as input the results
of the consistency checker and, according to them, generates as output a refined
model.

To assess the effectiveness of our prototype, we generated an experimental
dataset as follows. We first manually defined the correct implementation-based
model mcs of a generic service cs composed of 20 different paths; we then ran-
domly generated 1000 inconsistent models by adding random inconsistencies
(Section 4.2) to mcs . Inconsistent models are such that 10%, 20%, 30%, 40%,
or 50% of the paths are different (e.g., missing, new) from the paths in mcs .
To simulate realistic customer behaviors, we extended mcs by adding a prob-
ability P i to each path pt i∈mcs , such that

∑
iP i=1. Probabilities are taken

randomly from a normal probability distribution such that there exist few paths
whose probability of being invoked tends to 0. Real and synthetic traces are then
produced using mcs extended with probabilities.

2 We remark that synthetic traces are generated by ad hoc testing.



Trustworthy Cloud Certification: A Model-Based Approach 13

10 20 30 40 50

0
.2

0
.4

0
.6

0
.8

1
.0

Coverage per category

Perturbation %

A
ve

ra
g
e
 C

o
ve

ra
g
e

Fig. 4. Refined model coverage of mcs .

The experimental evaluation proceeded as follows. First, using the consis-
tency checker, we verified inconsistent models in the dataset and retrieved in-
consistent traces together with the type of inconsistency. Then, using the model
adapter, we built a refined model of each inconsistent model, and evaluated how
much these models approximate the correct model mcs . Our results show that
the refined models covered 64% of paths in mcs on average, with an increase
of 28% on the average coverage of the inconsistent models. Also, 17% of the in-
consistent models were able to cover the entire model mcs (i.e., 100% coverage),
while 0% of the inconsistent models in the dataset covered the entire model by
construction. Figure 4 shows a Box and Whisker chart presenting more detailed
results on the basis of the rates of differences (i.e., 10%, 20%, 30%, 40%, 50%)
introduced in the inconsistent models. The Box and Whisker chart in Figure 4
splits the dataset into quartiles. Within the box, containing two quartiles, the
horizontal line represents the median of the dataset. Two vertical dashed lines,
called whiskers, extend from the bottom and top of the box. The bottom whisker
goes from box to the smallest non-outlier in the data set, and the top whisker
goes from box to the largest non-outlier. The outliers are plotted separately as
points on the chart. Figure 4 shows that while we increased the perturbation
level, we decreased the ability to achieve a full coverage of the initial model. In
fact, the median value decreases in such a way that the complete coverage is
achieved in the last category (50%) as an outlier. Nevertheless, in all the per-
turbation levels, 50% of the models recover at least 40% of the inconsistencies.
Additionally, in the first case (10% perturbation), more than 50% of the mod-
els were completely recovered; therefore, both the median and the maximum
coverage are equal to 1.

In summary, model adapter does not achieve full coverage of mcs for all re-
fined models. This is mainly due to the fact that paths at low probability are
invoked with low probability. If these paths are already specified in an incon-
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sistent model, then a synthetic trace can be generated to evaluate them (if no
real traces are observed) and the refined model covers 100% of mcs . Otherwise,
they remain hidden impairing the ability of model adapter to produce a refined
model that covers 100% of mcs . In our future work, we plan to apply fuzzing and
mutation techniques to inconsistent models as a way to reveal hidden paths.

7 Related Work

Model-based verification of software components is increasingly becoming the
first choice technique to assess the quality of software systems, since it provides
a systematic approach with solid theoretical background. In the context of cloud
certification, model-based approaches are used to provide the evidence to cer-
tify service quality. The work proposed in [7] starts from a model of the service
under certification as a Symbolic Transition System (STS), and generates a cer-
tification model as a discrete-time Markov chain. The Markov chain is then used
to prove dependability properties of the service. In [4], the authors uses STSs
to model services at different levels of granularity. The model is then used to
automatically generate the test cases at the basis of the service certification pro-
cess. Spanoudakis et al. [25] present the EU FP7 Project CUMULUS [9], which
proposes a security certification scheme for the cloud based on the integration
of different techniques for evidence collection and validation. Additionally, they
support also an incremental approach to certify continuously evolving services.
A different strategy proposed by Munoz and Mãna in [21] focuses on certify-
ing cloud-based systems using trusted computing platforms. In [13], a security
certification framework is proposed. The framework relies on the definition of
security properties to be certified. It then uses a monitoring tool to check peri-
odically the validity of the defined properties. In [1], the OPTET project aims
to understand the trust relation between the different stakeholders. OPTET
offers methodologies tools and models, which provide evidence-based trustwor-
thiness. Additionally, it puts high emphasis on evidence collection during sys-
tem development, enriched by monitoring and system adaptation to maintain
its trustworthiness. In [11], an extension to the Digital Security Certificate [18]
is proposed. This certificate contains machine-readable evidence for each claim
about the system quality. The certificates are verified by continuously moni-
toring the certified properties. Differently from the above works, our approach
provides a certification process whose trustworthiness is verified by continuously
checking the equivalence between a service model and its implementation. Our
approach also supports model adaptation to reflect changes that might happen
while services are running.

8 Conclusions

In the last few years, the definition of assurance techniques, increasing the con-
fidence of cloud users that their data and applications are treated and behave as
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expected, has attracted the research community. Many assurance techniques in
the context of audit, certification, and compliance domains have been provided,
and often build their activities on service modeling. The correctness of these
techniques however suffers by hidden changes in the service models, which may
invalidate their results if not properly managed. In this paper, we presented a
model-based approach to increase the trustworthiness of cloud service certifica-
tion. Our approach considers service models at different granularity and verifies
them against runtime execution traces, to the aim of evaluating their correctness
and, in turn, the validity of the corresponding certificates. We also developed and
experimentally evaluated a first prototype of our model verification approach.
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